Sistemas de información para la gestión ambiental en la agricultura

  • 246 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
246
On Slideshare
0
From Embeds
0
Number of Embeds
2

Actions

Shares
Downloads
1
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • REDUÇÃO DA ÁREA DE PLANTIO
    Cenário parecido para Maça de Baixa Exigência
  • ÁREA DE PLANTIO EXPANDIO
    Municípios Recomendados - Zoneamento Atual: 78
    Cenário+2°C: 228 Aumentou: 150 (Área Total: 26.257 km2)

Transcript

  • 1. Tercer Seminário Regional Agricultura e cambio Climático: Nuevas tecnologias em la mitigacion y adaptation de La agricultura al cambio climatico 27 y 28 de septembre 2012 Sistemas de informacion para la gestion ambiental em la agricultura Eduardo Delgado Assad Embrapa - Brasil
  • 2. Una vision integral de la gestion ambiental, la gestion de riesgo y la adaptation de la agricultura y los cambios climáticos Eduardo Delgado Assad Embrapa Informática agropecuária
  • 3. EVOLUTION OF BRAZILIAN MITIGATION TARGETS NATIONAL CLIMATE CHANGE POLICY (PNMC) DECREE 7.390/2010 • Sanctioned right after COP-15, when the Brazilian government announced voluntary GHG emissions reduction targets, later included in the Copenhagen Accord. • Sets up a reduction target between 36.1 and 38.9% in relation to the baseline projected to 2020. –The baseline was calculated using data from the Second National Emissions Inventory released in 2010. • Establishes sectoral mitigation and adaptation plans • Defines the National Climate Change Fund (Climate Fund) as main financial instrument • Regulated by Decree no. 7.390/2010.
  • 4. EVOLUTION OF BRAZILIAN MITIGATION TARGETS NATIONAL CLIMATE CHANGE POLICY DECREE 7.390/2010 • According to Decree no. 7.390/2010, the revised National Climate Change Plan will be composed of the following sectoral mitigation plans: –Action Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm) –Action Plan for the Prevention and Control of Deferestation and Wildfires in the Cerrado (PPCerrado) –Ten Year Energy Plan (PDE, from 2007-2016) –Low Carbon Agriculture Plan (Plan ABC), and –Emissions Reduction in the Iron and Steel Industry.
  • 5. EVOLUTION OF BRAZILIAN MITIGATION TARGETS NATIONAL CLIMATE CHANGE POLICY DECREE 7.390/2010 • Emissions projections in 2020: 3.236 millions tCO2-eq • Reduction target: –Art. 6: actions will be implemented in order to reduce between 1.168 milhões tCO2-eq and 1.259 milhões tCO2-eq of the total projected emissions •1.168 millions tCO2-eq – 36,1% •1.259 millions tCO2-eq – 38,9%
  • 6. source: INPE (2010) Deforestation rate in the Amazon (thousands of Km2 /ha) Lowest deforestation rate since 2005
  • 7. Reducing emissions in the Amazon CO2 (million tons per year) projected emission For 2020 Reduction equivalent to 67% of projected emissions for 2020
  • 8. Related issues, but diferent nature Each four years Commitment by the UNFCCC (Specific Guidelines) Estimates Inventory commitment made under Decree 7.390/2010 year Monitoring Actions associated with the Sectorial Plans ?
