THINKTANK ROUNDTABLE BENERGY TECHNOLOGYPERSPECTIVESOrganised by:
GE Power &SIEW 2012WaterIEA WorkshopKaz FukuiMarketing Director, Asia-PacificGE Power & Water 25th October 2012           ...
Overview   1   ASEAN power needs & role of clean       technologies   2   Available clean technology options for       ASE...
ASEAN capacity new additionforecast (2012-2021)                 Vietnam                                                   ...
ASEAN CO2 emission forecast                                                        Figures = Power related(2012-2021)     ...
Clean technology … tendency tofocus on mainstream solar & wind300      US$                                                ...
Critical to evaluate & embrace atoolbox of options to drivedecarbonization….Wind     Geotherma            SolarBiomass l  ...
Portfolio                  Healthcare                                             approach                                ...
Cleaner coalImproved plant efficiency through efficientengineering and improved materials •   Supercritical steam turbines...
Technology integrationExpanding infrastructure synergies … gas +renewables                                                ...
Flexible & efficient gasRenewable enabler & bridging technology Large units                                      Small uni...
Other clean technologies for ASEAN    Waste-to-energy with gasification          Biomass gasifier                         ...
How to promote best available cleantechnologies in ASEAN?Hurdles                                          Require         ...
The private sector is keen to helpASEAN develop cooperation inenergypolicy elements that need to be embraced by all ASEAN ...
15                                  10/31/12© General Electric Company 2012
Tapping technology’s potentialto secure a clean energy future25th October 2012David Elzinga                              ©...
ETP 2012 – Choice of 3 Futures         2DS                       4DS                      6DSa vision of a sustainable   r...
Sustainable future still in reach Is a clean energy   Are we on track to   Can we get ontransition urgent?     reach a cle...
Recommendations to Governments  1. Create an investment climate of confidence  in clean energy  2. Unlock the incredible p...
The Global Energy system today    Dominated by fossil fuels in all sectors                                               ©...
The future low-carbon energy systemThe 2DS in 2050 shows a dramatic shift in energy              sources and demands      ...
Only collective efforts of all sectorslead to the 2DSThe core of a clean energy system is low-carbonelectricity that diffu...
A variety of technologies is requiredto achieve the 2DS                                   Power generation efficiency     ...
A smart, sustainable energy system     Co-generation                                  Renewable energy resources          ...
Clean energy: slow lane to fast track        Cleaner coal power             Nuclear power                        Renewable...
Industry must become more efficientGtCO2     Significant potential for enhanced energy efficiency    can be achieved throu...
The CCS infant must grow quickly                                     Mt CO2                                               ...
Electric vehicles need to come of agePassenger LDV sales (million)                                More than 90% of light d...
Building Blocks of a Cleaner Future       Services                                                 Residential About 70% o...
Building sector challenges differ       OECD          Non OECD75% of current buildings in OECD will still be standing in 2...
Heating & Cooling: huge potential       Renewable heat                               Integration with electricity         ...
Energy and CO2 impacts ofelectricity generation                                         Other transformation AgricultureOt...
Key technologies to decarbonise power         generation    25                                                            ...
Electricity generation scenarios    45 000                                         Other             100%    40 000 4DS   ...
Electricity generation capacityGeneration capacity is higher in the 2DS due to great deployment        of variable renewab...
Electricity system flexibilityPower system flexibility expresses the extent to which a power  system can modify electricit...
Flexibility needs and resources Existing and new flexibility needs can be met by a range ofresources in the electricity sy...
T&D infrastructure investments inthe 4DS and 2DS are similar       ...but sectoral allocation differs                     ...
Smart grid benefits exceed costs by a factor of between 1.5 and 4.5..., but direct benefits of investment in one sector ma...
ASEAN ContextLow-carbon electricity is at the core of a      sustainable energy system                                    ...
ASEAN : Sectoral Contributions toachieve the 2DS from the 4DSCO2 emissions in the 2DS are brought back to today’s level.  ...
ASEAN : Electricity generation in the 4DS      and 2DSWhile the electricity mix in the 4DS is dominated by coal, renewable...
Key technologies to decarbonise   ASEAN power generationRenewables provide almost half of the CO2 reductions in the power ...
Regional electricity mixes in the 2DS in     2050        US     4%                    24%                               22...
In the 2DS, electricity becomes a near zero carbon fuel by 2050     1 000       900       800       700       600       50...
Natural gas is not a panacea The global average CO2 intensity from power generation falls belowthe carbon intensity of CCG...
Two very different profiles for natural      gas use in power generation     Power generation from natural gas increases ...
Buildings energy consumptionStrong population growth in ASEAN countries will         drive energy demand upwards          ...
Passenger light-duty vehicle salesPassenger LDV’s are expected to grow significantly in              the coming decades.  ...
Transport energy use in 2050Shipping energy use is substantial and efficiency   improvements are expected to be limited   ...
Final Global Comments                        © OECD/IEA 2012
Clean energy investment pays off                       USD trillion    Every additional dollar invested in clean energy   ...
Key messages1.   A sustainable energy future is still feasible and     technologies exist to take us there2.   Despite pot...
For much more, please visitwww.iea.org/etp                              © OECD/IEA 2012
The Next Challenge  Greening ExistingBuildings in Singapore              Ang Kian Seng              Group Director, Resear...
Why Green our Built Environment?End-Use Electricity Consumption in Singapore (2005)
BCA Green Mark SchemeEstimated                 10% to 15%   15% to 25%   25% to 30%   > 30%Energy Savings
Singapore Green Building Roadmap at   a glance Envelop Thermal Transfer Value (ETTV) CP24:1999 EE Standard for Bldg Servic...
Imposing Minimum Standards on  Environmental Sustainability      All New Buildings and Existing        Buildings undergoin...
Green Mark Building Projects in Singapore
Barriers to greening existing building
Training and Capacity Building- Green Collar workforceTraining and Capacity Building- Green Collar workforce              ...
Green Buildings Enhance Asset Value      BCA- NUS PROJECT ON VALUATION OF        GREEN COMMERCIAL PROPERTIES A saving of 1...
Green Building Advertorials                              • 4 weekly advertorials                                on busines...
Once in 15 years Opportunity Upfront Capital             •Invest in      cost                   efficient   10% - 20%     ...
Incentives & Financing Assistance       S$100mil Incentives for retrofitting EXISTING      BUILDINGS (since 2009)        B...
Enhanced Green Mark Incentive                                                 Scheme – Existing BuildingsUp to   S$3Millio...
Four-Phased Approach to Green our Existing Building Stock   Legislation –         Incentive           Energy Data         ...
• Min. GM standard for existing  buildings• Three-yearly energy audit on  cooling system• Annual submission of building  i...
