Your SlideShare is downloading. ×
Lehigh University Master of Engineering in Structural Engineering<br />Final Design Phase<br />Class of 2010<br />Friday, ...
Two different structures will be designed to increase the educational value of the design process.<br />Harlem Park<br />S...
Fall 2009: Gravity System Study and Selection<br />Composite Beam<br />Steel Decking<br />Concrete Slab<br />Shear Studs<b...
There are many advantages and disadvantages of composite beam design for this structure<br />Overall:<br />Lighter, more e...
Yellow Structural Engineers<br />Harlem Park Development Final Design<br />Seth E. Darley<br />Steven K. Dutra<br />Anthon...
Lateral Load Resisting System Design          <br />Gravity System Design          <br />Foundation Design<br />
Foundation Design<br />
Design Loads<br /><ul><li>Unfactored Service Loads:
ASCE 07 Combinations
Factored Service Loads:
 ACI 318 Combinations
 Loads Considered
 Shear
 Moment
 Downward Axial
 Uplift</li></li></ul><li>Subsurface Characterization<br />Geologic Composition<br />Soil Properties<br />FILL<br />Bedroc...
Foundation Selection: Caissons<br /><ul><li> High loads can be transferred directly   to bedrock
 Cost of mobilization
 Noise and vibration    during construction</li></li></ul><li>Caisson Design<br /><ul><li>Axial Load Capacity
 End Bearing
 Caisson-Rock Bond
Lateral Load Capacity
Evans & Duncan Method</li></ul>φ’ <br />γ<br />
Caisson Design<br /><ul><li> Longitudinal Reinforcement    (ACI 318-10.9)
 Ties (ACI 10.13.8.4)
 Bearing Strength of concrete    (ACI 318-10.14.1)
 Embedment of Longitudinal   Reinforcement (CRSI 13-42)
 Development Lengths (ACI 318-12.2)</li></ul>Maximum <br />Uplift<br />25<br />Maximum <br />Moment<br />24<br />
Foundation Design<br />
Basement Wall Design<br /><ul><li>Assumptions:
Braced Excavation  during construction
Neglect surcharge</li></li></ul><li>Basement Wall Design<br />
Basement Wall Design<br />
Concrete Column Design<br />Gravity<br />Pu = 2168 kips<br />36” x 36”<br />(12) - #11 bars<br />Lateral<br />- Pu = 3944 ...
 16 - #11 bars</li></li></ul><li>Base Plate Design<br />Gravity<br />Pu = 2168 kips<br />36” x 36”<br />(12) - #11 bars<br...
 16 - #11 bars</li></ul>Base Plate Design<br />- Column: W 36 x 652<br /><ul><li>Pu = 3944 kips
 Mu = 620 kip*ft
Base Plate Dimensions</li></ul>        36” x 48” x 4 ¾”<br />
Anchorage Design<br />Gravity<br />- Code Minimum: 4 Anchors<br />- Headed Anchors<br /><ul><li>Self leveling nuts for eas...
 60” Embedment Length</li></li></ul><li>Ground Floor Mezzanine<br />
Ground Floor Mezzanine<br />Hanger<br />L3x2x1/4 TYP.<br />
Ground Floor Mezzanine<br />Brace<br />L2x2x1/8 TYP.<br />
4th Floor<br />
4th Floor<br />
4th Floor<br />
4th Floor<br />Proposed splice location<br />
4th Floor<br />
6th Floor<br />R = 67 kip<br />R = 75 kip<br />
19th Floor Column Offset<br /><ul><li>Five Exterior Columns  step back due to the façade at the 19th Floor
Façade constraints also prevent bracing of offset connection</li></li></ul><li>19th Floor Column Offset<br />
19th Floor Column Offset<br />
Roof Design<br /><ul><li> Gravity and Lateral Design
Some sections not included in RAM Model
Wind: Partially blocked
Siesmic: ASCE 7-05 Chp. 15
Cooling Tower Dunnage
Typical Connection
Upcoming SlideShare
Loading in...5
×

Harlem Park Building Design Project

1,431

Published on

Harlem Park Building Design Project-Master of Engineering, Lehigh University

0 Comments
4 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,431
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
4
Embeds 0
No embeds