  • 9. Sectoral Plans In preparation: - Transportation; - Industry; - Mining; - Health; - Aquaculture & Fisheries
  • 10. Monitoring and estimate Coordination - Embrapa; - Unicamp; -Agriculture clima network. Monitoring Centers Monitoring Centers Focused on adaptation Amazon deforestation cerrados Energy Trans portation Industry Mining Health Aquaculture & Fisheries
  • 11. Impactos y tendencias
  • 12. Tmax (Precis-A2) 2010 – media 1960-1990 8 a 6.5 6 a 5 4.5 a 3 2.5 a 1.5 1 a 0 -0.5 a -2 [⁰C]
  • 13. Tmax (Precis-A2) 2020 – media 1960-1990 8 a 6.5 6 a 5 4.5 a 3 2.5 a 1.5 1 a 0 -0.5 a -2 [⁰C]
  • 14. Tmax (Precis-A2) 2030 – media 1960-1990 8 a 6.5 6 a 5 4.5 a 3 2.5 a 1.5 1 a 0 -0.5 a -2 [⁰C]
  • 15. Tmax (Precis-A2) 2040 – media 1960-1990 8 a 6.5 6 a 5 4.5 a 3 2.5 a 1.5 1 a 0 -0.5 a -2 [⁰C]
  • 16. Análisis de riesgos climáticos
  • 17. Inicial Vegetativo Reproduccion Maduracionração Kc Zonification de riesgos climáticos la capacidad de agua del suelo Evapotranspiracion precipitacion
  • 18. Balance Hídrico Secuencial + Análisis frecuencial de los resultados Precipitacion Diária ETP Promedio decendial Fecha de siembra Tipo de suelo Tamaño del Ciclo Datos Fijos Metodologia (1/2) ISNA = ETR/ETM Datos Variábles AnoAno ValorValor 11 ISNA(Ano1)ISNA(Ano1) 22 ISNA(Ano2)ISNA(Ano2) ...... ...... NN ISNA(AnoN)ISNA(AnoN) N Anos X estaciones La cartografia De lo ISNA Fase III
  • 19. 0 1 2 3 4 5 33 34 35 3ª fase fenológica • • • dias ISNA • fISNA (x) 0 1 Isna= 65% P • •• • • • • • “critério” • • • • • • • •
  • 20. Resulta • 44 culturas con zonificación hecha todos los años • Enlace directo con la ciencia , tecnología y las políticas públicas • Parte de la evaluación de los impactos económicos hecho con la base de la zonificación climática • 17 años de la política pública y la orientación del crédito agrícola in ejecución • www.agritempo.gov.br
  • 21. Impactos del cambio climático sobre la agricultura • simulación de ocho modelos diferentes (tres en downscale) • cinco culturas • pastos • Período de 2010 a 2030
  • 22. Brazil Base Year 2010 PESSIMISTIC OPTIMISTIC CROP Planted Area 2009 (ha) 2020 (ha) ∆ (%) 2030 (ha) ∆ (%) 2020 (ha) ∆ (%) 2030 (ha) ∆ (%) Cotton 814.696 775.508 -4,8 774.457 -4,9 777.019 -4,6 776.974 -4,6 Rice 2.904.702 2.688.658 -7,4 2.617.461 -9,9 2.615.513 -10 2.640.323 -9,1 Sugarcane 8.845.659 17.783.411 101 16.921.749 91 18.305.604 107 18.418.819 108 Bean Summer season 2.612.240 1.161.420 -55,5 1.121.558 -57,1 1.197.625 -54,2 1.187.576 -54,5 Autumn season 1.715.000 542.749 -68,4 519.370 -69,7 622.053 -63,7 586.677 -65,8 Mayze Summer season 9.463.191 7.619.872 -19 7.376.636 -22 8.360.960 -12 8.226.524 -13 Autumn season 4.799.663 4.175.053 -13 4.063.815 -15 4.507.646 -6 4.455.642 -7 Soybean 21.761.782 16.472.685 -24 15.634.280 -28 18.882.508 -13 18.434.357 -15 Rainfed Wheat 2.345.496 1.987.386 -15,3 1.877.438 -20 1.383.302 -41 1.613.835 -31,2 table synthesis
  • 23. Estrategia de Adaptación