Min. GM Standard for Existing Buildings• Phase 1   – Any hotel, retail building or     office building   – GFA > 15,000m2 ...
Min. GM Standard for Existing Buildings               • Owner engages a PE(Mech).               • PE (Mech) looks into the...
Min. GM Standard for Existing Buildings
3-Yearly System Efficiency Audit       Buildings involved                                    New buildings (except        ...
Chiller Plant Load and Efficiency Audit   3-Yearly System Efficiency
3-Yearly System Efficiency AuditBCA serve Notice to buildingowner to carry out energyaudit  Building owner engage  PE(Mech...
Annual Submission of Energy Data               Purpose               Sharing of               data with                   ...
Annual Submission of Energy DataSubmit to BCAthroughBuildingEnergySubmissionSystem (BESS) Useful links  user submission  ...
Annual Submission of Energy Data                                               1000                                       ...
Green Buildings with Green TenantsGM for Non-ResidentialBuilding                          GM for Office                   ...
Thank youWe shape a safe, high quality, sustainable and friendly built environment.
Upcoming SlideShare
Loading in …5
×

Roundtable B - Energy Technology Perspectives

1,428 views

Published on

Presentations from Thinktank Roundtable B - Energy Technology Perspectives

Published in: Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,428
On SlideShare
0
From Embeds
0
Number of Embeds
165
Actions
Shares
0
Downloads
51
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide
  • Good Morning Ladies & Gentlemen, I am delighted to unveil Energy Technology Perspectives 2012 today. The IEA is launching this report at a critical time for the world ’ s energy system. Midway through 2012, the challenges are clear: Energy demand and prices are rising steadily. Energy-related carbon dioxide ( CO 2 ) emissions have hit record highs. Energy security concerns are at the forefront of the world ’ s political agenda. The political landscape is different today compared to when the first edition of ETP was launched in 2006. Evidence of climate change, if anything, have got stronger At the same time it has fallen further down the political agenda ETP 2012 contains both good news and bad news - for governments, industry and citizens. The bad news is that The world is failing to tap technology ’ s potential to create a clean energy future. But the good news is that We can turn affordable clean energy from aspiration into reality by tapping technology ’ s full potential.
  • ANIMATED SLIDE ETP 2012 looks ahead to 2050. It maps out a viable, affordable and efficient path towards a clean energy future. It lets us choose three dramatically different futures: [CLICK] a rise in global temperatures of 2°C, [CLICK] 4°C [CLICK] and a potentially devastating 6°C. It charts the course for each. Crucially, it offers the prospect of attaining the international goal of limiting the long-term increase of the global mean temperature to 2°C: the pathway to sustainability. To give us an 80% chance of reaching this target, energy-related CO 2 emissions must be cut by more than half between 2009 and 2050. It outlines policies, technologies and financing required to reach this goal. It examines the crucial interplay between policy, pricing and technology. And it provides tools and roadmaps, which we hope can serve as a valuable guide for policy makers to a sustainable future. But a sustainable future is not just about low-carbon. ETP 2012 shows that the cost of creating a low-carbon energy system now will be outweighed by the potential fuel savings enjoyed by future generations. Indeed, the biggest challenge to achieving a low-carbon future is not absolute cost or technological constraints… … but agreement on how to share uneven costs and benefits of clean energy technology across generations and countries.
  • ANIMATED SLIDE [CLICK] Are we on track to reach our 2°C goal? The simple answer is, No. Under current policies, energy use and CO 2 emissions would increase by a third by 2020, and almost double by 2050. Our failure to realise the full potential of clean energy technology and tapping energy efficiency is alarming. Progress in rolling out clean technologies has been too slow and piecemeal Investment in fossil-fuel technologies continues to outpace investment in clean energy alternatives. Too little is being spent on clean energy technology. And the share of energy-related investment in public research, development and demonstration (RD&D) has fallen by two-thirds since the 1980s. And yet, there is still time to achieve a low-carbon energy system – one that is likely to enhance energy security, underpin stable economic growth and safeguard the environment. [CLICK] Decisive, efficient and effective policies can still unleash the full power of technology to create a sustainable future. [CLICK] But the need for action is urgent.
  • ETP 2012 makes clear that investing in a transition to a clean energy future will pay off. Let me offer three key recommendations to policy makers from ETP 2012 to turn a clean energy future from aspiration into reality. [CLICK] First, we need to ensure that energy prices reflect the ‘true cost’ of energy. That means pricing carbon and abolishing fossil fuel subsidies - fossil fuel subsidies which in 2011 were almost seven times higher than support for renewables. We must level the playing field for clean energy technology. [CLICK] Second, governments can unlock the incredible potential of energy efficiency by adopting the IEA’s 25 energy efficiency recommendations. [CLICK] And third, we must accelerate energy innovation and public support for research, development and demonstration (RD&D) to encourage private sector investment and more widespread commercial use. In this way, we can turn affordable clean energy from aspiration into reality by tapping technology ’ s full potential. Let me now turn to Bo Diczfalusy who will elaborate on ETP 2012, and the pathway to reach our goal.
  • Where is the renewable coming from in buildings
  • Several factors explain the absolute increase in losses: Electricity generation doubles from 2009 to 2050; in 2009 around 60% of the fuel input in the power sector is lost, in 2050 it is reduced to 54%. So, actually power generation is more efficient in 2050. Though it depends also on the balancing conventions, 100% efficiency for wind, solar PV, hydro, which helps to increase the efficiency; on the other hand, using 33% for nuclear in combination with an increasing share from nuclear 13% to 19% reduces the average efficiency. In addition, CCS has some efficiency losses. Losses in fuel transformation increase by 30 EJ due to biofuel and H2 production.   General, when we talk about energy efficiency in ETP, the largest improvements are seen in the end-use sectors, not in the supply side, though there improvements in fossil power generation, but fossil generation plays a less dominant role in the 2DS.  
  • Dave Achieving the 2DS requires a collective effort of all sectors at varying degrees: In this chart you can see the share that all sectors could play in achieving a transition from 4 degree to 2 degree scenario by 2050. The largest contributor, 42%, is the power generation sector, which is the backbone of a clean energy system as laid out in the 2DS. Clean electricity is an important fuel for all end-use sectors and has thus implications on the whole economy.
  • DAve To achieve this transition - a portfolio of technologies needs to be applied across all sectors to achieve the 2DS The three largest technology groups represent 81% perfect of CO2-emission reductions by 2050: End-use fuel and electricity efficiency Energy efficiency is a hidden fuel that reduces vulnerability to all the things that might go wrong across the value chain and also contributes to achieving climate change goals. Renewables By 2050, bioenergy is the major primary energy source and renewables are the dominant fuel for power generation. CCS About half of the total volume of carbon captured by 2050 comes from the industry and transformation sectors. Heavy industries like iron and steel and cement rely entirely on CCS to make prevent substantial emissions. In the power sector, about 60% of coal-fired generating capacity will be equipped with CCS units by 2050.
