• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor operation
 

ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor operation

on

  • 1,306 views

Pulse forming devices for high duty factor operation

Pulse forming devices for high duty factor operation
Richard E. Cassel (SLAC National Accelerator Lab)

Statistics

Views

Total Views
1,306
Views on SlideShare
1,306
Embed Views
0

Actions

Likes
0
Downloads
1
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor operation ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor operation Presentation Transcript

    • R L Cassel 3/17/09
    • ! quot; quot; #quot; $ quot; % quot; &' '( ) * + ## # quot; quot; #quot; quot; R L Cassel 3/17/09
    • # quot; ,- quot;. / + # #' #0 ,- 1 2 . 3 4 0 # , ( '( 0 / -& quot; #* 43 , 5( 4 ( # 67 8 R L Cassel 3/17/09
    • / + 9 cost Overall cost performance rise time, flat top Safety voltage, stored energy space required access & area efficiency rise & fall time ! reliability failure rates protection klystron Joules quot;# $% maintainability easy access cost Overall cost & ' line effects ( ) power smoothing pulsing rise time, flat performance top ,- + ,- voltage, stored * ) + - - energy Safety space required access & area ., ) # efficiency rise & fall time reliability failure rates / protection klystron Joules 0 % + $ maintainability easy access power line smoothing effects pulsing R L Cassel 3/17/09
    • : quot; +/ 1 ), -- + 23 ' 3 - + quot; ' - cost Overall cost &1 % 14) 52 6 ' 7 rise time, flat performance top * ,8 9 voltage, stored Safety energy . + 43 7 ) required space access & area efficiency rise & fall time reliability failure rates protection klystron Joules maintainability easy access power line smoothing effects pulsing R L Cassel 3/17/09
    • Hard Tube Modulator TFTR Neutral beam ;< = ' 4 4 ' 7 quot; '5 4 5 %/ # > : ;? 44 = 5; 4= @ & * R L Cassel 3/17/09
    • > : + $+ 1 1 quot;# ) & ' + ) ) * ) , ,- + ) : ) )1 ,- ., ) ; + ' 8 / - + 0 % 9 $ R L Cassel 3/17/09
    • % ; 76 : 6: A % - ;4 = % 7/ quot;: # R L Cassel 3/17/09
    • % ; + $+ )' : ' 1 1 ) quot;# 1 $ $ % & ' + ' ) * ) < ,- + 3 - ) ,-- ., ) ;! / =, 0 % R L Cassel 3/17/09
    • 9 B# : quot; +C % '; < %quot; ' -9 5( 4 % ;<1 = ' quot; ) ;); ' + ' ;< > < 4D R L Cassel 3/17/09
    • Bouncer droop correction # >; ; -= '4 # 4' > '4 D ' ' : quot; quot; % 3 : % # % quot;: B= EB 9 R L Cassel 3/17/09
    • Industral Long pulse Modulator • Industry made subunits (PPT, ABB, FUG) • Constant power, power supply for suppression of 5Hz repetition rate disturbances in the mains • Compact storage capacitor bank with self healing capacitors • IGCT Stack (ABB); 7 IGCTs in series, are redundant R L Cassel 3/17/09
    • FERMI Modulator Status / 5 9= FB 1 0 0 / quot; / : ' 4>D # /# % % quot; quot; # % R L Cassel 3/17/09
    • :quot; B# Performance Slow rise & Fall, flat top flatness bouncer Safety High Stored energy, Large amount of oil Cost High Cost due to pulse transformer quot; Efficiency Slow rise & fall times & High currents Single switch turning off & crowbar switch, Inverse & Protection klystron voltage devices * Reliability Little redundancy but High MTTF . Maintainability Air insulation easy maintenance, except Transformer / Power line effects SCR Control could cause large power fluctuations 0 Space required Transformer is Large R L Cassel 3/17/09
