Ppt (1)

2,509 views
2,255 views

Published on

diode

Published in: Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,509
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
171
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Ppt (1)

  1. 1. ROBUST TRAFFIC LIGHT CONTROLLER
  2. 2. ROBUST TRAFFIC LIGHT CONTROLLERUNDER THE GUIDANCE OFER.A.K.SINGHBY:DEBASIS MISHRA
  3. 3. HISTORICAL PERSPECTIVE• On 10 December 1868, the first traffic lights were installed outside the British Houses of Parliament in London, by the railway engineer J. P. Knight. They resembled railway signals of the time, with semaphore arms and red and green gas lamps for night use.• The modern electric traffic light is an American invention. As early as 1912 in Salt Lake City, Utah, policeman Lester Wire invented the first red- green electric traffic lights.
  4. 4. TRAFFIC LIGHTS• Traffic lights are also known as stop lights, traffic lamps, stop-and-go lights, robots or semaphore.• These are signaling devices positioned at road intersections, pedestrian crossings and other locations to control competing flows of traffic. They assign the right of way to road users by the use of lights in standard colors (Red - Amber - Green), using a universal color code (and a precise sequence, for those who are color blind).
  5. 5. OBSTACLES• Redundancy is not present• Immune to failure due flow of large current• Voltage regulation is not proper• No augmented circuit is present when main controller fails• Improper performance at different temperature points
  6. 6. OBJECTIVEs Robust TrafficTo make a robust traffic Light light controller Redundancy Voltage regulation MICROCONROLLER Controller Current protection Immune to Temperature fluctuations
  7. 7. THE BASIC 4 LANE TRAFFIC SIGNAL
  8. 8. STATE DIAGRAM
  9. 9. STATES OF LIGHTS OF LANES AFTER 50 SEC CYCLIC AFTERAFTER ROTATION 4 SEC4 SEC AFTER 50 SEC
  10. 10. Basic modules• Four modules1. Power supply modules and Battery backup module2. Microcontroller module3. Temperature regulated protection module4. Overvoltage and overcurrent protection module
  11. 11. Module-1BASIC POWER SUPPLY CIRCUIT =6V LM7806
  12. 12. Module-1 BASIC ZENER REGULATOR CIRCUIT• Voltage regulation or stabilisation circuit• Achieved through a ZENER DIODE• ZENER break down occurs on applying reverse bias voltage
  13. 13. Module-16V BATTERY BACKUP SUPPLY LM7806
  14. 14. Module-2 ATMEGA 16 SPECIFICATIONS• 131 Instructions• 32 8-bit GP registers• Throughput up to 16 MIPS• 16K programmable flash (instructions)• 512Bytes EEPROM• 1K internal SRAM• Timers, serial and parallel I/O, ADC
  15. 15. Module-2PIN DIAGRAM
  16. 16. Module-2
  17. 17. Module-2 PROGRAMMING PORTS• DDRA=0X00; (PORTA AS INPUT)• DDRA=0XFF; (PORTA AS OUTPUT)• PORTA=0XFF; (PORTA AS HIGH)• DELAY_MS(50); (USER DEFINED FUNCTION)• PORTA=0X00; (PORTA AS LOW)• DELAY_MS(50);• Unsigned char read_portA;• read_portA=PINA;
  18. 18. Module-2 ADVANTAGE OF ATMEGA• Less hardware complexity• Less power consumption• Faster operation• Cheap Programmer
  19. 19. Module-2 BASIC COMMANDS FOR PROGRAMING THE PORTS OF AVR MICROCONTROLLERHEADER FILE THAT WE USED = AVR/IO.H4 PORTS ARE = A,B,C,D3 BASIC COMMANDS TO PROGRAM THE PORTS AREDDR<PORT NAME>=<hex decimal or binary number>Used to declare ports as input or output port if 1=>output port,0=>input portDDRA=0b01011100PORT<PORT NAME>=<hex decimal or binary number>Used to assign output values through portPORTA=0b01011100PIN<PORT NAME>=<hex decimal or binary number>Used to assign input values through portEg: PINA=0b01011100