  • [ANIMATED SLIDE] So how do we clear the obstacles on the road towards a clean energy future? ETP 2012 has some key recommendations on ways to transform our energy system. One key conclusion is that: A sustainable energy system is a smarter, more unified and integrated energy system. [KEY MESSAGE] Today’s system is centralised and one directional. [CLICK] Tomorrow’s system will be decentralised and multi directional Complex and diverse individual technologies will need to work as one. Technologies must be deployed together rather than in isolation. Policies should address the energy system as a whole rather than individual technologies. Success will hinge on Systems Thinking: It ’ s more efficient because it identifies synergies across sectors and applications. It limits fossil fuel consumption to parts of the economy with the highest levels of intensive energy use. It focuses on the efficiency of the service provided rather than the energy delivered.
  • We are not on a clean energy pathway and we need to get on track. Progress in rolling out clean energy has been too slow and piecemeal. [KEY MESSAGE] In ETP 2012, we ’ ve divided technologies into three groups to assess their performance: Some are on track ; some require more effort and the majority are off track. Mature renewable technologies like hydro, biomass, onshore wind and solar photovoltaic (PV ) are on track. We have seen a 42% average annual growth in Solar PV and 27% annual growth in wind. Fuel economy, electric vehicles and industry are improving but more effort is needed. Cleaner coal, nuclear power, carbon capture and storage (CCS), buildings and biofuels for transport are all off track. Let ’ s be straight: While ambitious, a clean energy transition is still possible. [KEY MESSAGE] However: Action in all sectors is necessary to reach the 2DS target. [KEY MESSAGE]
  • Using best-available technologies will play a crucial role in helping industry to reduce its carbon emissions through greater energy efficiency. [KEY MESSAGE] All industry sectors must contribute to enhancing energy efficiency. [KEY MESSAGE] Governments need to: 1. Support R&D for novel technologies to accelerate their development and commercial deployment. 2. Promote standards, incentives and regulatory reforms to ensure the best available technology is used in new plants – in non-OECD countries -- and when plants are refurbished in OECD countries. Looking ahead to 2050: Industry must cut direct emissions by 20% to help reach the global target of halving energy-related emissions by 2050. CCS is the most critical technology option for reducing direct emissions in industry. Reaching the 2DS target requires industry to spend more than $10 trillion between 2010-2050. Efficiency alone will not be sufficient to offset strong growth in materials demand and new technologies will be needed to help industry cut its emissions. [KEY MESSAGE] IF NEEDED, example novel techs: Iron & steel: natural gas to replace coal in direct reduced iron, smelting technologies, hydrogen as a reducing agent to replace coke, CCS Cement: clinker substitution, CCS Chemicals: Better catalysis (we have roadmap under way), better membrane separation techs, bio based polymers, increased use of hydrogen Pulp and paper: black liquor gasification (already being deployed), advanced water removal technologies Aluminium: inert anodes, carbothermic reduction
  • Carbon capture and storage (CCS) -- one of the areas with the greatest potential for reducing carbon emissions – is one of the technologies making the slowest progress. [KEY MESSAGE] Carbon capture and storage (CCS) needs to be deployed in both power and industry. [KEY MESSAGE] The reality is that CCS remains in its commercial infancy. Some CO 2 capture technologies are commercially available today and the majority can be applied across different sectors today. Storage, however, remains an issue. CCS needs to be deployed rapidly to reach 2DS. There are no large-scale CCS demonstrations in electricity generation and few in industry. CCS has the potential to contribute one-fifth of emissions reductions worldwide by 2050 and would allow industries like steel and cement to make deep emissions cuts. Lack of progress is CCS – given its huge potential -- is worrying. [KEY MESSAGE] Abandoning CCS as a mitigation option would significantly increase the cost of achieving 2DS. Additional investment in electricity to reach 2DS – without CCS – would be $2 trillion over 40 years. Without CCS, the pressure on other emissions reduction options would be higher. IF NEEDED: Total cumulative mass of 123 GtCO 2 captured between 2015 and 2050, the majority of which comes from power generation; in some regions, however, CO 2 captured from industrial applications dominates
  • When it comes to our heavy reliance on fossil fuels, we need look no further than the transport sector. The world ’ s transport oil addiction is getting worse. To reach the 2DS, all vehicle technologies will be needed. Though the Internal combustion engine will remain dominant in the next 2 decades, the electric motor will take over from 2030 to achieve a cleaner future. [KEY MESSAGE] Technology has significant potential to change the transport picture. Pushing technology to its maximum potential is not enough to reach 2DS. [KEY MESSAGE] We need to: Avoid high-carbon transport/ Shift to low-carbon alternatives/ Improve the fuel efficiency of transport. New infrastructure, for example charging stations, must also be developed to enable people to choose new vehicles . [KEY MESSAGE] The light duty vehicle market is expected to be big enough for several powertrain technologies to co-exist globally, depending on local policies in place, and other drivers such as cultural and behavioural habits.
  • We will need to significantly reduce the energy intensity of our homes, offices, factories, hospital and schools to achieve the 2DS goal. 1. The buildings sector must cut its total emissions by over 60% by 2050. 2. That means an additional investment of $11.5 trillion to reach that goal. 3. Half of all buildings today are expected to still be standing in 2050. It will be vital to improve energy efficiency in new and old buildings to secure a clean energy future. [KEY MESSAGE] To achieve this we will need to: Develop and enforce stringent building codes . Apply minimum performance standards for equipment and appliances. Define and enforce compliance. Much will need to change in our homes. About 70% of buildings ’ potential energy savings between the 4DS and 2DS are in the residential sector. Retrofitting residential buildings, for example, has huge potential and action is urgent.
  • Buildings sector is two-speed: buildings shell versus appliances and OECD vs Non-OECD OECD characterised by old stock, cold climate and slow growth. Retrofits will be critical to reduce energy demand and emissions in OECD [Key Message] Non-OECD is growing rapidly with less old stock In non OECD the rapid growth of new build offers opportunities to avoid lock-in of poor performing stock [Key Message] But common challenges: electricity supply security, costs and environmental impacts need to be addressed.
