13 Calorimetria
Upcoming SlideShare
Loading in...5
×
 

13 Calorimetria

on

  • 844 views

 

Statistics

Views

Total Views
844
Views on SlideShare
839
Embed Views
5

Actions

Likes
0
Downloads
33
Comments
0

2 Embeds 5

http://eletronsdadepressao.blogspot.com.br 3
http://www.resistordecarga.com 2

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

13 Calorimetria 13 Calorimetria Document Transcript

  • AULA 13 CALORIMETRIA 1- INTRODUÇÃO Neste capítulo estudaremos o calor e suas aplicações. Veremos que o calor pode simplesmente alterar a temperatura de um corpo, ou até mesmo mudar o seu estado físico. 2- CALOR O calor é definido como sendo energia térmica transitando de um corpo de maior para um corpo de menor temperatura. Esta energia térmica é proveniente da agitação das moléculas que constituem o corpo. 3- EQUILÍBRIO TÉRMICO Conforme o fluxo de energia térmica passa do corpo de maior para o de menor temperatura, o corpo mais quente vai se esfriando, e o corpo mais frio vai se aquecendo, até que suas temperaturas atinjam o mesmo valor. Esta temperatura é denominada temperatura de equilíbrio térmico.
  • 4- CALOR SENSÍVEL E CALOR LATENTE Quando uma substância ao receber ou ceder calor, sofre somente uma variação em sua temperatura, dizemos que ela recebeu ou cedeu calor sensível. Portanto, se esta substância ao receber ou ceder calor, sofre uma mudança de estado, dizemos que ela recebeu ou cedeu calor latente. Na ilustração abaixo, temos a mesma fonte fornecendo calor a dois corpos. Note que um dos corpos sofrerá apenas um aquecimento (calor sensível), enquanto o outro corpo sofrerá uma mudança de estado (calor latente). 5- CAPACIDADE TÉRMICA OU CAPACIDADE CALORÍFICA (C)
  • A capacidade térmica ou calorífica de um corpo mede o calor necessário para variar de uma unidade a temperatura deste corpo. Considere um corpo a uma temperatura q1 que ao receber uma certa quantidade de calor Q, passa a ter uma temperatura q 2 . A capacidade térmica deste corpo é dada pelo quociente entre o calor Q e a variação de temperatura Dq , sofrida pelo corpo. A capacidade térmica também é diretamente proporcional à massa e ao calor específico sensível da substância que constitui o corpo. View slide
  • 6- QUANTIDADE DE CALOR SENSÍVEL (Q) A quantidade de calor sensível é obtida da definição da capacidade térmica. Multiplicando a equação da capacidade térmica membro a membro pela variação de temperatura em seguida substituindo a capacidade térmica pelo produto da massa pelo calor específico sensível, temos determinada a equação fundamental da Calorimetria. View slide
  • 7- CALORIA A caloria é definida como sendo a quantidade de calor necessária e suficiente para elevar de 1°C a temperatura de 1g de água pura. 8- CALOR ESPECÍFICO DA ÁGUA Com os dados acima e aplicando Calorimetria, temos: a equação fundamental da
  • 9- BALANÇO ENERGÉTICO Corpos em diferentes temperaturas colocados em contato térmico em um sistema isolado vão trocar calor até que se atinja o equilíbrio térmico. Como não haverá entrada nem saída de calor deste sistema, podemos afirmar que todo calor cedido (pelos corpos de temperaturas mais altas) dentro do sistema, será também recebido (pelos corpos de temperaturas mais baixas) dentro do sistema. Quando um corpo recebe calor, sua variação de temperatura é positiva, logo, o calor recebido é positivo. Quando um corpo cede calor, sua variação de temperatura é negativa, logo, o calor cedido é negativo. Se somarmos o calor total cedido com o calor total recebido o resultado será nulo. 10- MUDANÇAS DE ESTADO OU FASE. Na natureza as substâncias podem se apresentar nas fases sólida, líquida e gasosa. A mudança da fase sólida para a fase líquida é a fusão e da fase líquida para a fase sólida é a solidificação. A mudança da fase líquida para a fase gasosa é a ebulição ou vaporização e da fase gasosa para a fase líquida é a condensação ou liquefação. A mudança da fase sólida para a fase gasosa é a sublimação e da fase gasosa para a fase sólida também é a sublimação.