  • 24. Figure 2. rd29A:DREB1A / ahas transgenic soybean plants (left, T2) and the original veriety, BR16 plants (right) after applied drought stress (5% of humidity:29days, then 2.5%:17days). The plants without stress (15.0%) were growing normally like the plants left of this picture. This picture was taken in April 17, the day before 9th evaluation in Figure 3. P58: 2.5% BR16: 2.5% BR-16 siensien gene 2.5% Umidad del suelo P58 (BR-16 concon gene) 2.5% Umidad del suelo Expresión de genes tolerantes a la sequía en soja
  • 25. 0 1 4 5 7 8 9 10 Anos Cronograma para obtenção de uma variedade de soja X AB Hibridação Avanço Seleção Ensaios Semente Semente Semente Produtor de de de genética básica certificada rural gerações progênies competição fiscalizada (F2 a F4)* F5 A B * Duas gerações ao ano Caderno Caderno Registro Licenciamento de de SNPC cruzamento avaliação Tiempo para tener un cultivar adaptado
  • 26. Cultures Plant Breeding Million US$/YEAR BENEFIT COST RICE 18.9 8,2 COTTON 21.1 10,7 COFFEE 57.8 15,4 BEAN 28.3 7,1 SOYBEAN 210.0 16,7 CORN 196.7 4,3 Costs/benefits of Adaptation Plant breeding – Year 2020 Total = US$532.8 million/year
  • 27. ManzanaManzana Proyección: ElProyección: El aumento de laaumento de la temperatura a 2temperatura a 2oo CC
  • 28. BananaBanana Proyección:Proyección: El aumento de laEl aumento de la temperatura atemperatura a 2oC2oC
  • 29. Mes de noviembre Actual Mes de noviembre 2070 Mes de noviembre de 2070 con reducción del consumo de agua en 20% Estratégia biotecnologica Mes de noviembre 2070 con Ciclo de 110 dias
  • 30. Estrategia de MitigacionEstrategia de Mitigacion
  • 31. Emissions of CO2, CH4 and N2O in tonnes of CO2 equivalents by Brazilian agriculture for 1990, 1994, 2000 and 2005, according to the Second Brazilian Inventory of GHG Emissions and Removals (MCTI, 2011). Grains Area Production and planted area with grain crops from 1990 to 2011 Brazilian agriculture has experienced a continuous increase in grain production, but with a limited increase in cropped area, which is attributed to technology adoption. This scenario has resulted in an increase in GHG emissions.
  • 32. A - Methane emissions B - Nitrous oxide emissions Nitrous oxide emissions represented about 35 % of the overall emissions from Brazilian agriculture Brazilian GHG inventory for the agriculture sector (2005) GHG estimates are based on IPCC 1996 guidelines (Tiers 1 and 2) especially for the N2O inventory.
  • 33. Arable crops Cattle ranching Biofuel production N Fertilizer Legume species Grazing animals – excreta deposited on pasture Vinasse from bioethanol production from sugarcane Research are under way to develop emission factors for the different cropping environments in Brazil. Issues under evaluation IPCC direct EF = 1.25% IPCC direct EF = 2.0% N2O CH4N2O Investigated GHGs
  • 34. N2O fluxes measurement Fonte :Bruno Alves Embrapa Agrobiologia
  • 35. Static chamber Top-base type W-40 x L-60 cm 12 cm height 8 cm inserted in soil Rubber – aluminum coated top to improve insulation The 20 mL glass vials are promptly evacuated (-80 kPa) to receive 25 mL of the chamber headspace sample taken by using polyethylene syringes Fonte :Bruno Alves Embrapa Agrobiologia
