El método de solución de problemas y la ingeniería<br />Introducción a la ingeniería.<br />I.I Emmanuel Castillo Segovia<b...
Clase 25 de febrero de 2011<br /> Experiencia es el nombre que damos a nuestras equivocaciones. <br />
Problema<br />Un problema es una necesidad de transformar un estado inicial de cosas (estado A) en un estado final (estado...
Para ir de A hasta B generalmente existe un número grande de alternativas, cada una limitada por diferentes restricciones....
La naturaleza del diseño en ingeniería<br />La escencia de la resolución de los problemas de ingeniería es el diseño.<br /...
Diseño<br />Diseño es el procedimiento por medio del cual se convierte el enunciado vago de lo que se desea en el conjunto...
Realizar un diseño en ingeniería, es concebir, imaginar, trazar y planificar un dispositivo, una estructura, un proceso o ...
Con los avances en el conocimiento tecnológico, han surgido instituciones y procedimientos mas formales para transmisión d...
Los equipos de ingenieros<br />Pueden usarse simplemente para dividir la carga de trabajo.(tareas especificas de diseño= e...
Una meta en ingeniería involucra una forma de cambio a través de un diseño y tarda algún tiempo desde el diseño hasta la f...
Algunos conceptos básicos<br />Criterio: norma que permite juzgar la calidad de una solución<br />Restricción: condición q...
EL MÉTODO DE LA INGENIERÍA<br />La naturaleza de los problemas varia tanto entre cada ingeniería, como al interior de cada...
Procedimiento general de resolución de problemas<br />Varios autores han establecido una serie de pasos o fases  o fases q...
Identificación del problema<br />Una definición incorrecta o inapropiada, hará que el ingeniero pierda tiempo y puede cond...
5W´S 1 H.<br />50 % De la solución se encuentra entendiendo el problema.<br />Encontrar la causa raíz. (el 80% del problem...
Recopilación de la información necesaria.<br />Una vez identificado el problema, y definidas correctamente las necesidades...
En busca de soluciones creativas<br />Lluvia de ideas. (gente involucrada en el proceso, introducen de manera espontanea i...
Listas de revisión.<br />Formas en que el dispositivo puede usarse para otros fines.<br />Formas de modificación<br />Form...
Listas de atributos.<br />Material<br />Metal, vidrio, madera, caucho etc.<br />Color.<br />Tranparente, personalizado, tr...
Analisismorfologico<br />
Relación forzada.<br />Obliga a una relación entre dos o mas ideas o productos que normalmente no tienen relación.<br />
Análisis why - why<br />
Diagrama fishbone<br />
Diagrama de pareto<br />
Diagrama de Gantt<br />
Análisis morfológico<br />
La transición de ideas a los diseños preliminares<br />Se descartan las ideas impracticables y se moldean y modifican las ...
modelo<br />Un modelo es cualquier descripción simplificada<br />De un sistema, o un proceso de ingeniería, que puede <br ...
Modelos matemáticos.<br />Un modelo matemático consiste en una ecuación o un grupo de ecuaciones que representan un sistem...
Modelos de simulación<br />Cuando se estudian sistemas complejos, los ingenieros emplean los sistemas de simulación por co...
Modelos físicos.<br />Los ingenieros han utilizado los modelos físicos durante mucho tiempo para obtener una mejor compren...
Evaluación y selección de la mejor solución<br />A medida que avanza el proceso de diseño, se han ido descartando las posi...
Evaluación y selección de la mejor solución<br />Dependiendo de la naturaleza del problema, que se va a resolver, la evalu...
Análisis económico<br />Durante al menos 50 años. los ingenieros han utilizado el análisis económico como herramienta para...
Reconocer el valor del dinero en el tiempo.<br />Una cantidad de dinero vale mas ahora que el prospecto de recibir la mism...
Ejemplo.<br />Suponga que va a construir un puente sobre un rio y que costara 385,000 desmantelarlo al final de su vida ut...
El valor presente de una serie de pagos anuales uniformes de fin de periodo A, pueden calcularse mediante la siguiente ecu...
Ejemplo 2<br />Suponga que se estima que los beneficios anuales del usuario (adicionales a cualesquiera costos de mantenim...
Ejemplo 3<br />Suponga que los costos iniciales del puente descrito en los ejmplos anteriores  fueron $800,00. determine m...
