Road Safety and Bus Rapid Transit


Published on

The presentation looks into the BRT-related road safety issue in Asia and safe BRT designs. Binoy Mascarenhas, Manager, Urban Transport, EMBARQ India, led the session in Kuala Lumpur, Malaysia, part of Workshop on Quantifying the Environmental, Social, and Economic Benefits from BRT Systems on June 24 – 25, 2014. The workshop was organized by the Asia LEDS Partnership and hosted by the Malaysia Land Public Transport Commission (SPAD), with additional funding from the USAID and the LEDS Global Partnership Transport Working Group, and support from Clean Air Asia, EMBARQ.

  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Road Safety and Bus Rapid Transit

  1. 1. Road Safety and Bus Rapid Transit! !   Workshop on Quantifying the Environmental, Social and Economic Benefits from Bus Rapid Transit Systems! A SPAD Academy & Asia LEDS Partnership Workshop! June 24 – 25, 2014! !   Binoy Mascarenhas, Manager, Urban Transport, EMBARQ India! !!
  2. 2. 2   Why  BRT?   Is  it  really  safer?  
  3. 3. India  has  the  highest  number   of  road  fatali7es  in  the  world   3   People  killed  on  Indian  roads  in  2013   Source:  NaQonal  Crime  Records  Bureau  (2009)   “Accidental  Deaths  &  Suicides  in  India.  NCRB  
  4. 4. Who  are  the  vulnerable  road  users?   4   Source:  NaQonal  Crime  Records  Bureau  (2009)   “Accidental  Deaths  &  Suicides  in  India.  NCRB   54%   41%  
  5. 5. The  “other”  vehicle  involved:   5   20%   19%   16%   14%   13%   9%   7%   Car  /  Jeep   Two-­‐wheeler   Bus   Unknown   Truck   Van   Autorickshaw   Others   Case  of  Bangalore   In  16%    &  23%  of  pedestrian  &   motorcyclist  fataliQes  resp.,   the  impacQng  vehicle  is  a  bus     32%   28%   23%   8%   Truck   Other  2-­‐wheeler   Bus   Car/Jeep   Hit  a  fixed  object   Van   Tractor   Autorickshaw   Motorcyclist  fatali7es  Pedestrian  fatali7es   Source:    Bengaluru  Road  Safety  &  Injury   PrevenQon  Programme:  Injury  snapshots   and  acQvity  profile  –  2009  -­‐  NIMHANS  
  6. 6. More  data  on  city  bus  crashes   6   In  Mumbai,   2012   In  Chennai,   2008   In  Bangalore,   2007   ProporQon  of   fatal  crashes  that   involved  a  bus  
  7. 7. Who  is  most  vulnerable  in  a  bus  crash?   7   Pedestrian   Motorcyclist   Bus  occupant   Pedestrian   Motorcyclist   Bus  occupant   Mode  of  vicQm   in  a  fatal  crash   involving  a  bus   Chennai  2008  –  MTC  buses  Bangalore  2007  –  BMTC  buses   61%  of  all  fatal  crash  vicQms  in  Bangalore  and   89%  in  Chennai  are  from  just  these  3  groups!  