No notes for slide
  • Comprehensive design exposure to two very different structuresChance to explore various structural systems
  • W-section: majority of the flexural capacitySteel decking: selected to satisfy span lengths and fireproofingConcrete slab: flexural capacity, transfers load, fireproofing for the steel deckingShear studs: transfer shear forces, diaphragm action, brace flange – local buckling, brace beam – ltb Welded wire fabric: temp and shrinkage
  • Makes use of the slab as a structural elementProvides lateral bracing for the beams along their length to prevent ltbEfficiency is improved – lighter, more economic structural systemIf large amounts of studs are neededConstructing using shored spans
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • Concrete Columns Base Plates Anchor Details
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • Typical Floor (Skewed Members, Column Splice) Truss Design
  • Typical Floor (Skewed Members, Column Splice) Truss Design
  • Typical Floor (Skewed Members, Column Splice) Truss Design
  • Typical Floor (Skewed Members, Column Splice) Truss Design
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • Column cantilever Façade Stepback
  • Column cantilever Façade Stepback
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • General layout Typical Caission Design Basement Wall
  • Deflection approximation Geometry limitations
  • Iterative phases
  • Deflection approximation Geometry limitations
  • Deflection approximation Geometry limitations
  • - Elevations and typical connections
  • - Elevations and typical connections
  • - Elevations and typical connections
  • General layout Typical Caission Design Basement Wall
  • - Elevations and typical connections
  • - Elevations and typical connections
  • Transcript of "Harlem Park Building Design Project"