  • 36. Sampling procedure • Gas sampling once a day, always in the morning between 9:00 h and 10:00 h. • Daily sampling during the first 10 days after fertilizer application. • Most of the results were obtained from a crop season and not necessarily from a whole year. Fonte :Bruno Alves Embrapa Agrobiologia
  • 37. Land use Evaluation period1 (dias) N-Fertilizer (source - kg N ha-1 ) Soil type EF based on reference area (%) Londrina, PR Red Latosol Maize, SP rotation (yr 1, 2) 136/141 Urea – 80 0.08/0.04 Maize, zero tillage,ZT)(yr 1, 2) 136/141 Urea – 80 0.13/0.08 Passo Fundo, RS Dark Red Latosol Wheat ZT rotation 137 Urea – 40 0.13 Soybean/wheat ZT (yr 1, 2) 1 year Fert+Res – 120/116 0.56/0.81 Soybean/wheat PC (yr 1, 2) 1 year Fert+Res – 126/133 0.47/0.52 Maize/wheat ZT 1 year Fert+Res – 162 0.41 Maize/wheat CT 1 year Fert+Res – 141 0.70 Sorghun/wheat ZT 1 year Fert+Res – 193 0.24 Sorghun/wheat CT 1 year Fert+Res – 193 0.29 Santo Antônio de Goiás, GO Dark Red Latosol Maize ZT rotation 140 Urea – 80 0.22 Highland rice ZT (yr 1, 2) 133/132 Urea – 90 0.13/0.14 Irrigated common bean ZT 149 Urea – 80 0.12 Seropédica, RJ Maize CT 120 Urea – 50 0.16 Maize CT 120 Urea – 100 Red-Yellow Argisol 0.35 Maize CT 120 Urea – 150 0.33 Elephant grass 180 Urea – 40 0.18 Elephant grass 180 Urea – 80 0.22 Elephant grass 180 Urea – 120 0.22 Elephant grass 180 Urea – 160 0.37 Emission factor of N2O from Brazilian agricultural systems Emission factor of N2O from Brazilian agricultural systems Direct emission factor of N2O obtained in Brazil General mean and confidence interval 0.30 % (0.20 – 0.47%) Direct emission factor of N2O obtained in Brazil General mean and confidence interval 0.30 % (0.20 – 0.47%) Direct Emission Factor recommended in the IPCC 2006 guidelines 1% (0.3 – 3%) Direct Emission Factor recommended in the IPCC 2006 guidelines 1% (0.3 – 3%) Data from Embrapa Agrobiologia, Soybean, Wheat and Rice and Bean Centers Data from Embrapa Agrobiologia, Soybean, Wheat and Rice and Bean Centers Fonte :Bruno Alves Embrapa Agrobiologia
  • 38. N2O emissions derived from cattle excreta in pastures IPCC: 2% of N-excreta is lost as N2O Fonte :Bruno Alves Embrapa Agrobiologia
  • 39. Soil N2O emissions from cattle urine and faeces Preliminary data indicates that the N2O direct emission factor for urine is between 1.2 to 1.4 % and for faeces it is between 0.1 to 0.2 %. N2O-EF1 from “Tier 1” of IPCC guidelines is 2 % of the total N in cattle excreta . For the Brazilian savannah region that concentrates about 40 % of cattle herd, the weighed average emission factor would vary from 0.5 to 0.7 %, assuming no more than 60% of excreted N is in the urine form. Fonte :Bruno Alves Embrapa Agrobiologia
  • 40. 0-50-5 30-4030-40 20-3020-30 10-2010-20 5-105-10 60-8060-80 40-5040-50 50-6050-60 80-100 cm80-100 cm Quantification of soil C stocks “Shovelometrics” Trenches 120 cm depth The soil density must be measured accurately to correct for differential compaction Fonte : Robert Boddey Embrapa Agrobiologia