  • With the world ’ s population, urbanisation and greenhouse gas emissions (GGH) increasing, the way we heat and cool our buildings will be of mounting importance to the world ’ s energy system. Heating and Cooling accounts for almost half – around 46% -- of global final energy consumption worldwide . Decarbonising heating & cooling has huge potential to cut carbon emissions but is neglected. [KEY MESSAGE] Currently, large amounts of heat is wasted in power stations and industry: a problem that can only increase as emerging economies industrialise further. The environmental and financial costs of cooling are overlooked despite rapid urbanisation and decreasing household size. Efficiency, innovation and energy sharing will be critical to reducing our emissions of CO 2 . Better operation of existing heating technologies could save up to 25% of peak electricity demand from heating by 2050. ETP 2012 ’ s recommendations on heating and cooling include: 1. To redistribute and share heat. District heating and cooling networks offer great potential for decarbonising urban areas. 2. Heat pumps offer great potential under the right conditions. 3. Integrating heat within the energy system can lower costs and decarbonise other sectors.
  • The power sector is responsible for almost 40% of global primary energy use. Large part of the energy used for electricity generation is based on fossil fuels (78% in 2009). Generation of electricity leads to energy losses. Only less than half of the energy going into power plants is converted into electricity or district heat. As a result, production of electricity was responsible for almost 40% of the energy-related CO2 emissions (including process emissions in industry) in 2009.
  • Compared with the 4DS, cumulative CO2 emissions from the power sector in the 2DS between 2009 and 2050 fall by 258 Gt. This represents 42% of the reductions in the global energy system needed to achieve the 2DS. In addition, increased electrification of the end-use sectors, especially buildings and transport, accounts for further 6% of the cumulative reductions. Around one-quarter of this reduction is not achieved directly in the power sector itself, but from electricity savings in the end uses through more efficient use of electricity or a switch to renewable energy sources, e.g. solar water heating. (The cumulative abatement actually realised in the power sector, excluding these savings, is around 187 Gt.) Renewables provide more than 30% of the reduction from 4DS to 2DS. The deployment of coal and natural gas plants equipped with CO2 capture leads to cumulative reductions of 18%. Nuclear power is responsible for 14% of the emissions savings. Already in the 4DS, electricity generation from renewables increases markedly by 2050 compared with today, meaning renewables provide significant CO2 reductions over time in this scenario. Indeed, major contributors to the CO2 reductions between the 6DS and the 4DS are electricity savings in the end uses, which alone is responsible for around half of the cumulative reductions, and renewables, which account for around one-third of the CO2 savings.
  • Looking at the generation side of electricity: In the 4DS, fossil fuels will continue to dominate electricity generation, despite a CO2 price reaching around 60 USD/t in 2050. Global fossil share falls in this scenario, however, from 67% in 2009 to around 50% in 2050, largely at the cost of coal, while gas maintains its share in the global electricity mix of around 20%, as today. On the other hand, renewables (due to solar and wind) increase their share to more than one third in 2050. As a consequence, the average CO2 intensity drops from around 500 g/kWh today to 280g/kWh in 2050. A markedly different picture emerges in the 2DS. Almost 57% of global electricity are generated from renewable sources, with solar and wind each providing around 15% in 2050. Nuclear accounts for around one fifth in the electricity mix. The reminder is based on fossil-fired plants, with the majority of the plants being equipped with CCS. Global average CO2 intensity falls to below 60 g/kWh in 2050, a reduction of 80% compared to 2009.
  • But when we look at capacity, the trend is opposite. The 4DS requires 13% less electricity generation capacity then in the 2DS, due to great deployment of variable renewables with lower capacity factors
  • In other words, it expresses the capability of a power system to maintain reliable supply in the face of rapid and large imbalances, whatever the cause. It is measured in terms of the MW available for ramping up and down, over time (+/- MW/time) For example, a given combined cycle gas turbine (CCGT) plant may be able to ramp output up or down at 10 MW per minute ” (IEA, 2011a, p. 35).
  • The difference in cumulative cost between the 2DS and 4DS ranges from 2% to 12% in the countries analysed. Europe has the highest difference, where the 2DS requires greater investment than the 4DS, as does India. OCED Americas, OECD Asia Oceania and China exhibit a trend where the 2DS investment is lower than in the 4DS. The sectoral allocation differs: In the OECD regions, investments to replace ageing distribution infrastructure account for 50% to 70% of total investment, surpassing investments in new networks. In China and India, investment in new distribution to 2050 to meet markedly increasing demand, is over 60% of total T&D investment. This trend showing the difference between OECD regions and China and India is similar for transmission investments. Investment costs are heavily weighted toward the distribution system in all regions. One significant factor is the length of the distribution system, which represents 92% of the total actual global T&D network length in 2009. Renewable integration investment represents additional grid extension needed to connect renewable-energy generators to the network. The total additional investments to accommodate renewable generation vary between the 2DS and 4DS, but do not make up more than 10% of total investments in T&D. Public resistance to the placement of T&D infrastructure in many regions means that considerable non-financial effort is needed to deliver these resources. Clear communication of the criticality of network infrastructure while presenting a range of solutions to beconsidered will help to gain the support of all stakeholders.
  • However, the financial benefits arising from smart-grid investment outweigh the total cost of investment, making a strong case for smart-grid technologies. But in some cases, the benefits are spread throughout the electricity system to sectors other than the one that needs to make the investment. This complicates the business case for investments, since all benefits may need to be monetised and accounted for in order to create a positive business case. As an example: Advanced metering infrastructure to reduce peak demand benefits the T&D system and lowers the cost of generation. Investment costs, however, will be borne entirely by the distribution system stakeholders, who will likely need to adjust their pricing for goods and services to realise a sufficient return on their investment. Technical solutions and regulatory changes are needed to address this barrier, so that cost an benefits are equally shared among all stakeholders. The largest benefit are to the overall system, which mainly includes increased reliability and CO2 savings. Remark: The costs are relatively easy to quantify because relevant data are readily available; in actual fact, the cost difference between the two cases is quite small. Putting a monetary value on the benefits of smart-grid deployment is much more difficult, in part because there is still some debate as to the precise level of benefit they can deliver. As a result, the range between the minimum and maximum benefits is larger.
  • IEEE has named electrification the single greatest engineering achievement of the 20th century. BUT there is not time to rest on the laurels We have already entered a new age of electrification, that requires more great achievement not only in engineering, but also policy, regulation, economics , finance and communication. Decarbonising electricity is a prerequisite: to reducing fossil fuel use and to mitigating CO 2 emissions not only in power generation but across all the end-use sectors (industry, transport and buildings) in a relatively short time, until 2050, as required in the ETP 2012 2°C Scenario (2DS). Where are we today?
  • First if we look at the 2 degree scenario for ASEAN countries, you can see that ASEAN is very representative of the world context. The power sector holds responsibility for 41% of carbon emissions reductions in the model. Or in other words, to reach the 2 degree scenario for ASEAN countries, 41% of carbon reductions must come from power by 2050. After that, notice that transport and buildings hold similar responsibilities at 19% each. Given that energy consumption within ASEAN is already approaching levels similar to the Middle East and only expected to grow, as shown here, the importance of power is certainly notable. Given the exciting projections for growth in ASEAN, we know that electricity demand will grow rapidly. This will require important attention for the ASEAN energy system, particularly since the region is rich in fossil fuel resources, and these may offer the faster, go-to options for power development. Now let’s look at how power generation stands in China under our scenarios.