  8. 8. Overcrowding  is  a  big  issue   8  
  9. 9. Data  Source:  Padmanaban  J.,  Rajaraman  R.,   Narayan  S.,  Ramesh  B.,  “Analysis  of  Fatal  Crashes   involving  MTC  buses”,  iCRASH  Conference,  2010   Which  wheel  of  the  bus  is  most  predominantly  involved   in  run-­‐over  crashes?   Case  of  Chennai   Three  main  issues     •  Overcrowded  buses   •  Lel-­‐rear  side  blind-­‐spot     •  Rear  overhang    Right   rear   Qre:   19%   Lel   rear   Qre:   63%   Right   front   Qre:   5%   Lel   front   Qre:   13%   Lel   side:   76%   Rear  side:   82%  
  10. 10. AcQvity  at  the  Qme  of  the  fatal  crash   Pedestrian   Motorcyclist   10   Case  of  Bangalore   Source:    Bengaluru  Road  Safety  &  Injury   PrevenQon  Programme:  Injury  snapshots   and  acQvity  profile  –  2009  -­‐  NIMHANS   57%  27%   8%   Crossing  the   road   Walking  on   the  road   Standing  on   the  road   Working  on   the  road   Playing  on  the   road   Sleeping  on   the  road   Unspecified   40%   15%   13%   12%   7%   Hit  from  back   Hit  from  side   Head  on   collision   Skid  &  fell   Hit  a  fixed   object   Nose  to  tail   collision   Others   Overturn   Hit  a   pedestrian  
  11. 11. How  does  BRT  make  things  safer   Direct  impact  on  the  3  vulnerable  groups   •  Separates  buses  from  all  other  motor-­‐vehicles     •  Moves  buses  away  from  the  path  of  pedestrians.   BRT  median  improves  safety  while  crossing   •  AutomaQc  doors  &  more  frequent  services   prevent  passengers  from  falling  out  of  the  bus       11   Motorcyclist   Pedestrian   Bus  occupant     Other  corridor  impacts   •  BRT  involves    a  complete  re-­‐design  of  the  road,  which  allows  for  correcQng  prior  design  flaws,   improving  road  condiQons  and  introducing  traffic  calming  features   •  Reduced  no.  of  lanes  for  mixed  traffic  induces  lower  speeds   •  Moving  buses  away  from  the  kerbside  allows  Qghter  intersecQon  design   •  Reduces  conflict  points  across  minor  intersecQons   •  Beoer  managed  fleet  and  beoer  trained  drivers  result  in  safer  driving   City-­‐level  impact   •  Affects  modal  shil  away  from  private  transport;  reduced  motorisaQon  results  in  fewer  accidents    
  12. 12. The  last  point  explained  …   12   R² = 0.69 0 10 20 30 40 0 20 40 60 80 100 Annualtrafficfatalities/ 100000population Daily VKT/ capita (urban roads) City  level  impact  of  BRT  through  mode  shil  and  reduced  motorisaQon   Credit:  Nicolae  Duduta,  EMBARQ  
  13. 13. 13   PotenQal  road  fataliQes   averted  on  account  of   the  BRT   Some  direct  evidence  from  BRT  corridors   Case  of  TransMilenio  BRT  in  Bogota,  Colombia   A  high  quality  public  transport  system  can  save  lives   Credit:  Dario  Hidalgo,  EMBARQ  
  14. 14. Further evidence from Macrobus in Guadalajara,  Mexico …" 0   500   1000   1500   2000   2500   3000   3500   4000   4500   5000   0   50   100   150   200   250   Jan-­‐07   Mar-­‐07   May-­‐07   Jul-­‐07   Sep-­‐07   Nov-­‐07   Jan-­‐08   Mar-­‐08   May-­‐08   Jul-­‐08   Sep-­‐08   Nov-­‐08   Jan-­‐09   Mar-­‐09   May-­‐09   Jul-­‐09   Sep-­‐09   Nov-­‐09   Jan-­‐10   Mar-­‐10   May-­‐10   Jul-­‐10   Sep-­‐10   Nov-­‐10   Jan-­‐11   Mar-­‐11   May-­‐11   Monthly  citywide  crashes  (excluding  the  BRT  corridor)   Monthly  crashes  on  the  BRT  corridor   Citywide crashes Crashes on the BRT corridor Before BRT During BRT construction During BRT operation Credit:  Nicolae  Duduta,  EMBARQ  and  EMBARQ  Mexico  
  15. 15. … and from Metrobus, Mexico City, Mexico :  77%   19%   Insurgentes:  BRT   66%   32%   E.  Molina  curbside  busway  /  mixed   traffic   Vehicle  collisions   Pedestrian   accidents   Accident comparison on open bus corridor vs BRT corridor   Credit:  Nicolae   Duduta,  EMBARQ   and  EMBARQ   Mexico  
  16. 16.  Counter-­‐ flow   busway   Curbside   buslane   Open   system    Centre   lane  BRT   16   SAFEST   LEAST   SAFE   Safety  impact  analysis   of  different  bus   systems   Case  of  Mexico   Credit:  Nicolae  Duduta,  EMBARQ   and  EMBARQ  Mexico  