Otras técnicas de evaluación<br />Durante los ultimos años ha habido una conciencia creciente del impacto que las obras de...
Ejemplo.<br />	Suponga que una ciudad que considera un nuevo sistema de transito masivo, ha establecido los siguientes obj...
Se seleccionaron algunos criterios para suministrar una medida a cada objetivo:<br />Razon beneficio-costo<br />Numero de ...
Se selecciono el plan B como el que mejor satisface los enunciados de los objetivos que se propone alcanzar el plan de tra...
Preparación de informes, planes y especificaciones<br />Despues de que ha sido seleccionado el mejor diseño, debe comunica...
Implementación del diseño<br />Es la fase final del proceso de diseño. Es donde se implementa el proceso de producir o con...
Obtencion de una patente<br />No es poco comun que el trabajo de un ingeniero sea de tal valor que deba protegerse de la e...
Para pedir una patente<br />Para pedir una patente, el inventor debe llenar una solicitud que incluya:<br />Una especifica...
Como aprender de las fallas<br />A pesar de los mejores esfuerzo de los diseñadores de ingeniería, sus diseños fallan ocas...
Aunque el objetivo de la ingenieria es evitar las fallas. Una maquina o una estructura puede  fallar de muchas maneras, va...
ANALISISFODA<br />
El colapso de los andadores del hotel HYATT REGENCY<br />
53<br />INGENIERÍA MORFOLOGÍA<br />Tal vez el ejemplo más extremo:<br />Determinar las especificaciones<br />Realizar un e...
Una afirmación final sobre el trabajo del ingeniero<br />Ninguna solución a un problema práctico conserva indefinidamente ...
Referencias <br />El Método de Ingeniería <br /> Billy Vaughn Koen profesor de la Universidad de Texas.<br />Introducción ...
METODO DE SOLUCION DE PROBLEMAS EN INGENIERIA
Upcoming SlideShare
Loading in...5
×

METODO DE SOLUCION DE PROBLEMAS EN INGENIERIA

48,813

Published on

NOS MUESTRA COMO SE UTILIZA EL METODO CIENTIFICO EN LA SOLUCION DE PROBLEMAS

2 Comments
11 Likes
Statistics
Notes
No Downloads
Views
Total Views
48,813
On Slideshare
0
From Embeds
0
Number of Embeds
8
Actions
Shares
0
Downloads
846
Comments
2
Likes
11
Embeds 0
No embeds

No notes for slide

METODO DE SOLUCION DE PROBLEMAS EN INGENIERIA

  1. 1. El método de solución de problemas y la ingeniería<br />Introducción a la ingeniería.<br />I.I Emmanuel Castillo Segovia<br />Universidad Politecnica de Francisco IMadero<br />
  2. 2. Clase 25 de febrero de 2011<br /> Experiencia es el nombre que damos a nuestras equivocaciones. <br />
  3. 3. Problema<br />Un problema es una necesidad de transformar un estado inicial de cosas (estado A) en un estado final (estado B).<br /><ul><li>Un resultado diferente al esperado</li></li></ul><li>Solución<br />Solución es un medio de lograr latransformacióndeseada.<br />
  4. 4. Para ir de A hasta B generalmente existe un número grande de alternativas, cada una limitada por diferentes restricciones.<br />
  5. 5. La naturaleza del diseño en ingeniería<br />La escencia de la resolución de los problemas de ingeniería es el diseño.<br />El diseño en ingeniería es tan variado como la profesión misma y tan amplio como los problemas que afronta la humanidad<br />Los diseños pueden ser tan pequeños como un microchip o tan grandes y complejos como transbordador espacial.<br />
  6. 6. Diseño<br />Diseño es el procedimiento por medio del cual se convierte el enunciado vago de lo que se desea en el conjunto de especificaciones de un sistema útil para el propósito.<br />
  7. 7. Realizar un diseño en ingeniería, es concebir, imaginar, trazar y planificar un dispositivo, una estructura, un proceso o un sistema que beneficie a las personas.<br />Como profesión la ingeniería es relativamente joven.<br />En la antigüedad diseño- dominio del artesano, pasaba del maestro al aprendiz.<br />La tecnología ha ampliado la capacidad de solución de problemas<br />
  8. 8. Con los avances en el conocimiento tecnológico, han surgido instituciones y procedimientos mas formales para transmisión del conocimiento.<br />Programas de estudio eficientes + tutela + experiencia.<br />El diseño requiere cada vez mas de especialización, así como trabajo en equipo.<br />Proyectos desarrollados por decenas a veces cientos de ingenieros.<br />
