ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium energy.
Upcoming SlideShare
Loading in...5
×
 

ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium energy.

on

  • 796 views

Review of SC spokes cavities for low-medium energy. Evgeny Zaplatin (FZ Jülich)

Review of SC spokes cavities for low-medium energy. Evgeny Zaplatin (FZ Jülich)

Statistics

Views

Total Views
796
Views on SlideShare
796
Embed Views
0

Actions

Likes
0
Downloads
6
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium energy. ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium energy. Presentation Transcript

  • !quot; # %%& $ '( )* (+ !quot; , , - . quot;/ ) quot; $%%& 01 -) 0 2 - !quot; , , - . quot;/ ) quot; $%%& 01 0 2 / ) !quot; , , - . quot;/ ) quot; $%%& Low-beta SC Nb Community Juelich Spoke Community 2
  • ) 6 * 2 * 78 $ . ' 9 βλ / 2 A A β: % 78 : $8 1.0 βλ;$ : <=> 0.8 Ez / Ez max 0.6 0.4 9? :% 7@βλ;$ 0.2 0.0 0 20 40 60 80 100 120 140 z / mm z_spoke ) 3 5 3' 4 5 3
  • ) B : 78 $ . ' 9 β↑ β↓ ↑ ↓ ↓ ↑ ↑ ↓ 9↑ )↓ β : % 78 β : % <8 β : % 88 B ) 3<C D . ' 95 10 250 14 spoke 9 240 cavity radius/length [mm] 12 hwr B_pk / E_acc [mT/MV/m] 230 8 10 220 7 E_pk / E_acc 210 6 8 200 5 6 190 4 spoke 180 3 hwr 4 spoke 170 2 hwr 2 160 1 150 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 beta = v/c beta = v/c beta = v/c 4
  • A F + A quot;A → A ) E quot; quot;0 / - >$ 5
  • A # $ ! GE !quot; F quot; /0 6
  • A F F quot; A F 3$ 75 GE 1 F A ) /0 $ quot; quot; 7
  • A ) ) ) <= ,) ) quot; ) ) ,) F A quot;A 8
  • tsr ssr 760MHz ssr 345MHz β=0.2 345MHz β=0.4 tsr FZJ β=0.3 345MHz ANL hwr hwr ANL β=0.5 176MHz 176MHz ANL hwr β=0.11 β=0.16 176MHz FZJ ACCEL hwr tsr β=0.09 172.5MHz 345MHz ACCEL β=0.26 β=0.64 tsr ANL ANL 352MHz ssr dsr β=0.3 ssr 855MHz 345MHz IPN 350MHz β=0.5 β=0.4 β=0.175 ANL ANL LANL hwr hwr 176MHz 322MHz β=0.15 β=0.28 Legnaro MSU tsr hwr hwr 325MHz 175MHz 175MHz ssr β=0.62 β=0.094 β=0.166 352MHz Fermilab IFMIF IFMIF β=0.35 IPN ssr 325MHz β=0.22 tsr hwr Fermilab ssr ch ssr 352MHz 355MHz 325MHz 360MHz β=0.12 352MHz β=0.48 β=0.4 β=0.1 β=0.15 FZJ ANL Fermilab FrUni IPN β = v/c 9
  • ) ) 6 H-cavity V. V. Vladimirsky, 1956 P. Blewett, 1956 19-gap CH 360MHz β=0.1 7-gap CH 325 MHz β=0.15, Frankfurt Uni, 2007 FraUni, 2005 Vertical test: 7 MV/m clean problems! 10-gap multi-spoke 700 MHz β=0.2, Juelich, 1999 10
  • A B : 78 $ . ' 9 β : % <& β : % =& β : % >& 14 7 β:< A+ 12 6 Bpk / Eacc [mT/MV/m] A ) A 10 5 B + Epk / Eac 8 4 270 6 3 250 4 2 Bpk/Eacc 230 rcav [mm] Epk/Eacc 210 2 1 190 0 0 170 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 150 beta = v/c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 beta = v/c 11
  • ) 80 14 4K 70 2K 12 60 10 Epk [MV/m] 50 Eacc [MV/m] 8 40 6 30 20 4 4K 10 2K 2 tesla @ Eacc=30 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 beta = v/c 0 :3 A 1 beta = v/c A 1 A 5;$ 160 140 120 ) ) 100 Bpk [mT] A ) ) 80 A 60 40 4K 20 2K tesla @ Eacc=30 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 beta = v/c 12
