• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Mejorando las habilidades en la solución de problemas
 

Mejorando las habilidades en la solución de problemas

on

  • 551 views

 

Statistics

Views

Total Views
551
Views on SlideShare
551
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Mejorando las habilidades en la solución de problemas Mejorando las habilidades en la solución de problemas Document Transcript

    • Mejorando las habilidades en la Solución de Problemas a través de Ambientes de Aprendizaje y Entrenamiento Adaptativos y en Línea LUIS NERI1, JULIETA NOGUEZ2, VÍCTOR ROBLEDO-RELLA1, GILBERTO HUESCA21 Departamento de Física y Matemáticas, Escuela de Ingeniería y Arquitectura, Tecnológico deMonterrey, Campus Ciudad de México, Mexico. E-mail: neri@itesm.mx, vrobledo@itesm.mx2 Departamento de Computación, Escuela de Ingeniería y Arquitectura, Tecnológico de Monterrey,Campus Ciudad de México, Mexico. E-mail: jnoguez@itesm.mxResumenEn este estudio se evalúa la eficacia de un sistema de entrenamiento adaptativo enlínea, cuyo objetivo es mejorar la capacidad de los estudiantes para resolverproblemas de Física. El sistema muestra un conjunto de problemas de selecciónmúltiple, junto con la respuesta correcta y varios distractores cuidadosamentediseñados, los cuales corresponden a los errores típicos que los estudiantes delicenciatura cometen con más frecuencia, según la experiencia docente de losautores. Dependiendo de la respuesta que un estudiante elija, el sistema leproporciona retroalimentación adecuada y oportuna, adaptando el ambiente para eldespliegue de otros problemas relacionados, para incrementar su confianza y sushabilidades de resolución de los mismos. De esta manera, el estudiante deberáresolver un conjunto diferente de problemas, de diferentes niveles de dificultad, deacuerdo a sus resultados y necesidades particulares de aprendizaje. El sistematambién tiene la capacidad de proveer otros recursos didácticos, tales comotutoriales o entornos virtuales de aprendizaje, o como simuladores para elaprendizaje activo, permitiendo repasar o mejorar la comprensión de los conceptos ysu aplicación a la solución de los problemas. Debido a su estructura flexible, elsistema permite el intercambio de bancos de problemas y recursos didácticos entrelos distintos cursos y profesores. Adicionalmente, el sistema realiza un seguimientodel desempeño del estudiante y genera informes específicos. Este software ha sidoprobado con una muestra de 169 estudiantes universitarios de ingeniería inscritos enel curso de Física I. Se aplicaron exámenes de conocimientos previos y posterioresal uso del sistema. Después del examen previo se permitió a la mitad de losestudiantes (definidos aleatoriamente) utilizar el sistema durante dos semanas. Elestudio mostró que los estudiantes que utilizaron el sistema Aaprender (el grupofoco) tuvieron en promedio un aumento mayor en sus calificaciones, comparadoscon los estudiantes que no utilizaron el sistema (el grupo de control). Estaconclusión se apoya en un análisis estadístico basado en la prueba Z.Palabras clave: Enseñanza de la Ingeniería, Solución de Problemas de Física,Entrenamiento adaptativo en línea, Ganancias de aprendizajeIntroducciónLa resolución de problemas es una de las técnicas más comunes usadas paraevaluar la comprensión de los estudiantes de conceptos físicos y su capacidad deplantear y resolver problemas específicos en los cursos de Física, en diferentesniveles de enseñanza. De hecho, los libros de texto típicos de Física incluyen unaserie de ejercicios y problemas al final del capítulo, para que los estudiantes puedanpracticar sus habilidades para resolver problemas (por ejemplo, [1], [2], [3]). Sinembargo, cuando los estudiantes tratan de resolver un problema dado que amenudo enfrentan grandes dificultades debido a la falta de una metodología paraabordarla o a dificultades en el procedimiento para resolverlo. Además, debido a susmúltiples actividades, los profesores no suelen estar disponibles para ayudar
    • adecuadamente a los estudiantes cuando se encuentran con dificultades en laresolución de problemas. Muchas veces los ayudantes del profesor no siempre sonla mejor opción para este fin. Por lo tanto, un sistema de entrenamiento pararesolución de problemas en línea disponible para los estudiantes, en cualquiermomento y en cualquier lugar, podría ser muy útil para apoyar el aprendizaje de losestudiantes. Hoy en día, el uso de herramientas en línea para ayudar a la enseñanza y elaprendizaje de varias disciplinas de la Ingeniería, incluyendo la Física y lasMatemáticas, se está convirtiendo en una práctica común entre los profesores queenseñan cursos de nivel licenciatura en las universidades más importantes delmundo (por ejemplo, [4], [5], [6]). Es muy común encontrar publicacionesrelacionadas con el uso de entornos de aprendizaje basados en la Web para laevaluación y capacitación para el trabajo del estudiante (por ejemplo, [7], [8], [9]). Enmuchos casos una mejora significativa el desempeño del estudiante se informa (porejemplo, [8], [9], [10]). Sin embargo, como ha señalado [11], es importantemencionar que estos sistemas por sí mismos no contribuyen significativamente alproceso de aprendizaje, y es necesario un buen marco pedagógico para desarrollarverdaderamente el aprendizaje efectivo del estudiante. También, es necesario unsistema adaptativo que responde a las necesidades individuales del estudiante, deforma progresiva y facilite la adquisición de conocimiento y habilidades, de acuerdoal nivel de los estudiantes y a su dominio de un tema determinado, con el fin deproporcionarles la mejor asistencia pedagógica, a través de su interacción con elsistema [8], [9]. En el caso de la enseñanza de la Física, los llamados Sitios Web deacompañamiento (Companion Websites), cuyos servicios se incluyen en los librosde texto vendidos por las principales editoriales se han convertido en unaherramienta muy útil tanto para profesores y estudiantes. Ejemplos de estasherramientas en línea incluyen MasteringPhysics (Pearson Inc.) [12], WileyPlus(Wiley & Sons, Inc.) [13], Connect (McGraw-Hill, Inc.) [14], CengageNOW (Cengage)[15], y WebAssign (Advance Sistemas de Instrucción Inc.) [16]. Estos sitios webofrecen el profesor y el estudiante con un amplio conjunto de ejerciciosespecialmente diseñados y problemas agrupados, ya sea por disciplina o por librode texto. Ofrecen una herramienta útil al profesor para construir en línea pruebas,tareas y exámenes que se califican automáticamente por el sistema. Estos sistemaspermiten dar seguimiento al desempeño de cada estudiante y mostrar lasestadísticas del curso en diferentes maneras, para que los profesores puedanestudiar el comportamiento y revisar el avance de sus grupos. Sin embargo, laretroalimentación dada a los estudiantes cuando se incurra en un error, ya sea de lafísica o las matemáticas, todavía es demasiado general y se puede mejorar y si seenfocara a acuerdo a las necesidades del cada estudiante en particular, teniendo encuenta su historial de interacción con el sistema. Con este objetivo en mente, el Grupo de Investigación en e-Learning delTecnológico de Monterrey, Campus Ciudad de México, ha desarrollado un sistemade entrenamiento en línea destinado a ayudar a los profesores para definir ygestionar conjuntos apropiados de los problemas, por un lado, y para ayudar a losestudiantes utilizar estos problemas para mejorar sus conocimientos y sushabilidades para resolver problemas en el otro. Este sistema también permite elintercambio de contenidos específicos de los diferentes profesores y cursos, ygenera informes específicos sobre el desempeño de los estudiantes. Este sistemade entrenamiento adaptativo en línea se llama "Aaprender" y las versionespreliminares de la misma se puede encontrar en [17] y [18]. El objetivo principal deeste trabajo es presentar la estructura básica de Aaprender y cómo fue utilizadopara promover habilidades de los estudiantes para resolver problemas de pregradoFísica.
