Key Species Responses - CLLAMMecology technical briefing

828 views
738 views

Published on

David Paton presents Key Species
Responses from the final CLLAMMecology technical briefing.

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
828
On SlideShare
0
From Embeds
0
Number of Embeds
31
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Key Species Responses - CLLAMMecology technical briefing

  1. 1. HEADLINE TO BE PLACED IN THIS SPACE CLLAMMecology Key Species Program David Paton, Daniel Rogers, Sabine Dittmann, Alec Rolston, Qifeng Ye, Craig Noell, Bronwyn Gillanders and Andrew Munro CLLAMMecology Research Cluster partners:
  2. 2. Key species responses Document responses for a suite of species from key functional groups to water regimes: -Aquatic plants (Ruppia tuberosa) -Macrobenthic invertebrates (polychaetes, dipterans) -Fish (abundant species, commercial species) -Aquatic birds (waders, piscivores, herbivores) •In situ observations along the salinity gradient of the Coorong •In situ responses to changes in salinity (environmental flows) •Ex situ – experimental manipulations where feasible •Where available used long-term data sets to track changes over time
  3. 3. Ruppia tuberosa
  4. 4. Sampling sites and regions for Ruppia tuberosa Winter = red spots Summer = red & yellow spots
  5. 5. Changes in abundance of Ruppia tuberosa at five sites sampled in winter from 1999- 2008
  6. 6. Changes in abundances of Ruppia tuberosa propagules (seeds & turions) in January at five sites in the southern Coorong. % Contribution of turions to propagule bank 2001-2006: 46-82 2007: 15 2008: 3
  7. 7. Response outputs from Non- Parametric Multiplicative Regressions conducted on field data using Hyperniche software. Best Model (highest xR2) had four explanatory variables: - max salinity - min salinity - aver salinity - water level days
  8. 8. Distribution of Ruppia tuberosa in the Coorong. Predicted - dark blue = absent - red = highest abundances Actual - Black + = absent - Yellow spots= present
  9. 9. Benthic macro-invertebrates in the Coorong
  10. 10. December '06 Site Species 1 2 4 5 6 7 8 9 10 11 12 Capitella sp. Australonereis ehlersi Simplisetia aequisetis Annelida Nephtys australiensis Boccardiella limnicola Phyllodoce novaehollandiae Oligochaeta indet. Distribution of macrobenthic Helograpsus invertebrates Mollusca Crustacea Macropthalmus latifrons Amphipoda Salinator fragilis Hydrobia sp. Arthritica helmsi Chironomid sp. Dec 06 to Mar 07 Dolichopodidae Insecta Ceratopogonidae Tabanid sp. Insecta indet. January '07 Site Species 1 2 4 5 6 7 8 9 10 11 12 Capitella sp. Australonereis ehlersi Simplisetia aequisetis Annelida Nephtys australiensis Boccardiella limnicola Phyllodoce novaehollandiae Oligochaeta indet. Helograpsus Mollusca Crustacea Macropthalmus latifrons Amphipoda Murray Estuary (sites 1, 2, 3, 5) Salinator fragilis Hydrobia sp. Arthritica helmsi North Lagoon (sites 6, 7, 8, 9) Chironomid sp. Dolichopodid sp. South Lagoon (sites 10, 11,12) Insecta Ceratopogonid sp. Tabanid sp. Insecta indet. Mar-07 Site Species 1 2 4 5 6 7 8 9 10 11 12 Capitella sp. Australonereis ehlersi Simplisetia aequisetis Annelida Nephtys australiensis Boccardiella limnicola Phyllodoce novaehollandiae Oligochaeta indet. Helograpsus Mollusca Crustacea Macropthalmus latifrons Amphipoda Salinator fragilis Hydrobia sp. Arthritica helmsi Chironomid sp. Dolichopodid sp. Insecta Ceratopogonid sp. Tabanid sp. Insecta indet.
  11. 11. Dec '06 A). 14 Insecta 12 Bivalva Gastropoda 10 Crustacea 8 Oligochaeta 6 Polychaeta 4 Number of species of 2 macrobenthic invertebrates for 0 1 2 4 5 6 7 8 9 10 11 12 12 sites along the Coorong Dec Site 06 to Mar 07 Jan '07 B). 14 12 10 8 6 Murray Estuary (sites 1, 2, 3, 5) 4 North Lagoon (sites 6, 7, 8, 9) 2 South Lagoon (sites 10, 11,12) 0 1 2 4 5 6 7 8 9 10 11 12 Site Mar '07 C). 14 12 10 8 6 4 2 0 1 2 4 5 6 7 8 9 10 11 12 Site