  9. 9. Los equipos de ingenieros<br />Pueden usarse simplemente para dividir la carga de trabajo.(tareas especificas de diseño= entrenamiento similar).<br />Contribuir con conocimiento especializado. Suministran la competencia organizativa, ya que el conocimiento de un solo ingeniero seria insuficiente.<br />Estructura no formal, deben tener un líder de equipo.<br />Pueden ser Temporales o permanentes.<br />
  10. 10. Una meta en ingeniería involucra una forma de cambio a través de un diseño y tarda algún tiempo desde el diseño hasta la finalización de un proyecto. A menudo ocurren cambios en la meta final que requieren una reorientación del proyecto en su transcurso. (Ej.: producido por un cambio en las necesidades iníciales, los gustos, etc.)<br />
  11. 11. Algunos conceptos básicos<br />Criterio: norma que permite juzgar la calidad de una solución<br />Restricción: condición que debe cumplir la solución<br />Optimización: proceso de transacciones para obtener la solución más adecuada.<br />
  12. 12. EL MÉTODO DE LA INGENIERÍA<br />La naturaleza de los problemas varia tanto entre cada ingeniería, como al interior de cada una de ellas.<br />Sin embargo los ingenieros tienden a tratar los problemas de una manera especial.<br />Generalmente este método difiere de los demás profesionistas, los ingenieros están entrenados para pensar en términos analíticos y objetivos y abordar los problemas de una manera metódica y sistemática<br />
  13. 13. Procedimiento general de resolución de problemas<br />Varios autores han establecido una serie de pasos o fases o fases que comprenden el “método de diseño de ingeniería”<br />Identificación del problema<br />Recopilación de la información necesaria.<br />Búsqueda de soluciones creativas<br />El paso de las ideas a los diseños preliminares (incluyendo el modelado).<br />La evaluación y selección de la solución preferente.<br />La preparación de informes, anteproyectos y especificaciones.<br />Implementación del diseño.<br />
  14. 14. Identificación del problema<br />Una definición incorrecta o inapropiada, hará que el ingeniero pierda tiempo y puede conducir a una solución incorrecta. (enunciar el problema de forma correcta).<br />Que las necesidades enunciadas sean reales (inútil si duplica otros diseños o si resuelve un problema que no tiene impacto)<br />Las necesidades que buscan satisfacerse deben de definirse a grandes rasgos y diferenciarse de otras soluciones.<br />Caso de decesos automovilísticos. (enfoque equivocado de problema, el planteamiento de dos enunciados diferentes)<br />El problema no debe de tener restricciones innecesarias.<br />
  15. 15. 5W´S 1 H.<br />50 % De la solución se encuentra entendiendo el problema.<br />Encontrar la causa raíz. (el 80% del problema esta resuelto)<br />
  16. 16. Recopilación de la información necesaria.<br />Una vez identificado el problema, y definidas correctamente las necesidades, comienza.<br />Depende de la naturaleza del problema.<br />mediciones físicas, mapas investigación documental, experimentación, patentes, encuestas de opinión etc., internet, consultar a otros colegas, catálogos de fabricantes.<br />
  17. 17. En busca de soluciones creativas<br />Lluvia de ideas. (gente involucrada en el proceso, introducen de manera espontanea ideas diseñadas para resolver un problema especifico, no se desecha ninguna idea, alentar a los participantes, no mas de una hora.<br />
  18. 18. Listas de revisión.<br />Formas en que el dispositivo puede usarse para otros fines.<br />Formas de modificación<br />Formas de reordenación<br />Mas grande<br />Mas pequeño<br />
  19. 19. Listas de atributos.<br />Material<br />Metal, vidrio, madera, caucho etc.<br />Color.<br />Tranparente, personalizado, tramas.<br />Dispositivo de marcación<br />Teclado, tocha, voz, <br />Auricular y base<br />Cuadrado, redondo, ovalado.<br />
  20. 20. Analisismorfologico<br />
  21. 21. Relación forzada.<br />Obliga a una relación entre dos o mas ideas o productos que normalmente no tienen relación.<br />