    • La siguiente sección está dedicada a la estructura de Aaprender y cómo lainformación de un determinado curso o materia se introduce en el sistema. Unestudio de caso aplicado a varios cursos de licenciatura de Física se presenta en laSección 3. La Sección 4 describe el proceso de evaluación, mientras que en laSección 5 se presentan los resultados en términos de la Ganancia de AprendizajeRelativa Integrada, para los estudiantes que utilizaron Aaprender y para losestudiantes que no lo utilizaron (en lo sucesivo "el grupo foco" y "el grupo decontrol", respectivamente). En la última sección se presentan las principalesconclusiones de este estudio y el trabajo futuro.2. AAPRENDER: Un ambiente de aprendizaje y entrenamiento adaptativo y enlíneaAaprender se construye sobre la base de módulos definidos previamente para uncurso determinado (ya sea para un curso de Física o Matemáticas), vinculados através de redes jerárquicas para facilitar la navegación interior, y está destinado adar información oportuna adaptada a cada alumno según su interacción con elsistema. Las principales características de Aaprender son: § Se basa en una estructura pedagógica para un curso impartido en donde los conceptos se clasifican en un esquema jerárquico apropiado. Esta estructura permite a los profesores para incorporar y compartir diversos recursos pedagógicos (por ejemplo, problemas, ejercicios, simuladores, videos y tutoriales) entre los diferentes módulos de un curso determinado o entre diferentes cursos, § Proporciona información de adaptación a los estudiantes de acuerdo a sus errores en particular, § Ofrece otros problemas la práctica con el fin de reforzar las habilidades de los estudiantes para resolver problemas, donde la complejidad de los problemas adicionales depende de las necesidades individuales del estudiante y de la historia del estudiante de la interacción con el sistema, y § Proporciona informes estudiantes adecuado "desempeño para el profesor. La estructura del sistema es flexible, adaptable y se puede aumentar con el fin de satisfacer otros requisitos pedagógicos. Aaprender ofrece diferentes servicios de acuerdo a la función de usuario. Cadagrupo de usuario (función) tiene permisos de entrada diferentes que definen el tipode funcionalidad que ofrece el sistema. La figura 1 muestra las principales funcionesdel sistema permite al administrador, al jefe de departamento y el papel de profesor.Un administrador es capaz de proporcionar acceso a todos los otros tipos deusuario: jefe de departamento, profesores o estudiantes. El gerente tambiénestablece el período de disponibilidad de los cursos y puede generar informes decontrol específicos. El jefe del departamento le da permiso profesor para acceder alsistema, el registro de la base de problemas del conocimiento (véase más adelante),y consultar las estadísticas e informes sobre el rendimiento de los estudiantes. Elprofesor, por el contrario, hace que el registro de los problemas de ejercicio por eltema, el nivel de dificultad y el período; define los comentarios correspondientespara el estudiante y los recursos de los medios de comunicación relacionados conun ejercicio, y obtiene las estadísticas y los informes de sus grupos.
    •   Figura 1. Casos de uso funcionales de AaprenderPara utilizar el sistema, el alumno puede optar por ingresar o un área deentrenamiento o de un área de evaluación. A continuación, Aaprender muestra lafuncionalidad se muestra en la Figura 2. A continuación, el sistema muestra alestudiante las diferentes áreas de contenido previamente definido por el profesor, ycuando él/ella elija un módulo dado, el sistema muestra un conjunto de ejerciciospreviamente definidas para ese módulo y el período en un orden aleatorio. Elestudiante puede tratar de resolver cada ejercicio varias veces, y cada vez elsistema le brinda una retroalimentación adecuada para este ejercicio y una ruta denavegación personalizado para continuar resolviendo los problemas de la lista dada.   Figura 2. Casos de uso del estudiante de Aaprender Aaprender permite a los profesores crear un banco de problemas y recursosdidácticos que pueden ser compartidos entre los distintos cursos y resuelto en líneapor los estudiantes. La arquitectura del sistema está basada en SOA [19] como semuestra en la Figura 3. Esta arquitectura tiene como objetivo proporcionar unaestructura para administrar los ejercicios o problemas de acuerdo a una estructurapreviamente definida en el conocimiento del curso.