  17. 17. 17   But  how  to  design  the   safest  BRT  system?   We’ve  established  that  BRT  improves  safety  
  18. 18. City   Corridor   length   Year   of   audit   Year  op   began   Alignment     of  BRT     Sta7on  loca7on   w.r.t.  bus     Ticke7ng   Bus  restric7on   New  Delhi   5.8  km   2011   2008   Median   Lel  side   On  bus   All  kinds  of   buses   Bhopal   23.4  km   2013   2013   Median  &   kerbside   Lel  side   On  bus   Only  BRT  bus   Indore   11.6  km   2011   2013   Median   Right  side   At  staQon   Only  BRT  bus   Ahmedabad   63.0   km*   2011   2009#   Median   Right  side   At  staQon   Only  BRT  bus   Surat   33.0   km^   2013   2014^   Median   Right  side   At  staQon   Only  BRT  bus   Rajkot   10.5  km   2013   2012   Median   Right  side   At  staQon   Only  BRT  bus   18   *As  of  April  2013 ^  This  is  the  first  phase  length  which  partly  began  operaQons  in  2014 #  First  phase  started  in  the  year  2009 Between  2011-­‐13,  EMBARQ  India,  through  a  grant  from  Bloomberg   Philanthropies,  conducted  road  safety  audits  on  Indian  BRT  corridors  in  
  19. 19. India’s  BRT  story  has  so  far  been  a  tryst  of  two  models  of  BRT   19   •  Lel-­‐side  staQon   •  Split  plaxorms   •  Bus  doors  on  the  lel   •  Step-­‐up  boarding   •  Open  staQons   •  On-­‐board  QckeQng   •  Median  staQon   •  Single  plaxorm   •  Bus  doors  on  the  right   •  Level  boarding   •  Closed  staQons   •  Off-­‐board  QckeQng   New  Delhi   Bhopal   Ahmedabad   Indore   Surat   Rajkot  
  20. 20. The  Delhi  &  Bhopal  BRT  model   Open,  low-­‐level  staQon  plaxorm  on  lel  side  of  bus  docking  area   20  
  21. 21. 21   The  Ahmedabad,  Indore,  Surat  &  Rajkot  BRT  model   Closed,  bus-­‐floor-­‐level  staQon  plaxorm  on  right  side  of  bus  docking  area  
  22. 22. 22   So  which  model  is  safer?  
  23. 23. Safety  advantages  of  Ahmedabad  model   •  Bus  drivers  (seated  on  the  right)  find  it  easier  to  dock  the  bus  closer  to  plaxorm   •  Level-­‐boarding  allows  for  safer  access   •  Closed  staQons  induce  commuters  to  enter  and  exit  from  designated  points   •  Having  only  BRT  fleet  on  the  bus  lanes  allows  for  greater  control  on  driver   behaviour  –  Centrally  managed  system   –  Also,  less  turning  movements  for  the  BRT  lanes  required  at  intersecQons     However,  when  planning  for  an  overtaking  lane  with  this  model,  certain  precauQons   to  be  taken…more  on  the  later   23   In  our  assessment,  we  found  that  the  Ahmedabad  model  has  some  safety   advantages  over  the  other  kinds  of  systems  
  24. 24. 24   Kerbside  or  Median  side   Which  is  a  safer  loca7on  for  the  BRT  lanes?  
  25. 25. 25   The  transiQons  from  median  lane  to  kerbside  lane  and  vice  versa  creates   safety  issues   In  Bhopal,  the  BRT  corridor  changes  from  median  lane  to   kerbside  lane,  and  then  back  again   Designed  BRT  bus  turning  path   Actual  mixed  traffic  right  turning  path  
  26. 26. Safety  disadvantages  of  kerbside  bus  lane   •  Buses  move  closer  to  the  path  of  pedestrians  and  slow  moving  traffic   •  Frequent  breaks  may  have  to  be  provided  for  property  accesses   •  Footpath  spill-­‐over,  street-­‐vendors,  parking,  etc.  more  likely  to  encroach   kerbside  lane  than  median  lane   •  IntersecQons  will  have  to  be  wider  to  accommodate  bus  turning  (lel  turns)   •  ComplicaQons  at  intersecQon  as  mixed  traffic  would  have  to  make  a  lel  turn   across  bus  lane.  More  unsafe  than  mixed  traffic  making  a  right  across  a  BRT   lane,  because  typically,  right  turns  are  separated  from  straight  movement   through  signal  phasing.   26  
  27. 27. If  kerbside  bus  lane  is  unavoidable,  then  we  recommend  guardrails   along  the  footpath  side  of  the  bus  lane   27   Image  credit:  ‘Traffic  Safety  on   Bus  Corridors’,  Nicolae  Duduta   EMBARQ  
  28. 28. 28   Case  for  a  different  approach   to  BRT  in  Asia   Is  the  Indian  (and  perhaps  the  Asian  context)   different  from  globally  successfully  BRT  ci7es?  