    • % # 1 ;1 = >D : .+ 9 R L Cassel 3/17/09
    • % # + $+ $ ) 1 quot;# 1 $ $% & ' + ) * ) 1 ,- + - ) ,-- ., ) ; ) / 0 % % R L Cassel 3/17/09
    • F>. # 4 ;5 = ' -4 <>D - %G 1H -; H 1; R L Cassel 3/17/09
    • F Switch Plate Substation Modulator Controls SCR converter R L Cassel 3/17/09
    • SNS Modulator Status - 6 F ?5 > I D< 5 4 :9 : 1? < > , D< <J < < quot; :9 : 9 quot;> <D 2 # # F % quot;/ R L Cassel 3/17/09
    • F>. # + $+ >? @ 1 ?8 @ 1 ) # 1 $ % quot; ' + & ) ,- + - * ,-- ' , ) #8 $! ' . / % 0 R L Cassel 3/17/09
    • @ ># quot; % $ :quot; @ # # #quot; >. # % ># quot; % % #/ # #quot; quot; quot; quot; , >D . quot;% >> D. # quot; quot; quot; # ,4 ) R L Cassel 3/17/09
    • SLAC Solid Sate Marx S0n Tm Modulator VCC -v Gate Out Trigger Un1 5x4.5kV IGBT Com Com +v SPST IN Tr Dn2 SWITCH DRIVE Sn2 +- Dn2 Ln0 Dn1 DC-DC SWITCH DRIVE 35uHy 18kV Com Com Diode 18kV Sn1 S1n Sn1 SPST Trigger Dn0 Gate 50uF, 12kV C0n VCC Discharge Dn1 R1 Bypass diode 18kV Dump Charging Diode 18kV 5x4.5kV IGBT Auxilary diode 18kV + + + + + + Load Tm VCC -v S30 Gate Out Trigger U31 5x2.5kv IGBT Com Com +v SPST IN D13 SWITCH DRIVE S32 D32 +- Tr L30 DC-DC D31 18kV SWITCH DRIVE 35uHy SPST Com Com Diode 18kV S31 900 Ohms S31 S30 Trigger D30 Gate 50ufd 12kV C30 VCC Discharge R1 D33 Capacitors Dump Charging Diode 18kV 5x4.5kV IGBT Auxilary Diode 18kV Bypass diode 18kV 5x2.5kv IGBT Tm S20 VCC -v Gate Out Trigger Charge parallel U21 Com Com +v S23 SPST IN D21 SWITCH DRIVE D23 +- Tr L1 350-24V D22 18kV SWITCH DRIVE 35uHy SPST Com Com Diode 18kV S21 S21 S20 Trigger D20 Gate 50ufd 12kV C03 VCC Discharge R1 Auxilary Diode 18kV D23 Bypass diode 18kV Discharge series Dump Charging Diode 18kV 5x4.5kV IGBT 5x2.5kv IGBT Tm S10 VCC -v Gate Out Trigger U01 Com Com +v SPST IN D11 SWITCH DRIVE S12 D13 +- L1 350-24V D12 Tr SWITCH DRIVE 18kV 35uHy SPST Com Com Diode 18kV S20 S11 Trigger D10 S10 Gate 50ufd 12kV C03 VCC Discharge R1 Auxilary Diode 18kV D13 Bypass diode 18kV Dump Charging Diode 18kV 5x4.5kV IGBT 12kV 300V -V +V +V -V Charging Power SLAC ILC Marx Modulator Auxilary Power GRN GRN AC AC • 16 stages • 120kV, 140A 1mS • 150kW Average at present • air insulation • Flat Top flatness correction is under development R L Cassel 3/17/09
    • Stangenes Inc. Marx Modulator Adding or Removing Stage For ease of repair 30 stages 90kV 50A 100uS, 150kW air insulation for Radar R L Cassel 3/17/09
    • Marx Modulator Status DTI 120KV, 140A oil Marx SLAC 120KV, 140A air Marx B+ = quot; % A 7# B+ = 76 : quot; #% ># quot; quot; quot; ## # ## ' C =/ / R L Cassel 3/17/09
    • 0: # ) $+ $ quot;# 1 $ $ % &' + ) A' ,- + - ) ,-- * ) ., ) ; / =, 0 % $ $ R L Cassel 3/17/09