    • Graphical user interface Use rs Web browser Service interface Problem Problem management grading Knowledge Didactical item resources management management Data access interface Ser ver [ No n - co rr ec t] [ On ly w eig ht fo rc e is af fec tin g at p oi nt C? ] [Ro llin g ] [An in te rac tiv e F lash sim u lat ion o f r oll ing to pi c] Didactic Knowledge Problem Resource Base Base BaseFigura 3. Arquitectura de software AaprenderEste sistema utiliza tres bases de datos: una base de conocimientos, una base deproblemas y una base de recursos didácticos. En la base de conocimientos, losprofesores pueden definir la estructura de conocimiento de un curso. Esta estructuraes una organización gráfica jerárquica que indica las relaciones entre los principalesconceptos que se enseñan en un curso. Por ejemplo, la Figura 4 se muestra unsegmento de la gráfica jerárquica para el módulo movimiento de rotación de cuerposrígidos, de un curso básico de licenciatura de Física de nuestra institución.   Topic Rotational Motion of Rigid Bodies Subtopic Rotational Angular Rotational Momentum Kinematics Dynamics Concept Energy Newton’s conservation Fixed Momentum Laws Rolling Axes of Inertia Item Center of Center of Rotational Torque Mass’ Mass’ Kinetic acceleration Velocity Energy Figura 4. Segmento de la gráfica jerárquica del curso de Mecánica ClásicaEl profesor con derechos de gestión utiliza la base de conocimientos, la base deproblemas, y la selección del profesor para permitir una clasificación de cadaconjunto de problemas en tres niveles que corresponden a su dificultad: Alto (H),Intermedio (I) y baja (L). Estas categorías se utilizan para dar una navegaciónadaptativa de los ejercicios, dependiendo de los resultados del estudiante y de lahistoria de interacción con el sistema. A los estudiantes se les pide resolver una primera serie de ejercicios (por lo generalde nivel I) del conjunto de problemas base. Cada problema puede tener asociadosproblemas de menor grado de dificultad, correspondientes a los distractores orespuestas incorrectas del problema original. De esta manera los estudiantespueden identificar el origen de sus errores y aprender con un ejercicio más simple.En algunos casos, cuando la respuesta del alumno es correcta, se le pide resolver
    • un problema con el nivel de dificultad mayor, con el fin de motivar a los estudiantespresentándoles nuevos desafíos. Si el alumno resuelve el problema relacionado conel éxito, el sistema muestra el siguiente ejercicio del conjunto inicial. La Figura 5muestra esta navegación adaptativa.   Higher difficulty exercises Exercise 2- A-H Initial exercise set Exercise 1 Exercise 2 Exercise n Lower difficulty exercises Exercise 1- Exercise 1- a-L b-L Figura 5. Navegación adaptativa de los ejerciciosLa base de datos de recursos didácticos se utiliza para almacenar las herramientasdidácticas que ayudarán a los estudiantes en su proceso de aprendizaje. A través deun módulo de gestión de recursos didácticos, el profesor puede almacenar unconjunto de recursos didácticos, tales como laboratorios virtuales construidos conJava, simuladores de Flash, vídeos, tutoriales u otros ambientes de aprendizaje.Para cada elemento de este tipo, el profesor puede definir el conjunto de variablesque se pueden explorar en el experimento. Estos recursos didácticos pueden servinculados a un problema para enriquecer el proceso de aprendizaje de losestudiantes. Los recursos didácticos también pueden ser compartidos entre todoslos profesores con el acceso al sistema a fin de ser utilizados en sus cursosespecíficos.Los recursos didácticos tutoriales definen los conceptos básicos necesarios paraentender un fenómeno incluido en una declaración del problema. También sepueden incluir explicaciones complementarias o ejemplos para reforzar lo aprendidoen el aula. Para cada lección, un profesor debe definir el nodo en el curso de losconocimientos de base que se aborda en el tutorial. El objetivo principal de estaorganización es que los tutoriales se asignan directamente a los problemas (yviceversa) para que los estudiantes y profesores puedan encontrar fácilmente losrecursos asignados a la estructura del curso. Una vez que un problema o un tutorial se definen en el sistema, los profesorespueden asignar a sus grupos. Cuando se selecciona un grupo de profesores de sulista de cursos, el sistema muestra todos los problemas y tutoriales que estándisponibles para ese curso. Dado que los problemas se definen en una base dedatos común, esta lista contiene todos los problemas unidos a la base de laestructura de los conocimientos del curso, que han sido previamente definidos porlos profesores con acceso al sistema. De esta lista, los profesores puedenseleccionar los problemas a resolver por los alumnos y los tutoriales que tambiénpuede tener acceso a ellos. Este proceso se puede repetir para todos los cursos queun profesor tiene acceso.Después de este proceso se lleva a cabo, los alumnos registrados pueden entrar enel sistema para elegir un curso dentro de la lista de cursos en los que están inscritos.A continuación, tendrán acceso a los problemas seleccionados por el profesorcorrespondiente a dicho módulo del curso o cursos. Cuando los estudiantes haganclic en el botón "Responder", el sistema muestra el enunciado del problemaseleccionado. La vista del problema está dividida en tres partes. La primera partecontiene la información del problema general. La segunda parte muestra elenunciado del problema y la imagen asociada. La última parte incluye la respuesta
    • correcta, cuatro distractores, y un botón para enviar la respuesta seleccionada de losestudiantes. Estas cinco opciones se muestran en un orden aleatorio cada vez queun estudiante solicita que esta página para evitar la simple memorización o la copiaentre los estudiantes.Cuando los estudiantes hacen clic en el botón "Calificar", el sistema realiza laevaluación del problema, mediante la comparación de la respuesta dada por elalumno y la respuesta correcta indicada por el profesor. Entonces, el sistemaalmacena el intento y la información de la ruta de navegación, necesaria para crearinformes, tanto para el estudiante como para el profesor. Por último, el sistemamuestra los comentarios asociados a la respuesta seleccionada. Si hay un recursodidáctico asociado al problema, la simulación, de vídeo, o el medio ambiente deaprendizaje este se muestra. Los estudiantes pueden practicar con el recursodidáctico con el fin de comprender mejor el fenómeno implícito en el problema.Después de trabajar con el recurso didáctico, el alumno puede tratar de resolver elproblema original de nuevo. Con el fin de poder dar seguimiento al proceso de aprendizaje de los estudiantes,el sistema puede proporcionar a los profesores tres diferentes tipos de informesacerca de las interacciones de los estudiantes dentro del sistema: un informe porestudiante, un informe por problema y un informe por respuesta. Todos estosinformes pueden ser generados por un período específico de tiempo y se puededescargar siempre que sea necesario. En la siguiente sección, se describe un casode estudio para un curso de Física.3. CASO DE ESTUDIO: AAPRENDER APLICADO A UN CURSO DE FÍSICA.El primer paso en este estudio fue definir los módulos y submódulos del cursoFísica I (Mecánica Clásica) para los estudiantes de Ingeniería de nuestra institución.Los módulos principales para este curso son los siguientes: I. Vectores y conceptosbásicos; II. Cinemática; III. Dinámica de la partícula; IV. Trabajo y energía, y V. Lossistemas de partículas; VI. Movimiento de rotación de cuerpos rígidos y