    1. 1. Lehigh University Master of Engineering in Structural Engineering<br />Final Design Phase<br />Class of 2010<br />Friday, April 30th, 2010<br />
    2. 2. Two different structures will be designed to increase the educational value of the design process.<br />Harlem Park<br />Saratoga Street Parking Structure<br />Structural Engineer: Tindall/Cagley & Assoc. Architect: HSMM<br />Structural Engineer: DeSimone<br />Architect: Swanke Hayden Connell Architects<br />
    3. 3.
    4. 4. Fall 2009: Gravity System Study and Selection<br />Composite Beam<br />Steel Decking<br />Concrete Slab<br />Shear Studs<br />Welded Wire Fabric<br />Steel W-Section<br />
    5. 5. There are many advantages and disadvantages of composite beam design for this structure<br />Overall:<br />Lighter, more economic system<br />Works best with building geometry<br />Disadvantages:<br />Using “shored” spans<br />High amount of studs<br />Serviceability Concerns<br />
    6. 6. Yellow Structural Engineers<br />Harlem Park Development Final Design<br />Seth E. Darley<br />Steven K. Dutra<br />Anthony J. Ferraro<br />Eddie M. Guerra Fuentes<br />
    7. 7. Lateral Load Resisting System Design <br />Gravity System Design <br />Foundation Design<br />
    8. 8. Foundation Design<br />
    9. 9. Design Loads<br /><ul><li>Unfactored Service Loads:
    10. 10. ASCE 07 Combinations
    11. 11. Factored Service Loads:
    12. 12. ACI 318 Combinations
    13. 13. Loads Considered
    14. 14. Shear
    15. 15. Moment
    16. 16. Downward Axial
    17. 17. Uplift</li></li></ul><li>Subsurface Characterization<br />Geologic Composition<br />Soil Properties<br />FILL<br />Bedrock Strength<br />FINE SAND<br />SILT<br />CLAY<br />Subsurface conditions taken from Geotechnical Report <br />ROCK<br />TILL<br />
    18. 18. Foundation Selection: Caissons<br /><ul><li> High loads can be transferred directly to bedrock
    19. 19. Cost of mobilization
    20. 20. Noise and vibration during construction</li></li></ul><li>Caisson Design<br /><ul><li>Axial Load Capacity
    21. 21. End Bearing
    22. 22. Caisson-Rock Bond
    23. 23. Lateral Load Capacity
    24. 24. Evans & Duncan Method</li></ul>φ’ <br />γ<br />
    25. 25. Caisson Design<br /><ul><li> Longitudinal Reinforcement (ACI 318-10.9)
    26. 26. Ties (ACI 10.13.8.4)
    27. 27. Bearing Strength of concrete (ACI 318-10.14.1)
    28. 28. Embedment of Longitudinal Reinforcement (CRSI 13-42)
    29. 29. Development Lengths (ACI 318-12.2)</li></ul>Maximum <br />Uplift<br />25<br />Maximum <br />Moment<br />24<br />
    30. 30. Foundation Design<br />
    31. 31. Basement Wall Design<br /><ul><li>Assumptions:
    32. 32. Braced Excavation during construction
    33. 33. Neglect surcharge</li></li></ul><li>Basement Wall Design<br />
    34. 34. Basement Wall Design<br />
    35. 35.
    36. 36. Concrete Column Design<br />Gravity<br />Pu = 2168 kips<br />36” x 36”<br />(12) - #11 bars<br />Lateral<br />- Pu = 3944 kips<br /><ul><li>42” x 52”
    37. 37. 16 - #11 bars</li></li></ul><li>Base Plate Design<br />Gravity<br />Pu = 2168 kips<br />36” x 36”<br />(12) - #11 bars<br />Base Plate Design<br />- Column: W 14 x 283<br />- Pu = 2168 kips<br />- Base Plate Dimensions<br /> 30” x 30” x 3 1/2”<br />Lateral<br />- Pu = 3944 kips<br /><ul><li>42” x 52”
    38. 38. 16 - #11 bars</li></ul>Base Plate Design<br />- Column: W 36 x 652<br /><ul><li>Pu = 3944 kips
    39. 39. Mu = 620 kip*ft
    40. 40. Base Plate Dimensions</li></ul> 36” x 48” x 4 ¾”<br />
    41. 41. Anchorage Design<br />Gravity<br />- Code Minimum: 4 Anchors<br />- Headed Anchors<br /><ul><li>Self leveling nuts for easy erection </li></ul>Lateral<br /> - Uplift force = 3225 kip<br /><ul><li> (14) 2” Dia. Anchor Bolts
    42. 42. 60” Embedment Length</li></li></ul><li>Ground Floor Mezzanine<br />
    43. 43. Ground Floor Mezzanine<br />Hanger<br />L3x2x1/4 TYP.<br />
    44. 44. Ground Floor Mezzanine<br />Brace<br />L2x2x1/8 TYP.<br />
    45. 45.
    46. 46. 4th Floor<br />
    47. 47. 4th Floor<br />
    48. 48. 4th Floor<br />
    49. 49. 4th Floor<br />Proposed splice location<br />
    50. 50. 4th Floor<br />
    51. 51.
    52. 52. 6th Floor<br />R = 67 kip<br />R = 75 kip<br />
    53. 53.
    54. 54. 19th Floor Column Offset<br /><ul><li>Five Exterior Columns step back due to the façade at the 19th Floor
    55. 55. Façade constraints also prevent bracing of offset connection</li></li></ul><li>19th Floor Column Offset<br />
    56. 56. 19th Floor Column Offset<br />
    57. 57.
    58. 58. Roof Design<br /><ul><li> Gravity and Lateral Design
    59. 59. Some sections not included in RAM Model
    60. 60. Wind: Partially blocked
    61. 61. Siesmic: ASCE 7-05 Chp. 15
    62. 62. Cooling Tower Dunnage
    63. 63. Typical Connection
    64. 64. Sunken Roof Design
    65. 65. Water Tower Dunnage</li></li></ul><li>Cooling Tower Dunnage<br />
    66. 66. Cooling Tower Dunnage:<br />NS Elevation<br />
    67. 67. Cooling Tower Dunnage: EW Elevation<br />
    68. 68. Cooling Tower Dunnage:<br />Typical Connection<br />
    69. 69. Sunken Roof<br />
    70. 70. Sunken Roof <br />NS Elevation<br />
    71. 71. Sunken Roof<br />EW Elevation<br />
    72. 72. Water Tower Dunnage<br />
    73. 73.
    74. 74. Lateral Design - Forces<br />Wind Base Shear<br />Hand Calculations:<br />RAM Frame Analysis:<br />
    75. 75. Lateral Design - Forces<br />Seismic Base Shear<br />Hand Calculations: 413 kip <br />RAM Frame Analysis: 408 kip<br />Within 2% =<br />
    76. 76. Lateral Design - Forces<br />Center of Rigidity<br />Center of Mass<br />21st Floor<br />dymax = 3.35”<br />dymin = 1.32”<br />
    77. 77. Lateral Design - Forces<br />Center of Rigidity<br />Center of Mass<br />10th Floor<br />dymax = 1.13”<br />dymin = 0.38”<br />
    78. 78. Lateral Design Process<br />Initial Thoughts<br />Façade Step-backs<br />Column Locations<br />Building Geometry<br />
    79. 79. Lateral Design Process<br />Braced Frames<br />Moment Frames<br />Linked Beams<br />Braced Frames<br />Moment Frames<br />Linked Frames<br />
    80. 80. Final Lateral Design<br />
    81. 81. Final Lateral Design<br />
    82. 82. Final Lateral design<br />
    83. 83. Final Lateral design<br />
    84. 84. Final Lateral design<br />
    85. 85. Lateral Design - Forces<br />Lateral Deflection Approximation<br />W14x145<br />A = 42.7in2 I = Ad2<br />dapproximate = 17” <br />dRAM = 20.17”<br />Within 15%<br />
    86. 86. Typical Moment Frame Connection<br />Column: W 14 x 283 Mu = 454 kip*ft<br />Beam: W 30 x 90 Vu = 75 kip<br />
    87. 87. Typical Braced Frame Connection<br />
    88. 88. Questions ?<br />
    89. 89. Questions ?<br />

    ×