  • 41. Region Veg. Nativa Pastura degradad os Pastura recuperada ILP ILPF .........................C (t ha-1 ) ............ Sur 59 22 73 50 69 Sudeste 86 49 60 91 95 Centro Oeste 60 42 52 79 53 Las reservas de carbono en suelos de diferentes sistemas agrícolas en el sur, sureste y Midwest (0-30 cm). Brasil
  • 42. Coordination: Embrapa Southeast Cattle – São Carlos, SP Participant institutions: Animal Sciences Institute – Nova Odessa, SP Embrapa Environment – Jaguariúna, SP PA 4.1. Evaluation of methane emission from ruminants 4.1.1. Evaluation of methane emission from the rumen of dairy cattle 4.1.2. Evaluation of methane emission from the rumen of beef cattle in the Southeast region 4.1.3. Evaluation of methane emission from the rumen of crossbreed dairy cattle with controled ingestion of forage 4.1.4. Evaluation of methane emission from the rumen of beef cattle in the Pantanal region 4.1.4. Methane analysis and sulfur hexafluoride by gas chromatography
  • 43. Methane collection from dairy cattle
  • 44. Methane emission factors for beef cattle (Nelore) in the Southeast of Brazil (tropical climate) CH4 g/d* Category Weight % of total herd Winter Spring Summer Fall CH4 kg/animal year Bulls 500 > 1.4 131 192 274 168 69.7 Cows 350-450 36.6 116 150 198 161 57.0 Heifers (7 months to 2 years) 180-250 11.4 95 99 159 159 46.7 Heifers (2-3 years) 250-351 7.5 103 114 194 130 49.3 Males (7 months to 2 years) 180-250 9.6 95 99 159 159 46.7 Males (2-3 years) 250-351 5.0 103 114 194 130 49.3 Males (3-4 years) 350-450 1.6 116 150 198 161 57.0 Males (4 years ) 450> 0.4 131 192 274 161 69.1 Mean - - 111 139 206 154 53.0
  • 45. Buenos Pastizales Son eficientes en lo sequestro de carbono
  • 46. recuperación de las pasturas Degradacion de las pasturas Recuperacion de 15 millones de hectareas
  • 47. Rotação lavoura-pasto Anos 75 76 78 82 86 87 88 89 90 91 92 Matériaorgânica(%) 0 2 3 4 5 Rotação contínua de soja/milho Pasto depois de lavoura Lavoura depois de pasto Sousa, et al., 1997 Sucessão soja/milho Pasto depois de lavoura Lavoura depois de pasto Teores de matéria orgânica do solo
  • 48. 60Fonte :Embrapa agrobiologia las emisiones de CO2 co aumento de peso
  • 49. 61
  • 50. 62
  • 51. 63
  • 52. 64 PASTAGEM PERDA DE PRODUÇÃO (%) Escenario pesimista Escenário optimista PA 27 28 29 25 25 25 TO 39 40 42 37 37 38 MA 46 46 47 45 45 45 PI 61 61 63 59 60 60 CE 67 68 68 66 67 67 RN 66 67 67 65 65 66 PB 64 65 66 63 64 64 PE 57 58 58 56 56 57 AL 51 52 52 51 51 51 SE 48 48 49 47 47 47 BA 55 55 56 53 54 54 MG 45 45 46 42 42 43 ES 38 39 40 36 36 37 RJ 30 31 31 28 28 28 SP 27 28 29 23 23 24 PR 11 12 14 7 6 8 SC 0 0 0 0 0 0 RS 4 4 5 0 0 0 MS 31 31 33 27 26 27 MT 37 37 39 34 34 35
  • 53. Agricultural Management Area Million ha Mitigation MTCO²eq Cost Billion US$ Years Recovery of Degradeted Pastures 15.0 101.7 10.9 10 Crop Livestock Integration 4,0 27.1 19.0 10 No Tillage 8,0 14.6 1.3 10 Biological Fixation of Nitrogen 11.0 20.0 0.2 10 Reforestation 1.5 3.0 8.8 10 Total 39.5 166.4 40.2 10 Reduction of CO² emission, area considered and cost of mitigation activities until 2020 Adapted from ASSAD, E. D. & BARIONI, L. G. Embrapa Informática
  • 54. Eduardo Delgado Assad assad@cnptia.embrapa.br