  12. 12. Annelida Capitella spp. Mean Abundance m 50000 * * 40000 * -2 35000 Dec-06 Individuals m 40000 30000 -2 Jan-07 Dec '06 30000 25000 * Mar-07 Jan '07 * 20000 * Mar '07 20000 * 15000 10000 * 10000 * * 5000 0 0 1 2 4 5 6 7 8 9 10 11 12 1 2 4 5 6 7 8 9 10 11 12 Site Site Crustacea Simplisetia aequisetis Mean Abundance m 50000 10000 * 9000 -2 * Individuals m 40000 8000 -2 7000 30000 6000 20000 * * 5000 4000 * 3000 10000 * 2000 1000 0 0 1 2 4 5 6 7 8 9 10 11 12 1 2 4 5 6 7 8 9 10 11 12 Site Site Mollusca Nephtys australiensis 1600 Mean Abundance m 40000 -2 1400 Individuals m 30000 1200 -2 1000 20000 800 600 10000 * 400 200 0 0 1 2 4 5 6 7 8 9 10 11 12 1 2 4 5 6 7 8 9 10 11 12 Site Site Insecta Arthritica helmsi Mean Abundance m 2000 18000 -2 1750 * 16000 Individuals m 1500 14000 -2 1250 12000 1000 * * 10000 750 8000 * * 500 6000 * * * 4000 250 2000 0 0 1 2 4 5 6 7 8 9 10 11 12 1 2 4 5 6 7 8 9 10 11 12 Site Site
  13. 13. Total Juvenile Benthos 20000 Arthritica helmsi 80000 Dec '06 18000 70000 16000 60000 Jan '07 14000 Individuals m-2 Individuals m-2 50000 Mar '07 12000 40000 May '07 10000 July '07 8000 30000 Oct '07 6000 20000 4000 10000 2000 0 0 1 2 4 5 6 7 8 9 10 11 12 1 2 4 5 6 7 8 9 10 11 12 Site Site 9000 Simplisetia aequisetis 50000 Capitella spp. 8000 45000 40000 7000 Abundances of Individuals m-2 35000 6000 Individuals m-2 30000 5000 25000 20000 4000 3000 juveniles of 15000 10000 5000 0 2000 1000 0 selected benthic 1 2 4 5 6 7 Site 8 9 10 11 12 1 2 4 5 6 7 Site 8 9 10 11 12 macro- 1600 1400 Boccardiella limnicola 800 700 Nephtys australiensis invertebrates 1200 600 Individuals m-2 Individuals m-2 1000 500 800 400 600 300 400 200 200 100 0 0 1 2 4 5 6 7 8 9 10 11 12 1 2 4 5 6 7 8 9 10 11 12 Site Site Oligochaeta 6000 Chironomidae:Tanytarsus barbitarsus 6000 5000 5000 Individuals m-2 Individuals m-2 4000 4000 3000 3000 2000 2000 1000 1000 0 0 1 2 4 5 6 7 8 9 10 11 12 1 2 4 5 6 7 8 9 10 11 12 Site Site
  14. 14. Outcome of translocation experiments of macrobenthos Translocation Abundance Diversity Higher salinities decrease decrease Lower salinities increase increase Increased exposure decrease decrease Decreased exposure increase increase
  15. 15. Fish populations in the Coorong
  16. 16. Changes in fish species richness and abundance of selected fish along the Coorong during 2006-07
  17. 17. Dendogram of abundance of fish species from 100 seine net samples using Bray-Curtis similarities and illustrating presence of six clusters (48% similarity or greater) spread along the Coorong.
  18. 18. MDS ordination of the species abundance data 1(00 seine net samples) between October 2006 and September 2008. Boundaries indicate the six groups at similarity levels of 48%. Stress = 0.14.
  19. 19. Field-based salinity ranges for fish sampled in the Coorong (2006-08) Species Salinity (g/L) min max Smallmouth Hardyhead 13 134 Yellow-eye Mullet 13 74 Greenback Flounder 13 74 Sandy Sprat 13 69 Mulloway 13 62 Tamar Goby 13 60 West Aust Salmon 13 60 Bony Bream 30 60 Black Bream 30 60 Congoli 39 62 Common Galaxias 30 45
  20. 20. 14 (a) 120 12 100 10 Patterns of otolith chemistry for -1 80 8 Smallmouth Hardyhead Salinity Ba:Ca µmol 60 6 sampled along the Coorong mol 4 40 showing that Barium:Calcium c 2 20 ratios increase at higher 0 0 salinities while Strotium: B19 BCS LBC CS PP MP NM HG JP SC Calcium ratios do not. Location 5 This may allow periods of historic (b) 120 exposure to higher salinities to be 4 100 determined for fish in the Coorong and assist in understanding their -1 3 80 movements and preferences for Salinity Sr:Ca mmol 60 water of different salinity 2 mol 40 c 1 20 0 0 B19 BCS LBC CS PP MP NM HG JP SC Location
  21. 21. Aquatic birds in the Coorong
  22. 22. Map showing sites used for monitoring bird behaviour and regions used in analyses of water bird counts and food resources
  23. 23. NMS plot of Bray-Curtis dissimilarities for waterbird communities in different regions of the Coorong. (Fourth root transformed abundance data for waterbird species over 7 regions and 8 years. Final stress 0.14).
  24. 24. NMS ordination plot of Bray-Curtis dissimilarities of the Coorong waterbird communities for the three components of each region (stress = 0.11). Ordination is based on fourth-root transformed data of the mean abundance (n = 8 years) of each waterbird species within each region and component.
  25. 25. Changes in bird species richness (red) and diversity (blue) along the Coorong