  • ASEAN faces strong challenges due to the domination by fossil fuels with coal-fired power plants being most poignant. So we can see in the 4 degree scenario that power generation is dominated by coal, or we can say, more than half of the electricity mix in 2050. In fact, we know that ASEAN countries are rich in fossil fuel resources, BUT they have a large potential for renewable energy. Thus, in the 2 degree scenario, we see a much improved balance of fuel mix with renewables providing more than half of the electricity now in 2050. Hydro and geothermal power become important options. The scenario mirrors the huge untapped resource potential for these renewable options that are awaiting technology and investment.
  • In the 2 degree scenario for ASEAN, annual CO2 emissions fall by more than 50%, relative to the 4 degree scenario in 2050. As you can see, renewables provide half of these reductions and geothermal power alone, accounts for 15% of carbon emissions reductions. Now let’s not forget that ASEAN faces strong challenges due to the domination of fossil fuels, with coal-fired power plants being most poignant. So we see in the 2 degree scenario that fossil-fired plants with CCS technology will provide 12% of the reductions. Similarly, emissions reductions contribution from nuclear is about 11%. Improvements in energy efficiency combined with electricity savings by end-use sectors are responsible for another quarter of emissions reductions in 2050. An important initiative in this regard is the ASEAN Power Grid, which was originally mandated in 1997 by member states. An integrated power grid will aid member states to more efficiently meet their electricity demands. Additionally, an interconnected system within ASEAN would allow for the integration of more variable renewable power sources since the region is filled with great potential in renewable sources of energy. Of course challenges related to infrastructure development and establishment of a regional regulatory and technical framework remain, so we recognize the need to address these issues in order to facilitate integration of the ASEAN power system. Overall, as one of the fastest-growing regions in the world and its rapidly rising energy demand, ASEAN countries will play a pivotal role in the 2 degree scenario. ASEAN has the potential to take advantage of its large renewable energy resource potential.
  • Yerim to and including slide 24 The approach to decarbonise the electricity system in a region or country depends on the local opportunities and challenges. For example: hydro will continue to play a major role in Brazil, wind becomes an important option in the EU and US, solar technologies would be central to India, South Africa and Mexico, and nuclear power as well as CCS would be key in China.
  • Dave to and including slide 29 Achieving the 2DS requires a transition from high-carbon to low-carbon generation. As a result, technological improvements will provide the reductions in carbon emissions after 2025: Continue development of more efficient technologies; use carbon-free fuels, such as biogas and hydrogen; deploy CCS . In the 4DS, the global average carbon intensity does not fall below the carbon intensity of CCGTs until 2040.
  • In the 4DS, natural gas-fired generation increases strongly, mainly driven by economic growth non-OECD countries. Natural gas-fired power generation: Supplies base-load power Displaces generation from coal Meets rapid new growth in demand. However, if we are to reach the 2DS, at some point gas becomes part of the problem rather than part of the solution. Between 2030 and 2050 global natural gas-fired generation decreases by 30% The majority of the power generation capacity needed to meet electricity demand will be very low carbon - including renewables (biomass, wind, hydro, solar, etc), coal plants equipped with CCS and nuclear power Natural gas power plants are still best placed to provide peak-load and back-up capacity to balance the variability in electricity demand resulting from renewable energy sources China and India rapidly build up the share of gas in their generation mix (currently quite low) by 2030 to 2035, before they gradually decrease it to 2050. Rigorous planning and construction processes essential to minimise (ideally, to avoid) stranded assets. Gas turbines and combined cycle power plants typically designed for a service life of more than 25 years.
  • ANIMATED SLIDE We know that the investments we make today will determine the energy system we have in 2050. ETP 2012 shows: That investment in clean energy needs to double by 2020 to limit the rise in global temperatures to 2°C. CLICK The cost of creating a low-carbon energy system now will be outweighed by the potential fuel savings enjoyed by future generations. CLICK Even when discounted at 10% net savings amount to USD trillion. So, investing in clean energy will pay off. By 2025, fuel savings from the transition would outweigh investments. By 2050 fuel savings could reach $100 trillion. Let ’ s look at it this way. We need to spend an extra $130 per person every year on average on clean energy over 40 years. We know that the longer we wait to transform our energy system, the more expensive it will get. [KEY MESSAGE] Thank you!
  • Coming to the end of my presentation, let me summarise some key messages from ETP 2012. First of all , we believe that we still can reach a sustainable energy future. Technologies exist and can take us there. Secondly, despite the potential of many clean energy technologies, the progress in deploying them is falling behind our ambitious goals Thirdly , a clean energy future cannot be achieved by looking into one technology only. It requires many technologies and, even more than before, energy systems thinking Fourthly , we have strong reasons to believe that a transition to a clean energy future makes economic sense, right now. And finally , government policy is critical to unlock the potential of clean energy technology.
  • Good afternoon ladies and gentleman. My topic today is on the challenge of greening existing buildings and the approach BCA has taken.
  • Despite the lack of any international agreement on the reduction target for greenhouse gas emissions, Singapore announced that we will go ahead to cut emissions growth by 7 – 11% below business as usual (BAU) levels by 2020, under the Sustainable Singapore Blueprint in 2009. In addition, the govt has also set a target to green 80% of our buildings by 2030. This slide shows the energy usage among various sectors in Singapore. Together with households, buildings in Singapore consume nearly 50% of the total electricity produced. Hence, if we are serious about reducing our carbon emission, we have to look into improving the energy efficiency of buildings, especially our large stock of existing buildings.
  • In 2005, in the wave of rising energy cost and environmental concerns , BCA introduced the BCA Green Mark Scheme which covers various areas of environmental sustainability including energy efficiency, water, efficiency, environmental protection, indoor environmental quality and other Green innovations. It was first launched as a a voluntary certification scheme and there are 4 levels of ratings : Certified, Gold, GoldPlus and Platinum.
  • Since 2006, we have rolled out comprehensive green building measures through the 1 st and 2nd Green Building Masterplans to drive the green building movement in Singapore. These measures include govt taking the lead, incentives for private sector, training and capacity development to develop a green workforce, and public and international outreach programmes. The initial focus in the 1 st green building master plan was on new building projects. Subsequently in 2009, we started focusing on existing buildings in the 2 nd green building master plan.