  29. 29. InternaQonally  successful  BRT  model:  Bogota,  Colombia  
  30. 30. InternaQonally  successful  BRT  model:  Istanbul,  Turkey  
  31. 31. Abundant  property  development  along  the  road  edge   31   Frequent   property  gates   High  right  /  U-­‐ turn  demand   High    pedestrian   volume  and   crossing  demand   Requirement  for   parking  /  waiQng   area  
  32. 32. Cars  are  not  the  dominant  motor-­‐vehicle   32   Motorbikes  dominate  the   mode  share   Safety  features  for  cars   may  not  work  for   motorbikes  
  33. 33. Much  higher  pedestrian  volumes   33  
  34. 34. Traffic  discipline  cannot  be  taken  as  a  given   34  
  35. 35. Bicycles  are  not  the  only  NMT  mode   35  
  36. 36. Auto-­‐rickshaws  as  the  feeder  system  to  BRT   36  
  37. 37. Inconsistent  road  width  and  immovable  obstacles   37  
  38. 38. 38   Designing  for  safe  BRT  in  this  context   What  needs  to  be  done  differently?  
  39. 39. The BRT corridor will have multiple uses! 39   Thoroughfare   for  mixed-­‐traffic   Pedestrians  &   cyclists   Mixed  traffic   lanes   Footpath   On  –street  parking  /   waiQng  area   Street  uQliQes   Trees   Property   accesses   Turning   lanes   Signals  &   street  lights   BRT  movement   BRT  lanes  
  40. 40. Planning for all uses
 Allocation of road space!   40  
  41. 41. Good design leads to the optimisation of road space!
  42. 42. 42   BRT and pedestrian / NMT movement! §  BRT imposes restrictions on established crossing patterns for pedestrians & NMT " §  If alternatives are not provided, it can lead to safety issues" Much like a Traffic Impact Assessment study, a Pedestrian/NMT Impact Assessment study should be an essential component of BRT planning"
  43. 43. Refuges need to be disabled friendly" 43   Need for a refuge area and speed humps"
  44. 44. If distance between successive intersections is very large, a mid-block pedestrian crossing should be provided"   44  
  45. 45. Similar design with table-top crossing"   45  
  46. 46. Changing the position of bollards can help resolve the problem of motorcyclists using the pedestrian crossing, and still allow for wheelchair access"
  47. 47. BRT and local MV movement!   47   §  BRT imposes restrictions on right turns across the median into intersecting side roads and property gates" §  Motorists are prone to drive in the wrong direction to avoid a lengthy detour or use pedestrian crossings to make turns" We recommend that a mid-block U-turn opportunity be provided if distance between 2 successive intersections is very large"
  48. 48. U-turns can be provided in conjunction with pedestrian crossing"   48  
  49. 49. The U-turn movement can share the signal phase with the pedestrian crossing"   49  
  50. 50. Extending these features to BRT station design"   50  
  51. 51. BRT station generates a high volume of pedestrians
 A wide refuge is an essential component of station design"   51   Image  credit:  ‘Traffic  Safety  on   Bus  Corridors’,  Nicolae  Duduta   EMBARQ  
  52. 52. BRT station access!   52  
  53. 53. BRT and minor intersections!   53   •  All  BRT  intersecQons  MUST  be  signalised  if  cross  movement  and  right  turns  are  permioed   •  Wherever  possible,  we  recommend  that  the  BRT  segregaQon  conQnue  through  a  minor   intersecQon,  such  that  straight  /  right  movement  is  not  possible   •  But  however,  the  nearest  U-­‐turn  must  not  be  too  far.  
