Schwartz ez proxy-logs

1,076 views

Published on

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,076
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Schwartz ez proxy-logs

  1. 1. Application of EZProxy logs, Voyager’s  Patron Database, MySQL, and  ColdFusion for Comparative Usage  Analysis of Library Resources  Ray Schwartz,  William Paterson University of NJ,  schwartzr2@wpunj.edu ENUG Conference, University of Bridgeport, CT   Thursday, October 27, 2011
  2. 2. Our University• 9000 undergraduates• 1000 graduates (mostly education majors)• 400 faculty• 800 adjuncts• 1000 staff 2
  3. 3. Our Library• 19 librarians and 26 library staff• 350,000 volumes• 18,000 audiovisual items• 47,000 print and electronic periodicals • 124 general and subject specific databases• $1,100,000 Non‐Salary Allocations   3
  4. 4. EZProxy via LDAP authenticates  access to:• Databases• Electronic journals• ILL/Doc Delivery forms
  5. 5. Example of EZProxy log entry• Ip address nj.dhcp.embarqhsd.net • (Not used)  ‐• user id  theuser • date/time 1/1/2008 4:25:15 AM • Method GET • page  http://ezproxy.wpunj.edu:2048/connect?session=sGHMbeSss121YxZa&url= retrieved        http://www.wpunj.edu/scripts/webscript.exe?fs.scr • Version HTTP/1.1 • response  302  code             • no. of bytes 537• Referring  http://ezproxy.wpunj.edu:2048/login?url=http://www.wpunj.edu/scripts/w URL ebscript.exe?fs.scr • User agent Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322) 5
  6. 6. MySQL operations• EZProxy transactions would be stored in one  table with patron statistical categories, but  without the user ID.• User ID s would be stored in another table  with counts for each service divided by  academic year.• Logs are collected monthly and loaded and  deleted monthly. 6
  7. 7. Perl Script for loading ezproxy log use strict; into MySQLmy %month=(Jan=>01,Feb=>02,Mar=>03,Apr=>04,May=>05,Jun=>06,Jul=>07,Aug=>08,Sep=>09,Oct=>10,Nov=>11,Dec=>12);while (<>){ my $pattern = ^(S*) (S*) (S*) (S*) . [(..)/(...)/(....):(..):(..):(..) .....].  "(S*) (S*) (S*)" . (d*) (‐|d*) "([^"]*)" "([^"]*)"; if (m/$pattern/){ my ($tgt,$ref,$agt) = (esc($12),esc($16),esc($17)); my $byt = $15 eq _?NULL:$15; print "INSERT INTO ezproxylogs VALUES ($1,$2,$3,". " TIMESTAMP $7/$month{$6}/$5 $8:$9:$10,$11,$tgt,". "$13,$14,$byt,$ref,$agt);r."; }else{ print "‐‐Skipped line $.n"; }}sub esc{ my ($p) = @_; $p =~ s///g; return $p; 7}
  8. 8. Patron Statistical Categories• Voyager Patron Database allows a maximum of 10  statistical categories per patron record. • Weekly extract from SIS and HRS to load into  Voyager 8
  9. 9. From Students•College and Mercer Identifier•Class Level (Freshman, Sophomore, Junior, Senior, Graduate)•Total Hours Registered for Current Semester•Major•2nd Major•Degree•CA‐Collection Agency•SOILS•Student Entrance Level (New Non‐Traditional Freshman, New First Time Transfer, etc.)•Department
  10. 10. From Faculty / Staff / Adjuncts•College•Full or Part‐Time•Status (Faculty, Adjunct, Staff, Professional Staff, Tenured, Tenure‐Track)•Division•Departments
  11. 11. Extracting patron statistical categories back out of Voyager and building them into MySQL database.Once completed, user ids are deleted.
  12. 12. Internal WPUNet IPv4 addressing scheme IP Network 149.151.Block Description IP Block Start Range IP Block End RangeAdmin (Services) 2.1 129.254Labs (Users) 130.1 162.254Admin (Users) 163.1 233.254Resnet (Users) 234.1 250.254Video 251.1 251.253
  13. 13. IP Address Location = 149.151.VlanID.*Admin VLANs Labs VLANs Vlan ID Vlan Name Vlan ID Vlan Name 2 Servers 3 Lab Servers 4 Admin 9 Imaging 5 Science 160 Lib Labs 6 Test Servers 174 STU VPN 7 NAS 175 Ben Shahn Lab 101 Energy Management 178 Hobart Lab 102 Diebold 179 SCI Lab 104 Xerox 187 CS Lab 150 Media Services 192 Atrium 161 Dorms Offices 209 Labs 162 RBI 212 Resnet Labs 163 Police 214 Raub Labs 164 Maintenance 228 VR Labs 14
  14. 14. References•Coombs, Karen A. (2005). Lessons learned from analyzing library database usage data. Library Hi Tech, 23:4, 598.• Diana, Birkin James. dashboard_beta. http://library.brown.edu/dashboard/info/• Metridoc. http://code.google.com/p/metridoc/• Morton‐Owens, Emily (2011) Trends at a glance. LITA 2011. http://connect.ala.org/files/79651/trends_at_a_glance_dashboards_pdf_12068.pdf
  15. 15. Questions? Ray Schwartz,  Systems Specialist LibrarianCheng Library, William Paterson University,  Wayne, New Jersey, USA schwartzr2 @ wpunj.edu 25

×