  • In 2008, BCA implemented the Building Control (Environmental Sustainability) Regulations which require new developments more than 2000 m2 of GFA to achieve a minimum Green Mark standard. However, this measure alone is not sufficient to achieve our target of greening 80% of our building stock. Because the bulk of our building were built before the 2008 Regulations. Hence, we must address our existing buildings in order to achieve our goals.
  • This graph shows the number of green mark building projects in Singapore since the launch of the Green Mark scheme in 2005. The initial years were slow with only 17 building projects in 2005 and 2006. Subsequently, with the introduction of 1 st and 2 nd Green Building Masterplan, there has been a steady increase in the number of green buildings. However out of the 1200 green buildings we have today, which represent about 17% of our building stock, the majority are new building projects. While there has been a pick up in the number of existing building certified since 2010, these only represent a small portion of buildings in Singapore.
  • Through studies and feedback from industry stakeholders, we realise that the barriers to greening our existing buildings here are similar to the challenges faced in other countries. To green an existing building in the tropics, one basic upgrading that a building owner needs to do is to retrofit his existing building cooling system. But, some building owners are reluctant to undertake retrofits, citing high upfront costs. They also feel that the payback period is too long. Most building owners are also not familiar with bdg retrofits because it happens usually once in 15-20 years. Hence, they may see it as risky and not confident that high energy efficiency retrofits are achievable. Finally, when it comes decision making, the Facility Managers have to compete for funds with other competing needs. The upfront capital cost is a major concern, especially for those building owners that are not financially strong, especially the MCST buildings. Next, I will share what BCA has done to address each these barriers.
  • In order to have a green building movement that is sustainable, it is critical to build up a green collar work force. It takes many years to train and build up the capability of our industry. To address the issue, BCA Academy, the training arm of BCA, has trained close to 3600 green specialists in Green Mark related courses like GMM, GMFM, GMP and SCEM. Apart from specialist certification programmes, BCA academy has also introduced executive development programme and academic programmes such as specialist diploma, degree and post graduate degree programmes.
  • BCA also worked with Department of Real Estate NUS on a valuation study, in collaboration with the top 6 valuation companies. Findings of the study showed that retrofitting extg bdgs for energy efficiency can on average reduce the operating cost by 10% and this translate into a 2% increase in capital value. This further strengthen the business case of greening our existing buildings in Singapore.
  • In order to create greater awareness and reach out to the industry, BCA has been sharing many successful cases of building retrofits and the strong business case of greening existing buildings through seminars, conference, and in our BCA Academy courses. In addition, in July this year, we also reach out to a wider audience by sponsoring 4 advertorials on case studies of successful retrofit in the Straits Times. In the following few slides, I’ll share with you some of these examples.
  • The second key message is that we have a golden opportunity only once every 15 years to retrofit to high energy efficiency standards because the life span of central air con plant is typically 15 – 20 years. And the upfront capital cost of retrofitting an air con plant is only about 10% -20% of the total life cycle cost. While it is tempting to save on the upfront cost it would be penny wise and pound foolish. Because 80 – 90% of the life cycle cost is on energy and maintenance. The smart choice, is definitely to invest in an efficient plant when we retrofit our buildings.
  • In order to help building owners make the right choice to retrofit to high EE standards, BCA launched a $100 million incentive scheme in 2009, to co-fund the upfront cost. Some building owners came forward to green their existing buildings but the demand was not strong. Further, in 2011, in partnership with financial institutions, BCA launched the Building Retrofit Energy Efficiency Financing (BREEF) Scheme to provide financial assistance to owners of smaller buildings, esp the MCSTs, who are usually not financially strong, to upgrade their buildings to become more energy efficient. ESCOs who provide energy performance contracts can also apply for financing under this scheme. This is basically a default risk sharing scheme where BCA co-share 50% of the default risk with the banks and finance companies.
  • After getting feedback from the industry, we have recently enhanced the GM incentive scheme to make it more attractive to building owners. However, to enjoy the better incentive, the building owners must go beyond the minimum certified level and achieve higher Green Mark rating such as Gold, GoldPlus and Platinum. The scheme will now cover 35%-50% of the retrofit cost, up to a cap of $3 million per building project. With the enhanced incentive, we have received more enquiries and we hope more building owners would be encouraged to bring forward their retrofitting plans and to retrofit to higher standards of energy efficiency.
  • Right back in 2009, we have already mapped out a 4 phase approach to green our existing building stock in the 2 nd Green Building Masterplan. For phase 1, we have introduced the minimum environmental sustainability standard for all new buildings in 2008. In phase 2, we have introduced the $100 million Green Mark incentive scheme for existing buildings. We are now at phase 3 and phase 4 and I would elaborate on these in subsequent slides.
  • On the 10 September this year, the proposed amendments to the Building Control Act was passed in Parliament. We adopted a 3-pronged approach to address the energy efficiency issues on existing buildings. They are: i) Imposing minimum Green Mark standard for existing buildings, as and when, they install or replace their cooling systems;   ii) Requiring conduct of three-yearly energy audit on the building cooling systems; and   iii) Requiring annual submission of building information and energy consumption data. This is a significant milestone for the green building movement in Singapore and would position us as one of the leading countries to take a proactive approach to green our existing buildings.
  • For a start, we will focus on office, retail and hotel building with gross floor area (GFA) of 15,000m2 or more. These building owners would have to meet the minimum Green Mark standard for existing buildings when installing or replacing its cooling systems . Mixed developments whose GFA of the commercial components, i.e. office, hotel, retail, is 15,000m 2 or more, will also be subjected to the new provisions in the Act. This requirement is triggered off only when a building installs or replaces its cooling system. We have used this as a trigger point because the building cooling system contributes as much as 30 to 50% of the building ’ s total energy consumption and has a life-span between 15 and 20 years. Hence, it is a good opportunity for building owners to install or replace the building cooling system with an energy efficient one to reap the benefits of energy saving for the next 15 to 20 years.
  •   With the new legislation, building owners would have to engage a professional mechanical engineer to ensure that the overall building design, taking into account the change to the cooling system and any other retrofitting necessary, e.g. the lighting or mechanical ventilation system, achieves the minimum Green Mark certified standard. After receiving design approval from BCA, the building owner will be given three years to complete the retrofitting works, which is a reasonable timeframe by industry standards. Upon completion of the works, the mechanical PE will need to re-assess the Green Mark score of the building to ensure that the as-built score meets the min. standards and the as-built score must be submitted to BCA for approval. This is to ensure that the works carried out on-site are the same as the design approved three years ago.
  • For an existing building meeting the minimum standards under the upcoming legislation, the overall building can achieve at least 25% improvement in energy efficiency as compared to the 2005 building code. Considering the many physical constraints faced by existing buildings, such as the size of chiller plant room has already been fixed, the 25% energy efficiency standard is a reasonably high standard.
