Sistemas de informacion para la gestion ambiental em la agricultura
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Sistemas de informacion para la gestion ambiental em la agricultura

on

  • 510 views

Eduardo Delgado Assad, Embrapa - Brasil. ...

Eduardo Delgado Assad, Embrapa - Brasil.

Contexto: Tercer Seminario Regional Agricultura y Cambio Climático: "Nuevas tecnologías en la mitigación y adaptación de la agricultura al cambio climático". Santiago de Chile, 28/09/2012
Más información: http://fao.org/alc/u/2u

Statistics

Views

Total Views
510
Views on SlideShare
510
Embed Views
0

Actions

Likes
0
Downloads
3
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

CC Attribution-NonCommercial LicenseCC Attribution-NonCommercial License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • REDUÇÃO DA ÁREA DE PLANTIO Cenário parecido para Maça de Baixa Exigência
  • ÁREA DE PLANTIO EXPANDIO Municípios Recomendados - Zoneamento Atual: 78 Cenário+2°C: 228 Aumentou: 150 (Área Total: 26.257 km 2 )

Sistemas de informacion para la gestion ambiental em la agricultura Presentation Transcript

  • 1. Tercer Seminário Regional Agricultura e cambio Climático: Nuevas tecnologias em la mitigacion y adaptation de La agricultura al cambio climatico 27 y 28 de septembre 2012 Sistemas de informacion para la gestion ambiental em la agricultura Eduardo Delgado Assad Embrapa - Brasil
  • 2. Una vision integral de la gestion ambiental, la gestion de riesgo y la adaptation de la agricultura y los cambios climáticos Eduardo Delgado Assad Embrapa Informática agropecuária
  • 3. EVOLUTION OF BRAZILIAN MITIGATION TARGETS NATIONAL CLIMATE CHANGE POLICY (PNMC) DECREE 7.390/2010• Sanctioned right after COP-15, when the Brazilian government announced voluntary GHG emissions reduction targets, later included in the Copenhagen Accord.• Sets up a reduction target between 36.1 and 38.9% in relation to the baseline projected to 2020.–The baseline was calculated using data from the Second NationalEmissions Inventory released in 2010.• Establishes sectoral mitigation and adaptation plans• Defines the National Climate Change Fund (Climate Fund) as main financial instrument• Regulated by Decree no. 7.390/2010.
  • 4. EVOLUTION OF BRAZILIAN MITIGATION TARGETS NATIONAL CLIMATE CHANGE POLICY DECREE 7.390/2010• According to Decree no. 7.390/2010, the revised National Climate Change Plan will be composed of the following sectoral mitigation plans:–Action Plan for the Prevention and Control of Deforestation in theLegal Amazon (PPCDAm)–Action Plan for the Prevention and Control of Deferestation andWildfires in the Cerrado (PPCerrado)–Ten Year Energy Plan (PDE, from 2007-2016)–Low Carbon Agriculture Plan (Plan ABC), and–Emissions Reduction in the Iron and Steel Industry.
  • 5. EVOLUTION OF BRAZILIAN MITIGATION TARGETS NATIONAL CLIMATE CHANGE POLICY DECREE 7.390/2010• Emissions projections in 2020: 3.236 millions tCO2-eq• Reduction target:–Art. 6: actions will be implemented in order to reduce between1.168 milhões tCO2-eq and 1.259 milhões tCO2-eq of the totalprojected emissions•1.168 millions tCO2-eq – 36,1%•1.259 millions tCO2-eq – 38,9%
  • 6. Deforestation rate in the Amazon (thousands of Km2/ha) Lowest deforestation rate since 2005 source: INPE (2010)
  • 7. Reducing emissions in the Amazon CO2 (million tons per year) projected emission For 2020 Reduction equivalent to 67% of projected emissions for 2020
  • 8. Related issues, but diferent nature Commitment by theInventory UNFCCC Each four (Specific years Guidelines) commitment made under Estimates Decree 7.390/2010 year Actions associated with theMonitoring Sectorial ? Plans
  • 9. Sectoral PlansIn preparation:- Transportation;- Industry;- Mining;- Health;- Aquaculture &Fisheries