  22. 22. Análisis why - why<br />
  23. 23. Diagrama fishbone<br />
  24. 24. Diagrama de pareto<br />
  25. 25. Diagrama de Gantt<br />
  26. 26. Análisis morfológico<br />
  27. 27. La transición de ideas a los diseños preliminares<br />Se descartan las ideas impracticables y se moldean y modifican las ideas prometedoras, para formar anteproyectos y diseños factibles.<br />En este paso puedes ser necesario tomar muchas decisiones acerca de disposiciones, configuraciones, materiales, dimensiones, y otras especificaciones alternativas. También puede ser necesario hacer planos, bosquejos, bocetos conceptuales.<br />Se someten todas las ideas a un escrutinio cuidadoso, generalmente se hace a través de modelos.<br />
  28. 28. modelo<br />Un modelo es cualquier descripción simplificada<br />De un sistema, o un proceso de ingeniería, que puede <br />Usarse para ayudar en el análisis de un diseño.<br />(duderstadt y colaboradores).<br />
  29. 29. Modelos matemáticos.<br />Un modelo matemático consiste en una ecuación o un grupo de ecuaciones que representan un sistema físico. Por ejemplo la sig. Ecuación representa la presión del viento sobre una estructura.<br />p=K.V^2.<br />Donde:<br /> p=presión del viento expresada en kg/m^2<br />K= Un factor que depende principalmente de la forma de la estructura<br />V= velocidad del viento expresada en km/h<br />Muchos fenómenos físicos pueden describirse mediante modelos matemáticos.<br />Estos modelos se basan en teorías o leyes científicas.<br />Solo pueden describir fenómenos físicos relativamente simples.<br />
  30. 30. Modelos de simulación<br />Cuando se estudian sistemas complejos, los ingenieros emplean los sistemas de simulación por computadora. Un modelo de este tipo puede incorporar modelos matemáticos con bases empíricas como componentes del sistema modelo sistema total.<br />dulcinea lingo.xlsx<br />la dulcinea.xls<br />
  31. 31. Modelos físicos.<br />Los ingenieros han utilizado los modelos físicos durante mucho tiempo para obtener una mejor comprensión de los fenómenos complejos. Constituyen el modelo mas antiguo de diseño estructural. Se han utilizado en los campos de la hidráulica, la hidrodinámica y la aerodinámica.<br />Ejemplos. <br />La dispersión de contaminante en un lago<br />El comportamiento bajo el agua de submarinos<br />El comportamiento de aviones (túneles de viento)<br />Generalmente se utilizan modelos a escalas mas pequeñas. Solo en algunas excepciones se utilizan a tamaño natural <br />
  32. 32. Evaluación y selección de la mejor solución<br />A medida que avanza el proceso de diseño, se han ido descartando las posibilidades que no son prometedoras. Quedando así un conjunto mas pequeño de opciones. La retroalimentación, la modificación y la evaluación pueden ocurrir en repetidas ocasiones a medida que el dispositivo o sistema evoluciona, desde el concepto hasta el diseño final. <br />
  33. 33. Evaluación y selección de la mejor solución<br />Dependiendo de la naturaleza del problema, que se va a resolver, la evaluación puede basarse en varios factores, por ejemplo si se trata de la evaluación de un producto.<br />La seguridad.<br />El costo.<br />La confiabilidad<br />La aceptación del consumidor.<br />Construir un prototipo y probar.<br />Evaluaciones mas formales y estructuradas<br />Tradicionalmente estas evaluaciones dependen del análisis económico.<br />Recientemente se ha incorporado el problema ambiental en estas evaluaciones y se han realizado jerarquizaciones.<br />
  34. 34. Análisis económico<br />Durante al menos 50 años. los ingenieros han utilizado el análisis económico como herramienta para la toma de decisiones en la construcción de presas, puentes, carreteras entre otras obras publicas .<br />Intentan comparar los beneficios públicos de estos proyectos con los costos para realizarlos, los estudios económicos pueden utilizarse para determinar.<br />Determinar la factibilidad del proyecto<br />Comparar diseños alternativos<br />Determinar la prioridad de la construcción de un grupo proyecto<br />Evaluar las características especificas de diseño.<br />