  26. 26. Changes in the abundances of selected water birds in the South Lagoon
  27. 27. Species 1985 2000-2007 (X±SE) 2000-2007 (Range) % change Australian Pelican Pelecanus conspicillatus 6045 1370.9 ± 320.4 394-2600 -77.3 Little Black Cormorant Phalacrocorax sulcirostris 1190 72.3 ± 52.1 0-430 -93.9 Great Crested Grebe Podiceps cristatus 263 19.4 ± 11.2 0-94 -92.6 Hoary-headed Grebe Poliocephalus poliocephalus 16766 2517.9 ± 954.7 50-8141 -85.0 Black Swan Cygnus atratus 676 275.1 ± 58.3 68-526 -59.3 Australian Shelduck Tadorna tadornoides 6059 3290.4 ± 625.3 1339-6242 -45.7 Grey Teal Anas gracilis 59113 8727.1 ± 2692.8 2446-24460 -85.2 Chestnut Teal Anas castanea 660 4110.8 ± 989.1 430-10147 +522.8 White-faced Heron Ardea novaehollandiae 128 39.1 ± 8.4 15-75 -69.4 Common Greenshank Tringa nebularia 313 59.6 ± 10.6 16-103 -80.1 Sharp-tailed Sandpiper Calidris acuminata 6013 2218.4 ± 515.7 188-4202 -63.1 Red-necked Stint Calidris ruficollis 29020 9197.9 ± 2298.0 1591-22453 -68.3 Curlew Sandpiper Calidris ferruginea 9449 548.6 ± 394.7 7-3198 -94.2 Pied Oystercatcher Haematopus longirostris 142 59.6 ± 12.0 15-113 -58.0 Masked Lapwing Vanellus miles 323 162.0 ± 20.6 86-262 -49.8 Red-capped Plover Charadrius ruficapillus 2158 535.3 ± 121.6 206-1038 -75.2 Banded Stilt Cladorhynchus leucocephalus 6208 22257.4 ± 9284.9 1297-64250 +258.5 Red-necked Avocet Recurvirostra nov’ehollandiae 7210 1819.8 ± 564.0 104-4864 -74.8 Silver Gull Larus novaehollandiae 4090 2830.4 ± 895.0 1077-8445 -30.8 Whiskered Tern Chlidonias hybridus 2656 1096.6 ± 273.5 334-2847 -58.7 Caspian Tern Sterna caspia 329 79.9 ± 42.1 0-345 -75.7 Fairy Tern Sterna nereis 1330 238.9 ± 74.7 6-586 -82.0 Crested Tern Sterna bergii 6687 3293.6 ± 864.3 877-8186 -50.7
  28. 28. Abundances of Black Swan in the South Lagoon correlate with changes in the abundance of Ruppia tuberosa in the South Lagoon
  29. 29. Abundances of Fairy Terns and Australian Pelicans in the South Lagoon correlate with abundances of Hardyhead fish in the South Lagoon
  30. 30. No relationship between migratory sandpipers and measures of food abundance Lack of relationship may be due to: -food density not sufficiently low to affect rates at which birds harvest food - brine shrimps and or ostracods may help counter shortage of chironomids and Ruppia propagules
  31. 31. Foraging performance deteriorates rapidly on exposed mudflats with distance away from waterline for migratory shorebirds Area of exposed mudflat is not a measure of habitat availability for shorebirds
  32. 32. Foraging by migratory sandpipers is sensitive to small changes (1-5cm) in water depth Foraging is limited to areas covered by shallow water (< 5cm). This variable should be used to assess habitat availability for these species
  33. 33. Key species responses: Conclusions Marked longitudinal gradient in invertebrate, fish and bird communities along the Coorong . Changes correlate with changes in salinity - higher salinities support less diverse but different assemblages - many species appear limited by high salinities Different communities form part of the region’s biodiversity and the diversity of these communities needs to be conserved
  34. 34. Key species responses: Conclusions Significant reductions in distribution and abundance during period of no flow linked to increasing salinity in southern Coorong . Addressing high salinity is key management action required Fish and benthic macro-invertebrates are likely to respond quickly to reductions in salinity Restoration of Ruppia tuberosa is likely to require additional intervention given poor propagule bank
  35. 35. Key species responses: Conclusions Bird populations likely to respond to increases in food resources, particularly distribution of key foods . Precautionary notes - conclusions and initial models largely based on correlations during a period of ecological collapse and not “cause and effect” - recovery may not follow the reverse trajectory - need to monitor on-going changes to the system during no flow to test and refine models - need to repeat the above sampling when environmental flows are returned to test and refine models for recovery

×