  • 10. Monitoring and estimate Coordination Monitoring Centers Monitoring CentersAmazon cerrados Energy - Embrapa; Trans Industry Miningdeforestation - Unicamp; portation Health Aquaculture & -Agriculture Fisheries clima network. Focused on adaptation
  • 11. Impactos y tendencias
  • 12. Tmax (Precis-A2)2010 – media 1960-1990[⁰C] 8 a 6.5 6a5 4.5 a 3 2.5 a 1.5 1a0 -0.5 a -2
  • 13. Tmax (Precis-A2)2020 – media 1960-1990 [⁰C] 8 a 6.5 6a5 4.5 a 3 2.5 a 1.5 1a0 -0.5 a -2
  • 14. Tmax (Precis-A2)2030 – media 1960-1990 [⁰C] 8 a 6.5 6a5 4.5 a 3 2.5 a 1.5 1a0 -0.5 a -2
  • 15. Tmax (Precis-A2)2040 – media 1960-1990 [⁰C] 8 a 6.5 6a5 4.5 a 3 2.5 a 1.5 1a0 -0.5 a -2
  • 16. Análisis de riesgos climáticos
  • 17. Zonification de riesgos climáticos Evapotranspiracion precipitacionKc Ma Reproduccion dur ac ção ionra iv o tat ge Ve Inicial la capacidad de agua del suelo
  • 18. Metodologia (1/2) Precipitacion ETP Datos Fijos Promedio decendial Diária Datos Variábles Fecha de siembra Balance Hídrico Secuencial + Tipo de suelo Análisis frecuencial de los resultados Tamaño del Ciclo N AnosAno Valor ISNA = ETR/ETM1 ISNA(Ano1)2 ISNA(Ano2)... ...N ISNA(AnoN) La cartografia De lo ISNA Fase III X estaciones
  • 19. fISNA(x) A ISN 1 • • P •• • • “critério” • • • • • • • • Isna= 65% • • •0 dias 0 1 2 3 4 5 ••• 33 34 35 3ª fase fenológica
  • 20. Resulta• 44 culturas con zonificación hecha todos los años• Enlace directo con la ciencia , tecnología y las políticas públicas• Parte de la evaluación de los impactos económicos hecho con la base de la zonificación climática• 17 años de la política pública y la orientación del crédito agrícola in ejecución• www.agritempo.gov.br
  • 21. Impactos del cambio climático sobre la agricultura• simulación de ocho modelos diferentes (tres en downscale)• cinco culturas• pastos• Período de 2010 a 2030
  • 22. table synthesis Brazil Base Year 2010 PESSIMISTIC OPTIMISTIC CROP Planted Area 2009 (ha) 2020 (ha) ∆ (%) 2030 (ha) ∆ (%) 2020 (ha) ∆ (%) 2030 (ha) ∆ (%)Cotton 814.696 775.508 -4,8 774.457 -4,9 777.019 -4,6 776.974 -4,6Rice 2.904.702 2.688.658 -7,4 2.617.461 -9,9 2.615.513 -10 2.640.323 -9,1Sugarcane 91 108 8.845.659 17.783.411 101 16.921.749 18.305.604 107 18.418.819 Summer season 2.612.240 1.161.420 -55,5 1.121.558 -57,1 1.197.625 -54,2 1.187.576 -54,5Bean Autumn season 1.715.000 542.749 -68,4 519.370 -69,7 622.053 -63,7 586.677 -65,8 Summer season 9.463.191 7.619.872 -19 7.376.636 -22 8.360.960 -12 8.226.524 -13Mayze Autumn season 4.799.663 4.175.053 -13 4.063.815 -15 4.507.646 -6 4.455.642 -7Soybean 21.761.782 16.472.685 -24 15.634.280 -28 18.882.508 -13 18.434.357 -15Rainfed Wheat -20 -31,2 2.345.496 1.987.386 -15,3 1.877.438 1.383.302 -41 1.613.835
  • 23. Estrategia de Adaptación
  • 24. Expresión de genes tolerantes a la sequía en soja P58: 2.5% BR16: 2.5% 2.5% Umidad del suelo BR-16 sien geneFigure 2. rd29A:DREB1A / ahas transgenic soybean plants (left, T 2) and the original veriety, BR16 plants (right)after applied drought stress (5% of humidity:29days, then 2.5%:17days). The plants without stress (15.0%) weregrowing normally like the plants left of this picture. This picture was taken in April 17, the day before 9th evaluationin Figure 3. o )
  • 25. Tiempo para tener un cultivar adaptado Cronograma para obtenção de uma variedade de soja* Duas gerações ao anoHibridação Avanço Seleção Ensaios Semente Semente Semente Produtor de de de genética básica certificada rural gerações progênies competição fiscalizada (F2 a F4)* F5 XA B AB Caderno Caderno Registro Licenciamento de de SNPC cruzamento avaliação0 1 4 5 7 8 9 10 Anos
  • 26. Costs/benefits of Adaptation Plant breeding – Year 2020 Total = US$532.8 million/year Plant Breeding BENEFIT Cultures Million COST US$/YEARRICE 18.9 8,2COTTON 21.1 10,7COFFEE 57.8 15,4BEAN 28.3 7,1SOYBEAN 210.0 16,7CORN 196.7 4,3
  • 27. Manzana Proyección: El aumento de latemperatura a 2oC