  • tsr 345 MHz ssr 325 MHz β=0.5-0.64 β=0.22 ANL Fermilab <5 , ) $ A ) ) ) <% % ) ) <8 % *( ) 3, :7% -quot; K <$ <& K quot; 7% ; $ quot; & 8 H<% H) 5 5) ) A ) ) ' (* ) ) ,) ) 37% % 7 5 A L7 A ) A <$ *( ) ) ) ' (* ,) ) L8 % C 8 5 /0 <8 % H A) A5 ) ) ) ) ) 2-( ) ' H' / 7H' 7( <H<H$ 1* ) C% >% = A ) ) ) ,) 2 A quot; ) ) ) A ) M M) + )A 3/ A I <% ; 5 <8 > - ) ) <= > - <C - ) 4 ) <<> 5 '( ) *(N A A ) ) ) A5 ' ( /0- <% <8 % H 5 <% 2-( ) 3 ) * OM ) *(M5 H 99 )D + quot; ) J=8 quot; > % =8 5, ) ) )) ) ) ) ) 3$ A J7 1 4 A 1 13 5 L< ) ) L<% % A 99 <8 ) 5 A 7 ; E ) D P) A $% ) - ) ) $ ) 3 5 - <% ) M. Kelly, Jan., 2009 R.Wagner, HB2008 ) 3 quot; 2A 5 13
  • ssr 352 MHz tsr 760 MHz β=0.35 β=0.2 FZJ Jlab test IPN Orsay 1.E+10 FE M ultipacting 1.E+09 Q0 test 2 (T=2 K) test 2 (T=4.2 K) test 1 (T=2 K) test 1 (T=4.2 K) 1.E+08 0 2 4 6 8 10 12 14 Eacc [MV/m] 2-( -* $%%$H ) ) After test 1 the cavity was warmed up, disassembled, degreased and heat A) treated at 600 C for 10 hrs. After furnace treatment, degreased and bcp A, with 1:1:3 in steps of 5 min each ( on sample app. 0.9 microns/min); total H ) A <8 % Q time of bcp 30 min; then HPR in 2 locations axially with cavity rotating, app. 30 min each, R@D hpr system. Cavity dried in class 10 clean room '( $%%$ -* ; H over night and assembled next morning (PK); attached to test stand and ) )A HA =8 <);A ( evacuated; prior to cooldown, p~ 1.2e-8 mbar, cont'd next day after & % ;<% % Helium top off. P. Kneisel, Feb., 2008 G. Olry, HIPPI Meeting, Sept., 2004 A 14
  • ) A 6 C % = . ' 9quot; β : % =C quot; / / C % = . ' 9quot; β : % =C quot; -* 78 $ . ' 9quot; β : % =& quot; G E stiffening rings 0 0 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 -10 -200 -20 -400 K_L [Hz/(MV/m)**2] K_V [Hz/mbar] -30 -600 fzj tsr -40 -800 infn fzj tsr saclay one.ring infn saclay tw o.rings -50 -1000 saclay one.ring saclay tw o.rings -60 -1200 K_ext [N/m m ] K_ext [N/m m ] 15
  • A ) ; 1A ; 3 quot; 5 2 A 2 * A A 2 * A A tuning in max b- field 16
  • )) A 15 0.0 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 10 -1.0 tsr.0.98_lhe.vessel 5 tsr.0.48_lhe.vessel -2.0 K_L [Hz/(MV/m)**2] 0 K_V [Hz/mbar] 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 -5 -3.0 -10 tsr.0.98_lhe.vessel -4.0 tsr.0.48_lhe.vessel tsr.0.98_no.lhe.vessel -15 tsr.0.48_no.lhe.vessel -5.0 -20 -25 -6.0 K_ext [N/m m] K_ext [N/m m ] external pressure deformations lorenz forces deformations 17
  • * - A -, - quot; -0 (. !quot; ' (( . quot; $D $C A quot; $ % % C quot; (/ F 0 / -=quot; > % <D % . K - - C%= = . ' 9 →) ) ) 3J5 ) ) B 3J5 3 5A A 35 ) B ) ( 78 $ $ . ' 9 3J5 ) 3J5 3J5 B ) 35 ) 9 L% 8 λ 3L% > λ 5→ 3J5 ,. ) -, - 78 $ $ . ' 9 → 9) B →A →+ 3J5 = ; > % <D % . K 3J5 B ) 35 1 18