  • The second legislative measure would require building owners to conduct three-yearly audits on the building cooling systems to ensure that the efficiencies of the systems are maintained to the minimum standards. This audit requirement will be applicable to two groups of buildings. The first group is existing buildings which have installed or replaced their building cooling systems to meet the minimum Green Mark Certified level under the first measure which I have just explained. The second group is new buildings (except industrial and residential ones) which are installed with the central chilled-water cooling system and have met the minimum Green Mark Certified level under the Building Control (Environmental Sustainability) Regulations imposed from December 2010. This refer to new buildings that are required to meet the Green Mark for New Buildings version 4 standard.
  • From our experience in assessing the performance of green buildings, the system performance of central aircon plant, including the energy efficient ones, may deteriorate over time if it is not properly operated and maintained.   The aim of the three-yearly audit is to ensure that the cooling system continue to operate as efficiently as designed, throughout its life cycle, and continue to comply with the minimum standards. One of the pre-requisite reqm in Green Mark standard is the installation of accurate permanent measurement and verification instruments to monitor the efficiency of the aircon plant. This would allow the periodic audits to be conducted more easily as there is no need to mount temporary measuring instruments. Building owners and facilities managers will also be able to monitor and trend log key parameters relating to the efficiencies of the air-con plant on a real time basis.
  • While the requirement is a three-yearly energy audit on the cooling system, the building owners only need to carry out the audit upon receipt of BCA’s notice. Owners would have to engage a professional Mechanical engineer or Energy Auditor to conduct the energy audits. What is important here is not just the conduct of the energy audit, but the result of the audit must meet the minimum system efficiency standard. This means that if the owner has not been regularly maintaining his building cooling system, the energy audit result will probably fail. The owner will have to carry out appropriate remedial and maintenance works to bring the system back to the design standard.
  • Finally, it will be mandatory for building owners to submit energy usage data on an annual basis. However the information will be obtained primarily from the utility suppliers. This will reduce the need for building owners to submit the data individually to BCA. The data collected will form the basis of national energy benchmarks, which BCA will share with building owners. With this data, BCA will also be able to monitor energy consumption patterns of the building sector, and measure the effectiveness of various measures implemented, and fine-tune the measures, if necessary.
  • This slide shows the interface of the the online portal. The building owners can log into the BCA ’ s online portal to verify the data from the utility suppliers.
  • Upon logging into the system, the owner can compare the energy consumption of his building with other similar type of buildings and benchmark his performance. For example, he is able to see how energy efficient or inefficient his building is based on EEI as compared with other similar building types.
  • While it is important to upgrade the hardware of our building, it is even more important, to reach out within buildings, to the tenants and building occupants. This is because they contribute a significant portion of the total energy consumption.   Going forward, BCA will be placing more emphasis on building users' behaviour and encourage greater adoption of good practices within buildings. Hence, we are introducing the latest suite of BCA Green Mark schemes such as GM for Retail and Supermarket, in addition to existing schemes, such as GM for Restaurant and Office Interior. Finally, I would like to conclude by saying that BCA cannot do this alone. We hope to forge greater collaboration with industry stakeholders, to move towards a green building movement that is truly holistic and sustainable.
  • Thank you for your kind attention.
  • Roundtable B - Energy Technology Perspectives

    1. 1. THINKTANK ROUNDTABLE BENERGY TECHNOLOGYPERSPECTIVESOrganised by:
    2. 2. GE Power &SIEW 2012WaterIEA WorkshopKaz FukuiMarketing Director, Asia-PacificGE Power & Water 25th October 2012 GE Proprietary Information All Rights Reserved © General Electric Company 2012
    3. 3. Overview 1 ASEAN power needs & role of clean technologies 2 Available clean technology options for ASEAN 3 Key for enabling decarbonization of ASEAN power industry 3 10/31/12 © General Electric Company 2012
    4. 4. ASEAN capacity new additionforecast (2012-2021) Vietnam Other Thailand SE Asia Philippines 6 GW 21 GW 45 GW 9 GW Malaysia Indonesia 10 yr addition (GW) Coal 64 Gas 41 Hydro 13 12 GW Renewables 17 Oil TOTAL ~140 2 49 GW Nuclear 6 Source: GE Energy Strategic Marketing forecasting & other sources 4 (Based on the expected order figures) 10/31/12 © General Electric Company 2012
    5. 5. ASEAN CO2 emission forecast Figures = Power related(2012-2021) Mt/y Vietnam CO2 emission in Mt/yr r Mt/y Philippines Mt/y Thailand r 11% r CAGR 3% CAGR 3% CAGR +46Mt +10Mt +30Mt Indonesia Mt/y Malaysia Mt/y 6% CAGR r r 4% CAGRMt/yr 201 202 CAG 2 1 RJapan 550 590 1%ASEAN 430 670 5%5 +39Mt +118Mt Source: GE Energy Global Strategy & Planning forecast, Jan 2012 5 10/31/12 © General Electric Company 2012
    6. 6. Clean technology … tendency tofocus on mainstream solar & wind300 US$ CAGR 258 B ‘04-’11250 220 Marine 30%200 Geothermal 12% 167 161 Small hydro 22%150 133 Biomass & w-t-e 8% 97 Biofuels 10%100 61 Solar 40%50 40 Wind 30% 0 2004 2005 2006 2007 2008 2009 2010 2011 Source: “Global trend in renewable investment 2012”, UNEP (With 6 Bloomberg New Energy Finance) 10/31/12 © General Electric Company 2012
    7. 7. Critical to evaluate & embrace atoolbox of options to drivedecarbonization….Wind Geotherma SolarBiomass l Biofuel Clean technology Hydro Energy Other future … efficiency Emission Microbial coal-to-gas Smart Grid / Micro-grids reduction Waste plasmasification Waste Heat Recovery Energy storage Cleaner coal Liquid air energy CCS storage etc. etc. …. 7 10/31/12 © General Electric Company 2012
    8. 8. Portfolio Healthcare approach Transportation • evolution locomotive • Digital X Ray • Trip Optimizer • Voluson Ultrasound • Movement PlannerOil & Gas • WAVE Bioreactor• Ibox Home &• Oregen Waste Business Heat Recovery • LED Light Systems Solutions Sources• PGT25+ gas • High Eff. CFLs turbines for • Smart Appliances compression $140B+ Eco Revenues ($21B ) Focused on technology and innovationAviation• GEnx• TrueCourse Capital Flight • Environmental Management Performance Services System • Arden Access Energy • Australia eco Mastercard• Passport • Flex Efficiency 50 Integrated Water • Wind Turbines • Zeeweed Membranes  Propulsion • Jenbacher Alternative Fuel gas engines • Pro/Titan Reverse Osmosis • SmartGrid • ABMet – Advanced Biological • WattStation/DuraStation EV charging Metals Removal 8 products 10/31/12 © General Electric Company 2012