  20. 20. Module-2SIMULATED CIRCUIT DIAGRAM FOR 4 LANETRAFFIC LIGHT CONTROLLER
  21. 21. Module-2 ‘C’ CODE FOR 4 LANE#include <AVR/IO.h>void Delay1s(int i){int j; Programvolatile unsigned int cnt; forfor (j=0; j<i; j++) 1sec delayfor (cnt = 0; cnt < 55555; cnt++);}void main(){ DDRA=0XFF; DDRB=0XFF; Assigning all DDRC=0XFF; ports as DDRD=0XFF; output ports PORTA=0x01; PORTB=0x01; Initializing values PORTC=0x01; to ports PORTD=0x01;
  22. 22. Module-2while(1) east{PORTA=0x02;Delay1s(4);PORTA=0x04;Delay1s(20);PORTA=0x02;Delay1s(4);PORTA=0x01; southPORTB=0x02;Delay1s(4);PORTB=0x04;Delay1s(20);PORTB=0x02;Delay1s(2);PORTB=0x01;
  23. 23. Module-2 northPORTC=0x02;Delay1s(4);PORTC=0x04;Delay1s(20);PORTC=0x02;Delay1s(4);PORTC=0x01; westPORTD=0x02;Delay1s(4);PORTD=0x04;Delay1s(20);PORTD=0x02;Delay1s(4);PORTD=0x01;} Loop continues infinite times}
  24. 24. Module-2PROBLEM STATEMENT OF 8 LANE TRAFFIC LIGHT CONTROLLER • QUESTION • A vehicle coming from 1 can go in any direction except 2 and 8 which are adjacent to the active lane. • This is same for other lanes too. SOLUTION We will take 2 lanes are active at a time i.e. let take 1 and 5.
  25. 25. Module-2SIMULATION FOR 8 LANE
  26. 26. Module-2 C CODE FOR 8 LANE TRAFFIC SIGNAL CONTROLLER#include <AVR/IO.h>void Delay1s(int i){int j;volatile unsigned int cnt;for (j=0; j<i; j++);for (cnt = 0; cnt < 55555; cnt++);}void main(){ DDRA=0xFF; DDRB=0xFF; DDRC=0xFF; DDRD=0xFF; PORTA=0x01; PORTB=0x01; PORTC=0x01; PORTD=0x01; PORTA=0x02; Delay1s(4);
  27. 27. Module-2 while(1)• {PORTA=0x04;• Delay1s(20);• PORTA=0x02;• Delay1s(4);• PORTA=0x08;• Delay1s(20);• PORTA=0x02;• PORTB=0x02;• Delay1s(4);• PORTA=0x01;• PORTB=0x04;• Delay1s(20);• PORTB=0x02;• Delay1s(4);• PORTB=0x08;• Delay1s(20);• PORTB=0x02;• PORTC=0x02;• Delay1s(4);• PORTB=0x01;
  28. 28. Module-2PORTC=0x04;Delay1s(20);PORTC=0x02;Delay1s(4);PORTC=0x08;Delay1s(20);PORTC=0x02;PORTD=0x02;Delay1s(4);PORTC=0x01;PORTD=0x04;Delay1s(20);PORTD=0x02;Delay1s(4);PORTD=0x08;Delay1s(20);PORTD=0x02;PORTA=0x02;Delay1s(4);PORTD=0x01;}}
  29. 29. Module-2CIRCUIT DIAGRAM FOR MICROCONTROLLER BACK UP / MASTER SLAVE OPERATION OF MICROCONTROLLER
  30. 30. Module- 3 TEMPERATURE REGULATION PROTECTION MODULETHERMISTORS :Thermistor is a temperature- sensing elementNegative temperature coefficientsChemically stable and not affected by aging
  31. 31. Module- 3 TEMPERATURE REGULATION PROTECTION MODULEDC FANS : Automatic cooling fans to liberate heat out of the circuits Operation controlled by thermistors Fan Motor 12V 700mA max. Use to cool down heat sinks
  32. 32. Module- 3 TEMPERATURE REGULATION PROTECTION MODULECIRCUIT DIAGRAM :
  33. 33. Module- 4 POLARITY PROTECTION MODULECIRCUIT DIAGRAM :
  34. 34. Module- 4 OVER VOLTAGE PROTECTION MODULECIRCUIT DIAGRAM :
  35. 35. Module- 4 Current Limiting Circuits(1A-2A)CIRCUIT DIAGRAM : • Normal operation • Output shorted, and no limiting • Output shorted, with limiting at 2A • Rsense=0.7/(Ilim)
  36. 36. CONCLUSION• Major causes of failure are being countered• Microcontroller backup provides redundancy• High current and voltage values are made limiting• Use of thermistors eliminate the dependency of semiconductors on temperature• Sophisticated automatic traffic management is the future aspect of this project
  37. 37. <<<***>>> [***Thank u***]<<<***>>>

×