  54. 54. Restricting right turns across minor intersections"   54  
  55. 55. Restricting right turns across minor intersections"   55  
  56. 56. 1 2 3 4 Simplify  intersecQon  design  where  possible  
  57. 57. The  most  prevalent  crash   type  at  intersecQons  is  of   right  turning  mixed  traffic   colliding  with  straight   moving  bus   57   Image  credit:  ‘Traffic  Safety  on   Bus  Corridors’,  Nicolae  Duduta   EMBARQ   BRT  and  major  intersecQons  
  58. 58. One  opQon:  Replacing  right  turns  with  “around-­‐the-­‐block”  loops   58   Image  credit:  ‘Traffic  Safety  on   Bus  Corridors’,  Nicolae  Duduta   EMBARQ  
  59. 59. Retricted  right  turns:  2  alternaQves   BUT  for  this  to  be  a  safe  soluQon,  2  necessary  ingredients:   •  Block  sizes  are  not  very  large   •  Traffic  discipline  is  high   NOTE:     •  If  right  turns  are  not  permioed  from  both  arms  of  the  intersecQon,  then  a  U-­‐turn  will  require   two  “around-­‐the-­‐block”  loops   •  U-­‐turns  on  BRT  corridors  may  typically  have  high  demand  on  account  of  the  BRT  corridor   eliminaQng  median  cuts.  Hence  this  may  not  be  acceptable       Image  credit:   Carsten  Wass,   CONSIA  
  60. 60. OpQon  2:  SeparaQng  right  turns  via  signal  phasing   60   In  this  opQon,  5  phases  in  total  
  61. 61. OpQon  3:  Replacing  right  turns  with  aler-­‐intersecQon  U-­‐turns   61  
  62. 62. Another major safety issue: Misalignment of lanes! 62   Due  to  BRT  staQons,  lane  alignment  at  intersecQons  is  challenging  to   design.  Care  should  always  be  taken  to  maintain  lane  alignment  
  63. 63. Another major safety issue: Lanes imbalance! 63   Again,  due  to  BRT  staQons,  on  one  side  of  the  intersecQon,  lane   misbalance  can  happen.  There  should  never  be  less  lanes  aler  the   intersecQon  than  there  are  before,  vice  versa  is  relaQvely  okay.   Image  credit:   Carsten  Wass,   CONSIA  
  64. 64. Handling  NMT  right  turns  at  intersecQons   •  If  NMT  volumes  are  not  very  high,  then  it  is  beoer  for  NMT  to  cross  like  a   pedestrian  during  the  pedestrian  signal  phase.  Thus,  NMT  makes  right  turn  in   2  successive  signal  phases   •  However,  if  NMT  volumes  are  high,  a  separate  scramble  phase,  “red  for  all  MV   traffic”  may  be  preferable   Image  credit:  ‘Traffic  Safety  on   Bus  Corridors’,  Nicolae  Duduta   EMBARQ  
  65. 65. Designing  for  safe  crossings  at  intersecQons   65  
  66. 66. Safety issues with express stations! This is a common crash type in some Latin American systems with an overtaking lane, due to the unusual case of overtaking from the left" Image credit: ‘Traffic Safety on Bus Corridors’, Nicolae Duduta EMBARQ
  67. 67. Designing for express BRT service A long station length, with adequate taper is absolutely essential Image  credit:  ‘Traffic  Safety  on   Bus  Corridors’,  Nicolae  Duduta   EMBARQ  
  68. 68. IntegraQng  feeder  bus  with  BRT  terminal   Image  credit:  ‘Traffic  Safety  on   Bus  Corridors’,  Nicolae  Duduta   EMBARQ  
  69. 69. EMBARQ  resources  on  BRT  and  bus  corridor  safety   69   The  final  version  of  both  these  publicaQons  will  be  out  later  this  year,  2014  
  70. 70. Thank you!! !   Workshop on Quantifying the Environmental, Social and Economic Benefits from Bus Rapid Transit Systems! A SPAD Academy & Asia LEDS Partnership Workshop! June 24 – 25, 2014! !   Binoy Mascarenhas, Manager, Urban Transport, EMBARQ India! !! !   EMBARQ helps cities make sustainable transport a reality!