VII.Equilibrio. Hasta ahora, la atención se ha centrado en los módulos III y VI, quecontienen los temas centrales del curso. Para estos dos módulos, se definió unesquema jerárquico de elementos de conocimiento incluyendo los principales temas,subtemas, conceptos y elementos específicos de conocimiento (“ítems”) del módulo,así como las principales asociaciones entre estos conceptos. El esquemacorrespondiente para el Módulo VI se muestra en la Figura 4. Estos esquemassirven como una guía para seleccionar problemas adecuados para los estudiantes. Con el fin de alimentar el sistema de entrenamiento en línea, se seleccionócuidadosamente una serie de problemas para los módulos III y VI. Para el móduloIII, estos problemas cubren los temas de Dinámica lineal sin fricción, Dinámica linealcon fricción y Dinámica del Movimiento Circular, mientras que para el Módulo VI, losproblemas cubren los temas de Torca, Momento de Inercia, Rotación del cuerporígido alrededor de un eje fijo y Rodadura. Los problemas tienen una estructura y unnivel similar a los de los problemas típicos incluidos en la mayoría de los libros detexto de Física para ciencias e ingeniería (por ejemplo, [1], [2] y [3]). Como se explicó en la sección anterior, cuando los estudiantes entran porprimera vez a Aaprender y eligen un grupo y luego un módulo, el sistema despliegauna lista de problemas iniciales a resolver de dicho módulo, previamenteseleccionados por el profesor. Estos "problemas iniciales" tienen un nivel dedificultad similar al de los asignados para las tareas o exámenes mensuales por elprofesor y cubren los principales temas del módulo. Cada problema inicial tienecinco posibles respuestas: la respuesta correcta y cuatro distractorescuidadosamente diseñados para que coincidan con los errores más comunes quelos estudiantes tienen para este tipo de problemas. La selección de distractores se
    • basa en la experiencia docente de los autores de más de 20 años trabajando conestudiantes de ingeniería. De esta forma, para cada distractor se define unaretroalimentación específica. Esta retroalimentación será utilizada por el sistema conel fin de ayudar a los estudiantes identificar el origen de sus errores. Una discusiónpreliminar sobre los criterios seguidos para el diseño de los distractores se presentaen [20]. Como se indicó en el párrafo anterior, la retroalimentación para cadadistractor consiste de una pregunta simple, aseveración, o sugerencia con el fin deayudar a los estudiantes a averiguar el origen de su error. En algunos casos,también se pide a los estudiantes que resuelvan un problema asociado o “sub-problema” diseñado para reforzar aquellos conceptos erróneos específicosasociados con el distractor. De esta manera, un problema inicial puede tener variossub-problemas asociados, cada uno de ellos correspondiente a uno o variosdistractores para este problema inicial en particular. En la mayoría de los casos, elnivel de dificultad del sub-problema es menor que la de su problema inicialcorrespondiente, con el objetivo de que los estudiantes puedan identificar el origende sus errores en un ejercicio más simple. Una vez que los estudiantes han resueltocorrectamente el sub-problema, se les pide que intenten resolver otra vez elproblema inicial. Es conveniente mencionar que no todos los problemas inicialestienen necesariamente sub-problemas asociados. De hecho, para los problemasiniciales más simples, la sugerencia o retroalimentación dada por el sistema deberíaser suficiente para que los estudiantes encuentren la fuente de su error. Sinembargo, en algunos casos, cuando la respuesta del alumno al problema inicial escorrecta, se le pide ahora resolver un problema retador con un nivel de dificultadsuperior. El objetivo de esto es mantenerlo motivado, como se mencionó antes. Cada sub-problema también a su vez puede tener hasta cinco opcionesposibles, cada una con retroalimentación específica correspondiente. Una vez que elestudiante encuentra la respuesta correcta para el sub-problema, el sistema le pideque vuelva a resolver el problema original. Si la respuesta para el problema originales correcta, entonces el sistema pide al estudiante que resuelva el siguienteproblema de la lista de problemas del módulo. De esta forma, para un módulo dado,todos los estudiantes deberán resuelto todos los problemas de la lista inicial delmodulo, pero solamente un subconjunto de los sub-problemas del modulo,dependiendo de los distractores que haya seleccionado para cada reactivo. De estamanera, cada estudiante tendrá su propia ruta de navegación e información dentrode la lista de problemas del módulo, proporcionándosele así una guía personalizadapara desarrollar sus habilidades particulares de resolución de problemas yayudándolo a comprender el origen de sus errores y conceptos erróneosparticulares. Se espera que esta forma de trabajo motive a los estudiantes para queestudien y aprendan por su propia cuenta, esto es, se pretende promover su auto-aprendizaje, lo cual es muy deseable para ellos. Para ilustrar mejor cómo funciona el sistema Aaprender, en la Figura 6 seincluye el mapa de navegación específico para los problemas del módulo VI. Unmapa similar fue diseñado para el Módulo III. Los problemas iniciales se presentanen la columna central, y los sub-problemas asociados correspondientes, de mayor ymenor dificultad, se presentan en las columnas izquierda y derecha,respectivamente. Como se mencionó antes, el nivel de dificultad de cada problemase indica mediante la letra final (H = Alta, I = Intermedio, L = Bajo). Los conceptosasociados a cada problema particular del Módulo VI se indican en la Tabla 1.
    • 15.1A -I 15.1 -L 15.2A -I 15.2 -L 16.1-I 16.1a -L 16.2-I 16.2a -L 17.1-I 17.1a -L 17.2-L 17.5A -H 17.5-I 17.5a -L 18.1-H 18.1a -L 18.2-I 18.2a -L 18.3-I 18.3a -L Problemas de Lista inicial Problemas de Nivel Alto de Problemas Nivel BajoFigura 6. Mapa de navegación para los problemas iniciales y los sub-problemasasociados para el módulo de Movimiento de Rotación de Cuerpos RígidosTabla 1. Relación entre los problemas y los conceptos asociados para el módulo deRotación de Cuerpos Rígidos.Problemas Concepto15.1-L, 15.1A-I, 15.2-L, 15.2A-I Cinemática Rotacional16.1-I, 16.1a-L, 16.2-I, 16.2a-L Torca17.1-I, 17.1a-L, 17.2-L Momento de Inercia17.5A-H, 17.5-I, 17.5a-L Eje Fijo18.1-H, 18.1a-L, 18.2-I, 18.2a-I, 18.3-I, 18.3a-L Rodadura Como ejemplo de la navegación dentro del sistema, la relación entre losproblemas 17.5-I, 17.5AH y 17.5aL se muestra en la figura 6 (véase el cuadro delíneas discontinuas). Los enunciados, las respuestas correctas, los distractores, loscomentarios e instrucciones que deben seguir los estudiantes se presentan en laFigura 7. Problema 17.5-I – Un volante de radio R = 10 cm y momento de inercia I = 0.5 kg·m2 puede girar libremente sobre baleros sin fricción alrededor de un eje fijo. Se enrolla una cuerda alrededor del volante y se amarra a un bloque de masa M = 2 kg block por el otro extreme, como se muestra. El bloque reposa sobre una superficie horizontal sin fricción y está también conectado a un resorte ligero de constante de fuerza k = 500 N/m, el cual a su vez está amarrado a una pared vertical fija. El sistema está inicialmente en reposo y el resorte está en su posición de equilibrio. Se hace girar el volante con una manivela externa en la dirección de las manecillas del reloj, enrollando así una porción adicional de cuerda alrededor del volante, desplazando simultáneamente al bloque hacia la izquierda y alargando de esta forma el resorte una distancia d = 20 cm. En esta posición el resorte se suelta del reposo. Encuentra la rapidez del bloque cuando pasa de regreso por suposición inicial. a) 0.620 m/s b) 3.16 m/s c) 1.96 m/s d) 62.0 m/s e) 2.83 m/s R I M k