  35. 35. Reconocer el valor del dinero en el tiempo.<br />Una cantidad de dinero vale mas ahora que el prospecto de recibir la misma cantidad en una fecha.<br />Un enfoque constituye en comparar los beneficios y los costos sobre la base de un valor presente (P) de algún pago individual futuro (F).<br />P= F/(1+i)^n<br />Donde i = tasa de interés o tasa de descuento por periodo<br />n = numero de periodos con interés, generalmente años<br />
  36. 36. Ejemplo.<br />Suponga que va a construir un puente sobre un rio y que costara 385,000 desmantelarlo al final de su vida util de 40 años. determinar el valor presente de desmantelar el puente usando una tasa de interes del 10%.<br />VP= $385,000/(1+.10)^40=85,000<br /> Las equivalencias economicas como estas, se ilustran con frecuencia de la siguiente manera.<br />…….N= 40 años…….<br />
  37. 37. El valor presente de una serie de pagos anuales uniformes de fin de periodo A, pueden calcularse mediante la siguiente ecuacion:<br />
  38. 38. Ejemplo 2<br />Suponga que se estima que los beneficios anuales del usuario (adicionales a cualesquiera costos de mantenimiento) del puente descrito en el ejemplo anterior son una cantidad constante de $94,500 por año. Determine el valor presente de estos beneficios suponiendo una tasa de interes del 10% y un periodo de analisis (vida util del puente ) de 40 años.<br />Solucion<br />Valor presente = $924,000.<br />El valor presente neto, se describe como la diferencia entre los valores presentes de los beneficios y los costos del proyecto.<br />
  39. 39. Ejemplo 3<br />Suponga que los costos iniciales del puente descrito en los ejmplos anteriores fueron $800,00. determine mediante el metodo de VPN si el puente se justifica economicamente.<br />Solucion: como se calculo previamente, el valor presente de los beneficios es $924,000. el valor presente de los costos seria la suma del costo inicial y del valor presente del costo de desmantelamiento o sea $800,00 + $8,500 = 808,500, la diferencia entre estas cantidades es $115,000. <br />puesto que los beneficios exceden los costos, el proyecto es economicamente factible.<br />
  40. 40. Otras técnicas de evaluación<br />Durante los ultimos años ha habido una conciencia creciente del impacto que las obras de ingenieria pueden tener sobre las personas.<br />Reubicacion de familias y negocios, contaminacion del agua, aire.<br />Estos impactos no pueden reducirse a una simple cantidad monetaria. <br />Sin embargo si hay tecnicas que nos ayudan hasta cierto punto a cuantificar estos impactos.<br />Jerarquizacion de proyectos de acuerdo a criterios previamente determinados.<br />
  41. 41. Ejemplo.<br /> Suponga que una ciudad que considera un nuevo sistema de transito masivo, ha establecido los siguientes objetivos para el sistema:<br />El sistema debe ser económico<br />Debe haber un trastorno mínimo de personas por reubicación.<br />El sistema debe suministrar un elevado nivel de comodidad y ventajas<br />El area central debe ser muy accesible.<br />El sistema debe ser accesible para las areas de bajos ingresos.<br />
  42. 42. Se seleccionaron algunos criterios para suministrar una medida a cada objetivo:<br />Razon beneficio-costo<br />Numero de personas reubicadas<br />Factor de carga de vehiculos en transito en horas pico<br />Indice de acceso de las areas centrales<br />Indice de acceso del transito a las zonas de transito de bajos ingresos.<br />Una comision de ciudadanos e ingenieros establecio los siguientes cocientes de importancia relativa para estos objetivos: 40,20,20,10,10 por ciento. Se evaluaron 3 proyectos alternativos<br />
  43. 43. Se selecciono el plan B como el que mejor satisface los enunciados de los objetivos que se propone alcanzar el plan de transporte<br />
  44. 44. Preparación de informes, planes y especificaciones<br />Despues de que ha sido seleccionado el mejor diseño, debe comunicarse a quienes deben aprobarlo, apoyarlo y traducirlo a la realidad. Esta comunicación puede adoptar la forma de un informe de ingenieria o un anteproyecto.<br />los informes de ingenieria generalmente se destinan a un cliente o supervisor. (empleado de una corporacion grande).<br />El anteproyecto es el medio con el que cuenta el ingeniero para describir a una division de manufactura o a un contratista los detalles suficientes acerca de un diseño, para que pueda producirse o construirse.<br />