  • 11- LEIS DAS MUDANÇAS DE ESTADO OU FASE 1ª LEI – Durante uma mudança de fase, à pressão constante, a temperatura também se mantém constante. Isto significa dizer que, por exemplo, à pressão atmosférica normal, o gelo começa a se fundir a 0°C e durante toda a fusão a temperatura se mantém a 0°C. 2ª LEI – Cada substância pura tem a sua temperatura própria de mudança de fase. Isto significa dizer que, por exemplo, à pressão atmosférica normal, a água entra em ebulição a 100°C enquanto que o álcool entra em ebulição a 78°C. 3ª LEI – Se a pressão se altera as temperaturas de mudanças de fase também se alteram. Por exemplo, numa panela de pressão a temperatura de ebulição da água atinge valor maior que 100°C devido ao aumento de pressão. 12- QUANTIDADE DE CALOR LATENTE (Q) Experimentalmente verificou-se que a quantidade de calor necessária para mudar a fase de uma substância era diretamente proporcional à massa da substância. A constante de proporcionalidade foi chamada de calor específico latente e daí surgiu a relação:
  • 13- CURVAS DE AQUECIMENTO E RESFRIAMENTO Considere um corpo de massa m inicialmente no estado sólido e a uma temperatura inferior a sua temperatura de fusão. Fornecendo calor a este corpo , ele irá atingir a temperatura q4 , passando de liquido e de liquido para gasoso. Nesse processo aquecimentos (calor sensível) e mudanças de estado (calor gráfico abaixo mostra como varia a temperatura em quantidade de calor. sólido para ocorreram latente). O função da
  • EXERCÍCIOS 1- (MACKENZIE) – um corpo de certo material, com 200g, ao receber 1000cal aumenta sua temperatura de 10°C. Outro corpo de 500g, constituído do mesmo material, terá capacidade térmica de: a) 50cal/°C b) 100cal/°C c) 150cal/°C d) 250cal/°C e) 300cal/°C
  • 2- (UNISA) – O gráfico representa a temperatura de uma amostra, de massa 100g, de uma substância, em função da quantidade de calor por ela absorvida. O calor específico sensível dessa substância, em cal/g°C, é: a) 0,10 b) 0,20 c) 0,40 d) 0,60 e) 0,80 q(°C) 80 20 0 1200 Q(cal) 3- (UNISA-SP) – Tem-se 20g de gelo a -20°C. A quantidade de calor que se deve fornecer ao gelo para que ele se transforme em 20g de água a 40°C é: Dados: Calor específico sensível do gelo = 0,50cal/g°C Calor específico sensível da água = 1,0cal/g°C Calor específico latente de fusão do gelo = 80cal/g a) 1000cal b) 1200cal c) 2600cal d) 3000cal e) 4800cal 4- (FUVEST-FGV-SP) – Dispõe-se de água a 80°C e gelo a 0°C. Deseja-se obter 100g de água a uma temperatura de 40°C (após o equilíbrio), misturando água e gelo em um recipiente isolante e com capacidade térmica desprezível. Sabe-se que o calor específico latente de fusão do gelo é 80cal/g e o calor específico sensível da água é 1,0cal/g°C. A massa de gelo a ser utilizada é a) 5,0g b) 12,5g c) 25g d) 33g e) 50g 5- (UELON-PR) – Em um recipiente, de paredes adiabáticas e capacidade térmica desprezível, introduzem-se 200g de água a 20°C e 80g de gelo a -20°C. Atingindo-se o equilíbrio térmico, a temperatura do sistema será:
  • a) -11°C b) 0°C, restando 40g de gelo. b) 0°C, restando apenas água. b) 0°C, restando apenas gelo. a) 11°C Dados: Calor específico sensível do gelo = 0,50cal/g°C Calor específico sensível da água = 1,0cal/g°C Calor específico latente de fusão do gelo = 80cal/g RESPOSTAS 1. 2. 3. 4. 5. ALTERNATIVA ALTERNATIVA ALTERNATIVA ALTERNATIVA ALTERNATIVA D A C C B