    • Opción Guía o Retroalimentación Respuesta ¡Felicidades! Ahora resuelve el problema 17.5A-H y después continúa con el problema 18.1-H. correcta: “a” Distractor “b” ¿Qué pasó con la energía cinética del volante? Resuelve el problema 17.5a-L antes de intentar de nuevo el problema 17.5-I. Distractor “c” No confundir la fuerza del resorte con su energía potencial elástica . Distractor “d” Cuidado: v = ω r Distractor “e” No confundir la velocidad inicial del bloque con la velocidad angular del volante. Respuesta correcta “a” D i Problema 17.5A-H. Repite el problema 17.5-I suponiendo ahora que existe un coeficiente s de fricción cinética µk = 0.3 entre el bloque y la superficie horizontal. t a) 0.582 m/s b) 0.620 m/s c) 0.398 m/s d) 0.656 m/s r Opción Guía o retroalimentación a Respuesta ¡Felicidades! Puedes continuar ahora con el problema 18.1-H. correcta: “a” c Distractor “b” ¿Qué pasó con el trabajo realizado por la fuerza de fricción? t Distractor “c” ¿Cuáles son las unidades del trabajo realizado por la fuerza de fricción? o Distractor “d” ¿Cuál es el signo del trabajo realizado por la fuerza de fricción? ¿La r velocidad del bloque con fricción es mayor que sin fricción? b Problema 17.5a-L Un bloque de masa M = 5.00 kg cuelga de una cuerda ligera amarrada a una polea, como se muestra. La polea puede girar libremente alrededor de un eje horizontal sin fricción dirigido hacia fuera del plano de la figura. El momento de inercia de la polea con respecto a este eje es I = 0.100 kg·m2. La cuerda no se resbala sobre la polea y el sistema se suelta del reposo. ¿Cuál es la velocidad del bloque cuando cae una distancia de 90.0 cm? a) 2.43 m/s b) 4.20 m/s c) 1.88 m/s d) 4.01 m/s I R M Opción Guía o retroalimentación Respuesta ¡Felicidades! Puedes continuar ahora con el problema 17.5-I otra vez. correcta: “a” Distractor “b” ¿Está el bloque en caída libre? ¿Qué pasó con la energía cinética de la polea? Distractor “c” ¿Cómo se calculó la energía cinética rotacional de la polea? Distractor “d” ¿Cómo se calculó la energía cinética rotacional de la polea?Figura 7. Problema 17.5-I y los sub-problemas asociados 17.5A-H y 17.5a-L Hay 5 opciones en la solución del problema inicial 17.5 I. El proceso denavegación es como sigue: i) Si los estudiantes seleccionan la respuesta correcta (opción "a"), se lesfelicita y se les pide que resuelvan ahora el sub-problema 17.5H, que es de mayornivel de dificultad. Este sub-problema se ha diseñado específicamente para que losestudiantes comprendan el efecto que se produce al incluir fuerzas de fricción en elproblema 17.5-I. Como se muestra en la Figura 7, el sub-problema 17.5AH tambiéntiene, a su vez, varias opciones de respuesta, cada una con su retrolimentacióncorrespondiente. Se requiere que los estudiantes resuelvan este sub-problemacorrectamente antes de continuar con el siguiente problema de la lista: el problema18.1-H. ii) Si los estudiantes seleccionan la opción incorrecta "b", el sistema lesproporciona cierta guía o retroalimentación adecuada para este distractor (en esteejemplo, el no haber incluido la energía cinética de rotación), y se les pide queresuelvan el sub-problema 17.5aL, de menor nivel de dificultad, antes de volver aintentar resolver otra vez el problema 17.5-I. En este caso, el sub-problema 17.5aLha sido diseñado específicamente para que los estudiantes revisen el concepto deenergía cinética de rotación en un caso más sencillo que el del problema 17.5-I.Obsérvese que el sub-problema 17.5aL también tiene varias opciones de respuestaasociadas, cada una con una guía para que los estudiantes puedan encontrar elorigen se sus errores, en su caso. iii) Si los estudiantes seleccionan las opciones (incorrectas) "c", "d" o "e", elsistema les proporciona información para ayudarles a encontrar el origen de su errory les solicitará intentar resolver el problema de 17.5-I otra vez. No hay sub-problemas asociados a estos tres distractores.
    • De esta manera, los estudiantes deben completar el ciclo incluido en cadaproblema o sub-problema, hasta que los hayan resuelto correctamente. Una vezlogrado esto, el sistema pide a los estudiantes que continúen con el siguienteproblema en la lista original del modulo (en el ejemplo, el problema 18.1H). De estamanera, los estudiantes practican con problemas de diferente nivel de dificultad yfortalecen de esta forma su habilidad de resolución de problemas y suautoaprendizaje.4. PROCESO DE EVALUACIÓN.Con el fin de evaluar el impacto de Aaprender en el desarrollo de habilidades para laresolución de problemas, se escogió a los estudiantes de ingeniería inscritos encuatro clases del curso de Física I del Tecnológico de Monterrey, Campus Ciudad deMéxico, de los semestres agosto-diciembre de 2008 y enero- mayo de 2009. Estasclases fueron impartidas por dos profesores diferentes (dos de los autores), cadauno a cargo de dos grupos académicos. La muestra total de estudiantes se dividióen dos grupos de estudio: un grupo foco el cual tuvo acceso al sistema Aaprender(NFOCO = 64 estudiantes) y un grupo de control que no utilizó este software (NCONTROL= 105 estudiantes), constituyéndose así una muestra total de N = 169 estudiantes.Los estudiantes se distribuyeron aleatoriamente entre estos dos grupos, cuidandotener una distribución equitativa de alumnos de diferentes rendimientos académicosen ambos grupos de estudio. Además, se tuvo cuidado de tener la mismaproporción, tanto en el grupo foco como en el grupo de control, de estudiantes decada grupo académico y de cada profesor. Aaprender se aplicó en tres periodos deprueba o corridas, uno en el semestre agosto-diciembre de 2008 y dos en elsemestre enero-mayo de 2009. Las poblaciones de estudiantes que participaron encada periodo de prueba se muestran en la Tabla 2.Tabla 2. Fechas y poblaciones de estudiantes que participaron en los tres periodosde pruebas, o corridas, de Aaprender.Periodo de prueba Semestre NFOCO NCONTROLA Aug - Dec 2008 31 35B Jan - May 2009 20 38C Jan - May 2009 13 33Total 64 105 En cada periodo de prueba se aplicó un examen previo (pre-test) y unexamen posterior (post-test) tanto al grupo foco como al grupo de control con el finde comparar los resultados de estas dos poblaciones. El pre-test y el post-testfueron muy similares tanto en su estructura como en su nivel de dificultad.Asimismo, el nivel de dificultad de los problemas incluidos en estos exámenes fuemuy similar al de los problemas que se incluyeron en el sistema Aaprender, y al delos problemas típicos que se incluyen al final del capítulo de la mayoría de libros detexto de Física para estudiantes de ingeniería (por ejemplo, [1], [2], [3]). El pre-test ypost-test fueron diseñados específicamente para medir las habilidades delestudiante para resolver problemas. En efecto, para encontrar la respuesta correctael estudiante necesita entender el problema, hacer un planteamiento adecuado delmismo, y llevar a cabo las operaciones matemáticas correspondientes paraencontrar las incógnitas requeridas. El pre-test y el post-test consistieron de tres problemas de Física de opciónmúltiple, con cinco opciones para cada problema. Ambos exámenes fueronaplicados en el aula y todos los estudiantes (tanto foco como de control) tuvieron