  45. 45. Implementación del diseño<br />Es la fase final del proceso de diseño. Es donde se implementa el proceso de producir o construir un dispositivo físico, un producto o un sistema.<br /> Los ingenieros deben de planificar y supervisar la produccion de dispositivos o productos y supervisar la construccion de los proyectos de ingenieria.<br />
  46. 46. Obtencion de una patente<br />No es poco comun que el trabajo de un ingeniero sea de tal valor que deba protegerse de la explotacion de otros. Esto puede lograrse mediante la obtencion de una patente.<br />-concede derecho de propiedad por parte del gobierno al inventor o a sus herederos.<br />La ley de patentes, clasifica la materia que puede patentarse como “cualquier proceso, maquina, manufactura o composicion de materia que sea nueva o util o cualesquiera mejoras nuevas y utiles de los mismos”<br />
  47. 47. Para pedir una patente<br />Para pedir una patente, el inventor debe llenar una solicitud que incluya:<br />Una especificacion, descripcion clara , concisa y exacta de la invencion, presentada de tal manera que la distinga de cualquier otra invencion.<br />Un juramento o declaracion hecho por el inventor<br />Un cuota de registro<br />Un dibujo preparado según las especificaciones de la oficina de patentes.<br />Es importante checar las patentes existentes, a fin de no duplicar.<br />
  48. 48. Como aprender de las fallas<br />A pesar de los mejores esfuerzo de los diseñadores de ingeniería, sus diseños fallan ocasionalmente, los puentes se derrumban los techos se colapsan, las construcciones se fracturan. Amenazando las vidas humanas y causando cuantiosos daños a la propiedad. Causas:<br />Errores cometidos por diseñadores ineptos o descuidados.<br />Imperfecciones en los materiales de construccion o manufactura.<br />Mano de obra negligente de los tecnicos u obreros que implementan el diseño.<br />Una comunicación defectuosa entre los gerentes, los ingenieros los técnicos y los obreros que producen o construyen el diseño de ingenieria.<br />
  49. 49. Aunque el objetivo de la ingenieria es evitar las fallas. Una maquina o una estructura puede fallar de muchas maneras, variando los resultados desde los defectos hasta las catastrofes.<br />Con cada éxito, surgen preguntas de cómo se podria mejorar eso que se construyo (estetica o economia). Es un proceso de mejora constante. (ejemplo: los autos). <br />Mas audaces o mas precavidos, de acuerdo al tipo de diseño.<br />
  50. 50. ANALISISFODA<br />
  51. 51. El colapso de los andadores del hotel HYATT REGENCY<br />
  52. 52. 53<br />INGENIERÍA MORFOLOGÍA<br />Tal vez el ejemplo más extremo:<br />Determinar las especificaciones<br />Realizar un estudio de factibilidad<br />Hacer búsqueda de patente<br />Desarrollar conceptos alternativos de diseño<br />Determinar criterios de selección<br />Seleccionar el concepto de diseño más apropiado<br />Desarrollar un modelo matemático o físico.<br />Determinar la relación entre los materiales y las dimensiones básicas del producto<br />Optimizar el diseño<br />Evaluar el diseño optimizado mediante análisis exhaustivos del modelo matemático y pruebas de los modelos físicos <br />Comunicar las decisiones de diseño a la dirección de Ingeniería y al personal de manufactura.<br />
  53. 53. Una afirmación final sobre el trabajo del ingeniero<br />Ninguna solución a un problema práctico conserva indefinidamente su calidad.<br />
  54. 54. Referencias <br />El Método de Ingeniería <br /> Billy Vaughn Koen profesor de la Universidad de Texas.<br />Introducción a la ingeniería .<br />Eliseo Gomez-Senent Martínez<br />Editorial Limusa<br />Introducción a la ingeniería.<br />Paul H Wright.<br />Editorial Limusa<br />
  1. ¿Le ha llamado la atención una diapositiva en particular?

    Recortar diapositivas es una manera útil de recopilar información importante para consultarla más tarde.

×