  • 28. Banana Proyección:El aumento de la temperatura a 2oC
  • 29. Mes de noviembre Actual Mes de noviembre 2070 Mes de noviembre de 2070 con Mes de noviembre 2070 con reducción del consumo de agua en 20% Ciclo de 110 dias Estratégia biotecnologica
  • 30. Estrategia de Mitigacion
  • 31. Brazilian agriculture has experienced a continuous increase in grain production, but with a limited increase in cropped area, which is attributed to technology adoption. This scenario has resulted in an increase in GHG emissions. Grains AreaProduction and planted area with grain crops from Emissions of CO2, CH4 and N2O in tonnes of CO21990 to 2011 equivalents by Brazilian agriculture for 1990, 1994, 2000 and 2005, according to the Second Brazilian Inventory of GHG Emissions and Removals (MCTI, 2011).
  • 32. Brazilian GHG inventory for the agriculture sector (2005) A - Methane emissions Nitrous oxide emissions represented about 35 % of the overall emissions from B - Nitrous oxide emissions Brazilian agricultureGHG estimates are based on IPCC 1996 guidelines (Tiers 1 and 2) especially for the N2Oinventory.
  • 33. Research are under way to develop emission factors for thedifferent cropping environments in Brazil.Issues under evaluation Arable crops Cattle ranching Biofuel production N Fertilizer Grazing animals – Vinasse from excreta deposited Legume species bioethanol on pasture production from IPCC direct EF = 1.25% IPCC direct EF = 2.0% sugarcaneInvestigated GHGs N 2O N2 O CH4
  • 34. N2O fluxes measurementFonte :Bruno Alves Embrapa Agrobiologia
  • 35. Static chamber Top-base type W-40 x L-60 cm 12 cm height 8 cm inserted in soil Rubber – aluminum coated top to improve insulation The 20 mL glass vials are promptly evacuated (-80 kPa) to receive 25 mL of the chamber headspace sample taken by using polyethylene syringesFonte :Bruno Alves Embrapa Agrobiologia
  • 36. Sampling procedure • Gas sampling once a day, always in the morning between 9:00 h and 10:00 h. • Daily sampling during the first 10 days after fertilizer application. • Most of the results were obtained from a crop season and not necessarily from a whole year.Fonte :Bruno Alves Embrapa Agrobiologia
  • 37. Evaluation N-Fertilizer EF based on Emission factor of N2O Land use period1 (source - kg N Soil type reference area (dias) ha-1) (%) from Brazilian Londrina, PR Red Latosol agricultural systems Maize, SP rotation (yr 1, 2) 136/141 Urea – 80 0.08/0.04 Maize, zero tillage,ZT)(yr 1, 136/141 Urea – 80 0.13/0.08 2) Passo Fundo, RS Direct emission factor of Wheat ZT rotation 137 Urea – 40 0.13 N2O obtained in Brazil Soybean/wheat ZT (yr 1, 2) 1 year Fert+Res – 0.56/0.81 120/116 General mean and Soybean/wheat PC (yr 1, 2) 1 year Fert+Res – Dark Red 0.47/0.52 126/133 Latosol confidence interval Maize/wheat ZT 1 year Fert+Res – 162 0.41 0.30 % (0.20 – 0.47%) Maize/wheat CT 1 year Fert+Res – 141 0.70 Sorghun/wheat ZT 1 year Fert+Res – 193 0.24 Sorghun/wheat CT 1 year Fert+Res – 193 0.29 Santo Antônio de Goiás, GO Maize ZT rotation 140 Urea – 80 0.22 Dark Red Highland rice ZT (yr 1, 2) 133/132 Urea – 90 0.13/0.14 Latosol Irrigated common bean ZT 149 Urea – 80 0.12 Seropédica, RJ Direct Emission Factor Maize CT 120 Urea – 50 0.16 recommended Maize CT 120 Urea – 100 Red-Yellow 0.35 in the IPCC 2006 guidelines Maize CT 120 Urea – 150 Argisol 0.33 1% (0.3 – 3%) Elephant grass 180 Urea – 40 0.18 Elephant grass 180 Urea – 80 0.22 Elephant grass 180 Urea – 120 0.22 Elephant grass 180 Urea – 160 0.37Data from Embrapa Agrobiologia, Soybean, Wheat and Rice and Bean CentersFonte :Bruno Alves Embrapa Agrobiologia
  • 38. N2O emissions derived from cattle excreta in pastures IPCC: 2% of N-excreta is lost as N2OFonte :Bruno Alves Embrapa Agrobiologia