    • aproximadamente 20 minutos para contestar el examen. Con el fin de preservar launiformidad de los datos, todos los exámenes de los tres periodos de prueba fueroncalificados por el mismo profesor, siguiendo el mismo criterio para calificar cadaproblema. La escala de calificación de los exámenes fue de 0 a 100 puntos. Se tuvo cuidado en procurar condiciones similares, tanto como fuese posible,para la aplicación del pre-test y del post-test en los grupos foco y de control. El pre-test se aplicó en todos los periodos de prueba antes de que el profesor comenzara adiscutir los temas correspondientes en la clase. Posteriormente, a los estudiantesdel grupo foco se les permitió tener acceso al sistema Aaprender y se les dieroninstrucciones específicas para practicar con el sistema durante las siguientes dossemanas. Simultáneamente se entregó material escrito con problemas similares alos estudiantes del grupo de control. Mientras tanto, el profesor continuó exponiendonormalmente los temas de sus clases en sus grupos académicos. Después de esteperíodo de pruebas de dos semanas, se aplicó el post-test a ambos grupos deestudio: foco y de control. Es conveniente mencionar que los alumnos de los gruposfoco pudieron usar el sistema Aaprender tantas veces como quisieran dentro delperiodo previsto de dos semanas, mientras que a los estudiantes de control se lespidió que practicaran con problemas similares en papel durante el mismo plazo. Nose solicitó ningún tiempo mínimo de la práctica ni a los estudiantes foco ni a los decontrol. Se observó que el número promedio de accesos por estudiante foco alsistema Aaprender durante el período de pruebas fue de aproximadamente 10, conalgunos estudiantes que entraron al sistema incluso más de 20 veces. De hecho, esinteresante observar que muchos estudiantes foco se sintieron muy motivados paradedicar un tiempo extra para la práctica con el software, lo que indica que el uso delsistema los alentó a que dedicaran más tiempo estudiando en comparación con losestudiantes de control.5. RESULTADOS Y DISCUSIÓNa) Ganancias relativas individuales del estudiante. Con el fin de analizar losresultados de este estudio, calculamos primero las ganancias relativas individualesdel estudiante de manera similar a [21]: !"#$! !!"#!Ganancia relativa para el estudiante “i”: !! = (1) !""!!"#!Donde Prei y Posti son las calificaciones del pre-test y del post-test obtenidas por elestudiante “i”, respectivamente. En la figura 8 se grafican las ganancias relativasindividuales de cada estudiante en dos secuencias diferentes: una para losestudiantes del grupo foco (rombos sólidos) y otra para los estudiantes del grupo decontrol (triángulos vacíos). Por claridad, se han superpuesto ambas secuenciasordenadas por ganancia creciente. Se encontró que los estudiantes del grupo focotienen una proporción mayor de ganancias positivas comparados con losestudiantes del grupo de control.
    • Relative Gain for individual students Focus Group Control Group 0.90Student relative gain, g_i 0.70 0.50 0.30 0.10 -0.10 0 20 40 60 80 100 -0.30 -0.50 StudentFigura 8. Ganancias relativas de los estudiantes, gi, para el grupo foco (diamantes) ypara el grupo de control (triángulos). Ambas secuencias están ordenadas por ordencreciente de ganancia.b) Pre-test, post-test y ganancias relativas promedio. Con el fin de comparar a mayordetalle las ganancias del grupo foco y del grupo de control, se calculó también elpromedio del pre-test, del post-test y de las ganancias relativas para cada grupo deestudio, definidos de la siguiente manera, donde N es el número de estudiantes enun grupo dado.Promedio de la calificación del pre-test (2).Promedio de la calificación del post-test (3).Promedio de la ganancia relativa individual (4). Dado que el tipo de muestras y procesos de medición empleados fueronsimilares durante el estudio, se agruparon las muestras de los tres periodos deprueba para obtener una muestra mayor. Los resultados obtenidos se presentan enla tabla 3, que incluye las poblaciones totales del grupo foco y del grupo de control, ylos correspondientes pre-test promedio, post-test promedio y ganancias relativaspromedio. Se incluyen también las desviaciones estándar correspondientes. Comose muestra en la tabla 3, el promedio de la calificación del pre-test es muy similarpara los grupos foco y los grupos de control, lo cual indica que las habilidadesiniciales de resolución de problemas de los estudiantes antes de la utilización delsoftware son similares para ambos grupos, como se esperaba (36 y 37,respectivamente). Sin embargo, el promedio de la calificación del post-test, es mayorpara el grupo foco que para el grupo de control (69 vs 57, respectivamente), lo cualindica que los estudiantes del grupo foco obtuvieron ganancias de aprendizajemayores que los estudiantes del grupo de control. Debido a que las desviacionesestándar obtenidas son bastante grandes, y con el fin de probar esta últimahipótesis, aplicamos una prueba estadística Z para comprobar si la diferencia de
    • estas dos cantidades promedio es o no significativa (ver [22]). Se encontró que, conuna certeza del 95%, la diferencia (<Pre>FOCO – <Pre>CONTROL) no es significativa,pero la diferencia (<Post>FOCO – <Post>CONTROL) sí es significativa y se encuentra enel intervalo [4.4, 19]. Este resultado muestra que la calificación promedio del post-test obtenida por el grupo foco es estadísticamente mayor que la calificaciónpromedio obtenida por el grupo de control.Tabla 3. Promedio y Desviación estándar del Pre-test, Post-test y Gananciasrelativas, para el grupo foco y el grupo de control.Grupo N <Pre> <Post> <gi>Foco 64 36 ± 18 69 ± 24 0.51 ± 0.37Control 105 37 ± 18 57 ± 25 0.26 ± 0.54 La tabla 3 también muestra que la ganancia relativa promedio es mayor paralos estudiantes del grupo foco, <gi>FOCO, que para los estudiantes del grupo decontrol, <gi>CONTROL. Al igual que antes, se realizó una prueba Z con estos datos y seencontró que la diferencia entre las dos ganancias relativas promedio también essignificativa, con una confiabilidad del 95%, y se encuentra en el intervalo [0.12,0.39], lo que indica que la ganancia relativa promedio para el grupo foco esestadísticamente mayor que la del grupo de control.c) Ganancia relativa integrada. Además de las ganancias relativas de losestudiantes, se calculó también la ganancia relativa “integrada”, G, para cadaperiodo de prueba (A, B and C), y para la muestra completa, tanto para el grupo fococomo para el grupo de control, definida en [21]: !!"#$!!!!"#!Ganancia relativa integrada para un grupo dado: != (5). !""!!!"#! Las tablas 4 y 5 muestran los resultados obtenidos para los grupos foco y decontrol, respectivamente. De manera similar a [21], en la figura 9 se muestra unagráfica de la ganancia relativa integrada vs. el promedio del pre-test, para cadaperiodo de prueba A, B y C, y para la muestra total. La ganancia relativa integradade los grupos foco se muestran con símbolos llenos, mientras que la gananciarelativa integrada de los grupos de control se muestran con símbolos vacíos. A partirde la figura 9 se concluye que la ganancia integrada promedio es mayor para losgrupos foco que para los grupos de control en cada una de los tres periodos deprueba, al igual que para la muestra completa. Como es de esperarse, esteresultado es consistente con las pruebas Z mencionadas anteriormente. De hecho,para la muestra completa encontramos que GFOCO = 0.51 mientras que GCONTROL =0.32 (ver tablas 4 and 5).Tabla 4. Ganancias relativas para los tres periodos de prueba A, B y C, y para elnúmero total de estudiantes del grupo foco.Periodo de prueba N <Pre> <Post> G(FOCO) A 31 31 71 0.58 B 20 35 66 0.47 C 13 49 68 0.37 Total 64 36 69 0.51Tabla 5. Ganancias relativas para los tres periodos de prueba A, B y C, y para elnúmero total de estudiantes del grupo de control.
