Your SlideShare is downloading. ×
Presentacion 5 diapost_regresion-upg
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Presentacion 5 diapost_regresion-upg

183
views

Published on

Frecuencias bidimencionales: Marginales, condicionales y conjuntas, medias, varianzas y correlaciones marginales y condicionales. martiz de voarianza y covarianza. …

Frecuencias bidimencionales: Marginales, condicionales y conjuntas, medias, varianzas y correlaciones marginales y condicionales. martiz de voarianza y covarianza.
Regresión: Defición, diagrama de dispresión, métdoso de los mínimos cuadrado,


0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
183
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. UNIVERSIDAD AUTONOMA “GABRIEL RENE MORENO” FACULTAD DE CIENCIAS ECONOMICAS ADMINISTRATIVAS Y FINANCIERAS UNIDAD DE POSTGRADO PROGRAMA MAESTRÍA EN FINNZAS CORPORATIVAS (VERSIÓN8ª) (EDICION 4ª) ESTADÍSTICA APLICADA Msc. Edgar López Loaiza junio de 2011
  • 2. 4. REGRESION Hasta ahora hemos hecho la tabulación y el análisis para una sola variable. Pero los investigadores, además de analizar una información en forma individual, generalmente se interesan en establecer cruces y buscar relaciones entre diferentes variables .
  • 3. 1. TABLAS DE DOBLE ENTRADA Para la presentación bidimensional de las variables "X, Y" se procede de la siguiente manera: Se ordenan las variables "X, Y" respectivamente Se tabulan los valores X horizontalmente, y los valores Y verticalmente. Se buscan las frecuencias para cada par ordenado (xi,yj). Se suma horizontalmente para obtener las frecuencias de “Y” fyj, y verticalmente para obtener las frecuencias de “X” fxi .
  • 4. 1.1 TABLAS DE DOBLE ENTRADA xi : Valores de la variable X, i=1,2,....m yj : Valores de la variable Y, j=1,2,... k fxi : Frecuencia de la observación xi fyj : Frecuencia de la observación yj fij : Frecuencia conjunta de los valores (xi,yj) fa0xi:Frecuencia acumulada de la variable “X”,en el itemi fayj:Frecuencia acumulada de la variable “Y”, en el item j frxi : Frecuencia relativa para la variable “X”, en el item i fryj : Frecuencia relativa para la variable “Y”, en el item j fraxi : Frecuencia relativa acumulada para la variable “X” frayj : Frecuencia relativa acumulada para la variable “Y”.
  • 5. Tabla de Doble Entrada para la Representación de dos Variables “X, Y” Como se puede advertir en la disposición de las frecuencias, la interpretación de la variable “Y” , puede hacerse analizando los relativos propios en forma horizonta l, en tanto que el análisis de la variable “X ” se hace en forma vertical.
  • 6. Experiencia Laboral y Salario Diario de 50 Obreras de la Fábrica “La Hilacha”. “X” : Experiencia en Años,“Y”: Salario Miles de Pesos
  • 7. Analizando los relativos para cada una de las variables se tiene, las siguientes conclusiones: El 64% tiene una experiencia igual o inferior a 6 años. El 68% tiene una experiencia entre 5 y 7 años incluyendo sus extremos. El 60% gana 54.000 pesos diarios o menos. El 62% gana entre 53.000 y 55.000 pesos incluyendo sus extremos.
  • 8. Estado Civil ( X) y Número de Hijos (Y) de 50 Obreras de Fabrica “La Hilacha"
  • 9. 1.2 Correlación El análisis conjunto para dos o más variables es básica la búsqueda del tipo y grado de la relación que pueda existir entre ellas , o si las variables sean independientes entre sí y la relación que puedan ser únicamente al azar, o a través de terceras variables. Grado de la correlación, parte desde la misma presunción del investigador, teniendo presente que las relaciones entre variables debe ser lógica , es decir, relacionar lo que sea razonable y no datos cuya asociación sea desde cualquier punto de vista absurda.
  • 10. Veamos algunas variables susceptibles de relacionar: El peso y estatura de un grupo de adultos. Edad y peso de un grupo de niños. Ingresos y gastos de arrendamiento de un grupo de familias. Escolaridad e ingreso mensual de un grupo de empleados. Ventas y utilidades de un almacén de variedades.
  • 11. Gráficas sobre relación
  • 12. Gráficas sobre relación A pesar de la ilustración visual que ofrecen las gráficas, solo podemos percibir la tendencia , mas no el grado o fortaleza de la relación , entre la variable independiente “X” y la variable dependiente “Y”.
  • 13. Correlación r : Coeficiente de correlación entre “X” y “Y” Sx: Desviación típica de “X” Sy: Desciacion típica de “Y” Sx,y : Covarianza entre “X” y “Y”
  • 14. Correlación
  • 15. Correlación En la práctica, cuando no tenemos la información agrupada en una tabla de doble entrada, asumimos que cada observación bivariada tiene frecuencia unitaria, entonces r se convierte en:
  • 16. Tabla de Trabajo para el Calculo del Coeficiente de Correlación Es un indicador de relación entre las dos variables, el cual oscila en el intervalo cerrado ( -1,+1) es decir, -1< r < 1 Cuando r toma un valor extremo, ya sea r=1 ó r=-1 existe una correlación perfecta positiva o negativa según el signo, como lo podemos corroborar en el siguiente ejemplo:
  • 17. Aspiración Salarial, de Acuerdo a La Experiencia de las Obreras de la Fabrica “La Hilacha” Correlación perfecta positiva es igual a 1
  • 18. Se debe considerar Si Correlación perfecta Si 0.9 < r < 1 ó -1< r < -0.9 Correlación excelente Si 0.8 < r < 0.9 ó -0.9 < r < - 0.8 Correlación buena Si 0.6 < r < 0.8 ó 0.8 < r < 0.6 Correlación regular Si 0.3 < r < 0.6 ó – 0.6 < r < - o.3 Correlación mala Si – o.3 < r < 0.3 No hay correlación
  • 19. 1.3 Regresión lineal Con la herramientas ya conocidas, podemos ensayar el ajuste de un modelo estadístico que se adapte mejor a las n observaciones; lo que lleva por nombre regresión . Uno de los procedimientos muy comunes en el ajuste regresivo es el método de los mínimos cuadrados , que produce estimaciones con menor error cuadrático promedio
  • 20. 1.3.1 Ajuste Rectilíneo (Método de los Mínimos Cuadrados) La forma general de una ecuación de línea recta es: X: Variable independiente Y: Variable dependiente a : Término independiente o intercepto b: Coeficiente de X Debemos establecer los parámetro “a” y “b” de la ecuación para poder expresar los valores de la variable Y en función de los valores de la variable X, esto es:
  • 21. 1.3.1 Ajuste Rectilíneo (Método de los Mínimos Cuadrados) multipliquemos estas ecuaciones por su respectivo valor de X
  • 22. Se tiene los estimadores Las estimaciones para los parámetros son: El gorrito “ ^ ” colocado sobre el parámetro indica estimaciones fundamentadas, en los datos muestrales. Para ajustar el modelo rectilíneo a los ingresos diarios actuales explicados por los años de experiencia, en la “Hilacha”, aprovechamos los totales ya calculados en el coeficiente de correlación:
  • 23. Con los datos de Fábrica Hilacha En la “Hilacha”, aprovechamos los totales ya calculados en el coeficiente de correlación: Como quiera que los items de la variable salario están en unidades de mil pesos, la ecuación de pronóstico definitiva es:
  • 24.  
  • 25. Salario Real y Estimado Vs. Experiencia