  • 39. Soil N2O emissions from cattle urine and faeces Preliminary data indicates that the N2O direct emission factor for urine is between 1.2 to 1.4 % and for faeces it is between 0.1 to 0.2 %. N2O-EF1 from “Tier 1” of IPCC guidelines is 2 % of the total N in cattle excreta . For the Brazilian savannah region that concentrates about 40 % of cattle herd, the weighed average emission factor would vary from 0.5 to 0.7 %, assuming no more than 60% of excreted N is in the urine form.Fonte :Bruno Alves Embrapa Agrobiologia
  • 40. Quantification of soil C stocks “Shovelometrics” Trenches 120 cm depth The soil density must be measured accurately to correct for differential compaction 0-5 5-10 10-20 20-30 30-40 40-50 50-60 60-80 80-100 cmFonte : Robert Boddey Embrapa Agrobiologia
  • 41. Las reservas de carbono en suelos de diferentes sistemas agrícolas en el sur, sureste y Midwest (0-30 cm). Brasil Region Veg. Pastura Pastura ILP ILPF Nativa degradad os recuperada .........................C (t ha-1) ............ Sur 59 22 73 50 69 Sudeste 86 49 60 91 95 Centro 60 42 52 79 53 Oeste
  • 42. PA 4.1. Evaluation ofmethane emissionfrom ruminants4.1.1. Evaluation ofmethane emission from therumen of dairy cattle4.1.2. Evaluation ofmethane emission from therumen of beef cattle in theSoutheast region Coordination:4.1.3. Evaluation of Embrapa Southeastmethane emission from the Cattle – São Carlos,rumen of crossbreed dairy SPcattle with controledingestion of forage Participant4.1.4. Evaluation of institutions:methane emission from the Animal Sciencesrumen of beef cattle in the Institute – NovaPantanal region Odessa, SP4.1.4. Methane analysis and Embrapa Environmentsulfur hexafluoride by gas – Jaguariúna, SPchromatography
  • 43. Methane collection fromdairy cattle
  • 44. Methane emission factors for beef cattle (Nelore) in the Southeast of Brazil (tropical climate) CH4 g/d* CH4 kg/animalCategory Weight % of total Winter Spring Summer Fall year herdBulls 500 > 1.4 131 192 274 168 69.7Cows 350-450 36.6 116 150 198 161 57.0Heifers (7 months 180-250 11.4 95 99 159 159 46.7to 2 years)Heifers (2-3 years) 250-351 7.5 103 114 194 130 49.3Males (7 months to 180-250 9.6 95 99 159 159 46.72 years)Males (2-3 years) 250-351 5.0 103 114 194 130 49.3Males (3-4 years) 350-450 1.6 116 150 198 161 57.0Males (4 years ) 450> 0.4 131 192 274 161 69.1 Mean - - 111 139 206 154 53.0
  • 45. Buenos PastizalesSon eficientes en lo sequestro de carbono
  • 46. Recuperacion de 15 millones de hectareas Degradacion de las pasturas recuperación de las pasturas
  • 47. Teores de matéria orgânica do solo Rotação lavoura-pasto 5 Rotação contínua de soja/milho Pasto depois de lavoura Lavoura depois de pasto Matéria orgânica (%) Lavoura depois de 4 Pasto depois de pasto lavoura Sucessão soja/milho 3 2 0 75 76 78 82 86 87 88 89 90 91 92 Anos Sousa, et al., 1997
  • 48. las emisiones de CO2 co aumento de peso Fonte :Embrapa agrobiologia 60
  • 49. 61
  • 50. 62
  • 51. 63
  • 52. PERDA DE PRODUÇÃO (%)PASTAGEM Escenario pesimista Escenário optimista PA 27 28 29 25 25 25 TO 39 40 42 37 37 38 MA 46 46 47 45 45 45 PI 61 61 63 59 60 60 CE 67 68 68 66 67 67 RN 66 67 67 65 65 66 PB 64 65 66 63 64 64 PE 57 58 58 56 56 57 AL 51 52 52 51 51 51 SE 48 48 49 47 47 47 BA 55 55 56 53 54 54 MG 45 45 46 42 42 43 ES 38 39 40 36 36 37 RJ 30 31 31 28 28 28 SP 27 28 29 23 23 24 PR 11 12 14 7 6 8 SC 0 0 0 0 0 0 RS 4 4 5 0 0 0 MS 31 31 33 27 26 27 MT 37 37 39 34 34 35 64
  • 53. Agricultural Area Mitigation Cost Years Management Million MTCO²eq Billion ha US$ Recovery of Degradeted 15.0 101.7 10.9 10 Pastures Crop Livestock 4,0 27.1 19.0 10 Integration No Tillage 8,0 14.6 1.3 10 Biological Fixation of 11.0 20.0 0.2 10 Nitrogen Reforestation 1.5 3.0 8.8 10 Total 39.5 166.4 40.2 10Reduction of CO² emission, area considered and cost of mitigation activities until 2020 Adapted from ASSAD, E. D. & BARIONI, L. G. Embrapa Informática
  • 54. Eduardo Delgado Assadassad@cnptia.embrapa.br