    • Run N < Pre > < Pos > G(CONTROL) A 35 31 64 0.48 B 37 35 54 0.29 C 33 46 53 0.13 Total (All) 105 37 57 0.32 Integrated Relative Gain vs. Pre-Test A - Focus B - Focus C - Focus Total - Focus A - Control B - Control C - Control Total - Control 1 0.9 0.8 Integrated Relative Gain, G 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 20 40 60 80 100 Pre-TestFigura 9. Ganancia relativa integrada vs. Calificación del Pre-test para lospreriodosde prueba A (cuadrados), B (diamantes), C (triángulos) y para la muestra total(circles). Los símbolos llenos y vacíos indican datos para los grupos foco y decontrol, respectivamente. Los resultados de este estudio basados en las mediciones de pre-test y depost-test muestran que los estudiantes del grupo foco obtuvieron ganancias deaprendizaje mayores comparados con los estudiantes del grupo de control. Estosugiere que el uso del sistema Aaprender mejora las habilidades de resolución deproblemas de los estudiantes y promueve la comprensión de conceptos por parte delos estudiantes. Vale la pena mencionar que dos profesores adicionales delTecnológico de Monterrey también utilizaron el software durante el período agosto-diciembre de 2009 en un curso de Introducción a la Física. Los resultadospreliminares obtenidos son consistentes con la afirmación de que los estudiantes delgrupo foco obtienen ganancias de aprendizaje mayores que los estudiantes delgrupo de control (trabajo en preparación…).6. CONCLUSIONES Y TRABAJO FUTUROUn factor clave en la enseñanza de la ingeniería es la práctica de resolución deproblemas. Aaprender, es una herramienta de aprendizaje en línea que ofrece a losestudiantes la oportunidad de adquirir confianza en sí mismos antes de realizartareas formales o exámenes de evaluación. El sistema proporciona informaciónadecuada y oportuna a los estudiantes para alentarlos a que continúen suaprendizaje mediante la resolución de ejercicios. Los ejercicios contenidos en
    • Aaprender fueron diseñados cuidadosamente, así como los distractores y lasacciones tutoriales correspondientes. Dada la interacción del estudiante con elsistema, se le presenta a cada estudiante un recorrido de navegación diferentedentro del sistema y cada estudiante debe resolver un conjunto diferente deproblemas dentro de un módulo dado, de acuerdo a su necesidades individuales deaprendizaje. De esta manera se promueve el auto-aprendizaje en los estudiantes. Estas conclusiones apoyan la idea de que esta herramienta deentrenamiento en línea permite que el tiempo que el estudiante invierte en suestudio sea más productivo. De hecho, los estudiantes se mostraron motivados porusar el sistema y se sentían más comprometidos en la solución de los problemas,comparados con los alumnos que no lo utilizaron. Definitivamente, las generacionesactuales de estudiantes están más familiarizados con el uso de tecnologías deinformación y comunicaciones que las generaciones anteriores. Es por esto que eluso de un sistema como Aaprender puede ser muy útil para promover el auto-aprendizaje de los estudiantes. Otro factor que motivó a los estudiantes queutilizaron el sistema es que dado que está el sistema usa la computadora, permite eluso de tutoriales y simuladores de aprendizaje activo. Estamos en proceso deampliar nuestra investigación y extender el sistema para crear ambientes más ricosde capacitación en línea para apoyar el proceso de enseñanza - aprendizaje. Los resultados derivados del estudio de caso animan a los autores de estetrabajo para aumentar el número de problemas contenidos en cada uno de losmódulos, así como el número de recursos didácticos y tutoriales asociados. Enparticular, consideramos que deben añadirse más recursos visuales (simuladores,vídeos, etc.) para reforzar el aprendizaje. Debido a su flexibilidad y capacidades, elsistema Aaprender también se puede utilizar para otras disciplinas de ingeniería,tales como Matemáticas y Ciencias de la Computación. Estamos actualmentedesarrollando un conjunto de problemas, distractores y tutoriales asociados parausar Aaprender en cursos de Matemáticas y Ciencias de la Computación en elcampus Ciudad de México. Desde el punto de vista educativo, se encontró que: a) la herramienta deevaluación utilizada pre-test/ post-test permite poner a prueba la utilidad y eficaciadel sistema, b) los resultados obtenidos usando una muestra de 169 estudiantes depregrado en cursos de Física apuntan en la dirección correcta, en el sentido de quelos estudiantes que utilizaron el sistema obtuvieron una ganancia de aprendizajeintegrada promedio mayor que los alumnos que no lo utilizaron, c) las encuestas deopinión de los estudiantes sobre la usabilidad del sistema también fueronsatisfactorias. Además, los recursos didácticos relacionados con los problemasrefuerzan el proceso de aprendizaje de los estudiantes de acuerdo a los objetivospedagógicos del curso. Por otra parte, desde el punto de vista tecnológico, las ventajas del sistemason: a) permite la creación de bancos de reactivos y la utilización de recursosdidácticos de diferentes tipos (videos, simulaciones en Flash, entornos deaprendizaje en Java) que pueden compartirse entre diferentes profesores y/o cursos,b) ofrece al estudiante acceso en línea a estos recursos, sin restricciones de tiemponi lugar, y c) proporciona retroalimentación pertinente y oportuna a los estudiantes.Algunos proyectos futuros relacionados con esta investigación incluyen:a) Llevar a cabo un análisis detallado de la distribución de ocurrencia de losdistractores. Esto permitirá mejorar la estrategia utilizada en el diseño de losreactivos, así como de los distractores y la retroalimentación hacia el alumnocorrespondiente a cada distractor.b) El desarrollo de una versión mejorada de Aaprender que contendrá conjuntos deproblemas dinámicos generados algorítmicamente, como se muestra en [23]. Enesta versión, los valores numéricos de las variables de un problema dado cambian