    • Other Possible Modulator Darlington Line 240kV Z=1000 ohms L13 L14 L15 L16 L17 L18 -120kV C13 C14 C15 C16 C17 C18 High Voltage difficult SCR1D1 120,000V 120A Z=1000 ohms SCRn Light triggered 120kV -60kV SCR Switch L1 L2 L3 L4 L5 L6 L13 L14 L15 L16 L17 L18 C13 C14 C15 C16 C17 C18 SCR1 -120kV D1 C1 C2 C3 C4 C5 C6 120,000V 120A Darlington Line Z=1000 ohms SCRn Delayed pulse 100.0 Z=500 ohms Z=500 ohms 80.0 Large Inductors 60.0 80kV -40kV -80kV 40.0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 20.0 C13 C14 C15 C16 C17 C18 SCR1 -120kV 0.0 D1 C1 C2 C3 C4 C5 C6 Kilovolts 120,000V 120A -20.0 0 500 1000 1500 2000 2500 3000 3500 C7 C8 C9 C10 C11 C12 Z=1000 ohms SCRn -40.0 Z=222 ohms Z=667 ohm Z=333 ohms -60.0 -80.0 •Small Stored energy -100.0 -120.0 •Long pulse Line modulator -140.0 Time uSec have not been made Output Voltage Line 1 Line 2 Line 3 •Possible with SCR driver 3 stage Darlington line simulation R L Cassel 3/17/09
    • Darlington Line Modulator $+ B ) 1 ? @ quot;# $ $; & ' ) * ) A' ) ,- + - ., ) ) ) / < 0 % R L Cassel 3/17/09
    • Controlled Anode Klystron Modulator 120,000V 120A Grid -132kV Z=100 ohms Control Z=1000 ohms L1 L3 L2 L4 L5 L6 L7 L8 Controlled Anode C1 C2 C3 C4 C5 C6 C7 C8 132kV 120kV 2mS 108 kV Voltage 120A 100kV 2MW Time 12 phase rectifier 12.5kv 3 phase input Controlled Anode Klystron High fault current if anode dose not clear High voltage DC R L Cassel 3/17/09
    • ; #; / % From German standard VDE 0838 Power Supplies for TESLA Modulators Hans-Jörg Eckoldt, Niels Heidbrook DESY TESLA 2000-36 53 0 quot;/ #/ 0 / #/ % 4. > I '3 D 4 = ; /% ' & C C / %/ D* R L Cassel 3/17/09
    • B ; #; + : quot; / quot;quot; .3 quot;quot; % # 4quot; 3 quot; / ' # '3' 4 ; #/ ' : /% // # / / quot; quot; & / D* % - <3 # / %/ quot; 3quot; / ' # ' &/ @ %; # # 3quot; * R L Cassel 3/17/09
    • %B % /quot; > % /quot; /quot; quot;# =+' Cquot;quot; / quot; % 5 % % /quot; ' > # # quot; quot; = # / # < quot; / quot;- quot; : quot;# % quot; # > quot; =+ ' &/ @ - Cquot; * R L Cassel 3/17/09
    • Stangenes Ind. Charging Supplies Resonant type capacitor charging supplies Liquid and air cooled 3.3kV maximum Voltage at 140kW total charging supply 3 out of 4 supply redundancy 15 amps average 30 amps peak R L Cassel 3/17/09
    • % 1) Standard SCR controlled power supply may not be good enough for power line consideration 2) Rectifier should have large enough inductive filter to reduce power fluctuations due to capacitor voltage droop due to pulsing and reduce current harmonic 3) Switching supply should have inductors filter to eliminate third harmonic 4) Switching supply should be regulated to near constant power output. 5) Hybrid power supply consisting of a High power SCR rectifier in series with a fast switching supply to compensate for the voltage change on the capacitor should be considered. R L Cassel 3/17/09
    • + J 1) Alternative modulator designs should be considered 2) Number of klystron per modulator should be evaluated 3) Reliability and maintainability are very important in the modulator. 4) Protection of the klystron against single point failures is important. 5) Cost & Space requirements should be evaluated when selecting Modulator. 6) Efficiency and power line effect are important in the modulator design. 7) Safety should be an important consideration including the way the energy is stored and use of high voltage R L Cassel 3/17/09