    • dentro de un rango previamente establecido cada vez que un estudianteinteracciona con el sistema. Esto combate que los estudiantes copien, así como lasimple memorización de resultados y ejercicios (más frecuente de lo que unodesearía…). Además esta versión mejorada, no es de opción múltiple, sino que elestudiante debe introducir la respuesta numérica correcta incluyendo sus unidades,con un formato específico, dentro de un campo (o campos) provisto(s) para este fin.c) La integración de Aaprender con dispositivos móviles (mLearning) de modo quetanto los estudiantes como los profesores puedan beneficiarse del acceso a losrecursos del sistema a través de dispositivos móviles aprovechando así los “tiemposmuertos”…d) La creación de un conjunto de herramientas de autoría con el fin de ayudar a losprofesores a construir un grafo instruccional que definirá la secuencia de problemasque debe resolver cada estudiante. Estas herramientas de autoría usarán larepresentación gráfica jerárquica del curso con el fin de ayudar en la creación demodelos de dominio y en modelos del estudiante destinados para desarrollar unSistema Tutor Inteligente asociado con los recursos didácticos.El acceso al sistema Aaprender para el curso de Física está disponible en:http://elearning2.ccm.itesm.mx:8080/Aaprender (contactar a Julieta Noguez:jnoguez@itesm.mx)AGRADECIMIENTOSEste trabajo fue apoyado por el Tecnológico de Monterrey, Campus Ciudad deMéxico, a través de la cátedra de investigación en eLearning. Los autores deseanagradecer al Dr. Gerardo Aguilar Sánchez por su ayuda en la aplicación de laspruebas Z.REFERENCIAS[1] H. D. Young and R. A. Freedman, University Physics, Pearson - Addison Wesley, 12th ed., San Francisco CA, USA, 2008.[2] P. A. Tipler and G. Mosca, Physics for Scientists and Engineers, Freeman, 6th ed., New York NY, USA, 2008.[3] D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics, Wiley, 8th ed., Hoboken NJ, USA, 2008.[4] S. Hussmann, G. Covic, N. Patel, Effective teaching and learning in engineering education using a novel web-based tutorial and assessment tool for advanced electronics. Int. J. Eng. Educ. 20(2), 2004, pp. 161–169.[5] A. O. Kurt, C. Kubat, E. Oztemel, Web-based virtual testing and learning in material science and engineering. Int. J. Eng. Educ. 22(5), 2006, pp. 986-992.[6] M. Stefanovic, M. Matijevic, V. Cvijetkovic, Web-Based Laboratories for Distance Learning. Int. J. Eng. Educ. 25(5), 2009, pp. 1005-1012.[7] W. F. Chen, A Model for Assessing Web-Based Simulations in Engineering Education. Int. J. Eng. Educ. 25 (2), 2009, pp. 318-323.[8] B. I. Krouk, O. B. Zhuravleva, Dynamic Training Elements in a Circuit Theory Course to Implement a Self-Directed Learning Process. IEEE Transactions on Education 52(3), 2009, pp. 394-399.[9] M. Cupic, Z. Mihajlovic, Computer-Based Knowledge, Self-Assessment and Training, Int. J. Eng. Educ. 26(1), 2010, pp. 111-125.
    • [10] R. Luna, R. Hall, M. Hilgers, L. Ge. GIS Learning Tool for Civil Engineers. Int. J. Eng. Educ. 26(1), 2010, pp. 52-58.[11] A.A. Kassim, S.A. Kazi, S. Ranganath, A web-based intelligent environment for digital systems. Int. J. Eng. Educ. 20(1), 2004, pp 13-23.[12] Mastering Physics, 2009. Pearson Inc., http://www.masteringphysics.com. Consultado el 26 de abril 2011.[13] WileyPLUS, 2009. John Wiley & Sons Inc., http://www.wileyplus.com. Consultado el 23 de abril de 2010.[14] Connect, 2009- McGraw-Hill Inc. http://connect.mcgraw-hill.com. Consultado el 23 de abril de 2010[15] “CengageNOW, On-line learning and course management from Cengage Higher Education” 2009. Cengage Learning. http://www.ilrn.com/ilrn/classContent/bookList.do. Consultado el 23 de abril de 2010.[16] WebAssign, 2009. Advanced Instructional Systems, Inc., http://webassign.net/. Consultado el 23 de abril de 2010.[17] J. Noguez, V. Robledo-Rella, L. Neri and E. Espinosa, On-line tools for exercising and assessing knowledge on engineering courses, Proceedings of the IEEE International Conference on Frontiers in Education (FIE2007), Milwaukee WI, USA, (Octubre 2007).[18] G. Huesca, V. Robledo-Rella, J. Noguez and L. Neri, Aaprender: Combining on- line training and virtual learning environments to improve problem solving skills, Proceedings of the IEEE International Conference on Frontiers in Education (FIE2009), San Antonio TX, USA, (Octubre 2009).[19] B. Christudas, M. Barai and V. Caselli, Service Oriented Architecture with Java: Using SOA and web services to build powerful Java applications, PACKT Publishing, Birmingham, Reino Unido, 2008.[20] L. Neri, V. Robledo-Rella, E. Espinosa and J. Noguez, Questions and distracters design for a dynamic algorithm-based suite of physics problems for engineering students, Proceedings of the IEEE International Conference on Frontiers in Education (FIE2008), Saratoga NY, USA, (Octubre 2008).[21] R. R., Hake, Interactive-engagement versus traditional methods: A six-thousand- student survey of mechanic test data for introductory physics courses, Am. J. Phys. 66 (1), pp 64-74, 1998.[22] D.M. Levine, T. C. Krehbiel and M. L. Berenson, Business Statistics, a First Course, Pearson - Prentice Hall, 4th ed., Chapter 10, Upper Saddle River NJ, USA, 2006.[23] E. Espinosa, V. Robledo-Rella, L. Neri and J. Noguez, Towards an adaptive delivery of evaluation tools, Proceedings of the IEEE International Conference on Frontiers in Education (FIE2007), Milwaukee WI, USA, (Octubre2007).