    9. 9. Cleaner coalImproved plant efficiency through efficientengineering and improved materials • Supercritical steam turbines achieve net plant efficiencies of 42-44% (LHV) • Typically reduce emissions by 20% compared to existing subcritical plants • Stepping up the temperature and pressure to Ultra-supercritical leads to even greater efficiencies of 44-46% and environmental benefits Source: GE Power & Water 9 10/31/12 © General Electric Company 2012
    10. 10. Technology integrationExpanding infrastructure synergies … gas +renewables 10 10/31/12 © General Electric Company 2012
    11. 11. Flexible & efficient gasRenewable enabler & bridging technology Large units Small units • 61%+ baseload efficiency … 510MW • High efficiency 50MW combined • One-button start in <30 minutes cycle • 51 MW/min ramp rate … 50% faster • Full power in 5 minutes than industry benchmark • Fuel flexibility • Lower emissions with zero water • Central & distributed • Flexible supply to grid • Proven technology • Dispatchable and low cost power • Lower carbon footprint than coal Source: GE Power & Water 11 10/31/12 © General Electric Company 2012
    12. 12. Other clean technologies for ASEAN Waste-to-energy with gasification Biomass gasifier Micro-grid More flexible smart-grid deploymentPower from Waste heatwaste heat recovery Renewables(e.g. dieselgenerators) Core traditional renewables 12 10/31/12 © General Electric Company 2012
    13. 13. How to promote best available cleantechnologies in ASEAN?Hurdles Require • Demonstration of the value of the technology (inc. pilot) • Alliance network & demand creation • Support mechanism & drivers No single “best” technology … enable portfolio of clean technologies to be deployable with references & clear demonstration of values 13 10/31/12 © General Electric Company 2012
    14. 14. The private sector is keen to helpASEAN develop cooperation inenergypolicy elements that need to be embraced by all ASEAN The key sector members to ensure greater cooperation: 1.Encourage a diversification of energy resources and the use of clean energy technologies 2.Encourage the development of renewable energy through policies that support FiTs and pilot projects 3.Promote open trade and eliminate barriers in environmental goods and services 4.Adopt transparent processes in facilitating the development of energy projects 5.Set energy efficiency targets and enforce them 6.Work with other multilateral organizations, such as APEC, to promote clean energy policies 14 10/31/12 © General Electric Company 2012
    15. 15. 15 10/31/12© General Electric Company 2012
    16. 16. Tapping technology’s potentialto secure a clean energy future25th October 2012David Elzinga © OECD/IEA 2012
    17. 17. ETP 2012 – Choice of 3 Futures 2DS 4DS 6DSa vision of a sustainable reflecting pledges by where the world is nowenergy system of reduced countries to cut heading with potentiallyGreenhouse Gas (GHG) emissions and boost devastating resultsand CO2 emissions energy efficiency The 2°C Scenario The 4°C Scenario The 6°C Scenario © OECD/IEA 2012
    18. 18. Sustainable future still in reach Is a clean energy Are we on track to Can we get ontransition urgent? reach a clean track? energy future? YES ✓ NO ✗ YES ✓ © OECD/IEA 2012
    19. 19. Recommendations to Governments 1. Create an investment climate of confidence in clean energy 2. Unlock the incredible potential of energy efficiency – “the hidden” fuel of the future 3. Accelerate innovation and public research, development and demonstration (RD&D) © OECD/IEA 2012
    20. 20. The Global Energy system today Dominated by fossil fuels in all sectors © OECD/IEA 2012
    21. 21. The future low-carbon energy systemThe 2DS in 2050 shows a dramatic shift in energy sources and demands © OECD/IEA 2012
    22. 22. Only collective efforts of all sectorslead to the 2DSThe core of a clean energy system is low-carbonelectricity that diffuses into all end-use sectors. © OECD/IEA 2012
    23. 23. A variety of technologies is requiredto achieve the 2DS Power generation efficiency and fuel switching Nuclear 3% 8% CCS 20% End-use fuel switching 9% End-use fuel and electricity Renewables efficiency 29% 31%Energy efficiency is the hidden fuel that increases energy security and mitigates climate change. © OECD/IEA 2012
    24. 24. A smart, sustainable energy system Co-generation Renewable energy resources Centralised fuel production, power and storage Distributed energy resourcesSmart energysystem control H2 vehicle Surplus heat EV A sustainable energy system is a smarter, more unified and integrated energy system © OECD/IEA 2012
    25. 25. Clean energy: slow lane to fast track Cleaner coal power Nuclear power Renewable power CCS in power CCS in industry Progress is too slow in Industry almost all technology areas Significant action is required Buildings to get back on track Fuel economy Electric vehicles Biofuels for transport © OECD/IEA 2012
    26. 26. Industry must become more efficientGtCO2 Significant potential for enhanced energy efficiency can be achieved through best available technologies. © OECD/IEA 2012
    27. 27. The CCS infant must grow quickly Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2Mt CO2Note: Capture rates in MtCO2 /year © OECD/IEA 2012
    28. 28. Electric vehicles need to come of agePassenger LDV sales (million) More than 90% of light duty vehicles need to be propelled by an electric motor in 2050. © OECD/IEA 2012
    29. 29. Building Blocks of a Cleaner Future Services Residential About 70% of buildings’ potential energy savings between the 4DS and 2DS are in the residential sector. © OECD/IEA 2012
    30. 30. Building sector challenges differ OECD Non OECD75% of current buildings in OECD will still be standing in 2050 © OECD/IEA 2012
    31. 31. Heating & Cooling: huge potential Renewable heat Integration with electricity District heating and cooling network Co-generation Surplus heat Heating and cooling account for 46% of global energy use.Their huge potential for cutting CO2 emissions is often neglected. © OECD/IEA 2012
    32. 32. Energy and CO2 impacts ofelectricity generation Other transformation AgricultureOther transformation Agriculture 2% 5% 2% 6% Buildings 9% Buildings 15% Power Transport Power Transport 38% 20% 38% 18% Industry Industry 21% 26% Total primary energy Total energy-related use: 509 EJ in 2009 CO2 emissions: 31.4 Gt in 2009 Power sector accounted in 2009 for almost 40% of global primary energy use and energy-related CO2 emissions. © OECD/IEA 2012
    33. 33. Key technologies to decarbonise power generation 25 Additional emissions 6DS Electricity savings 28% (21%) 20 Fuel switching and efficiency 5% (2%) Other renewables 5% (7%) 152 Wind, offshore 7% (7%)OGCt Wind, onshore 7% (5%) 10 CSP 5% (8%) PV 7% (8%) 5 Hydro 4% (3%) Nuclear 14% (17%) 0 2009 2020 2030 2040 2050 CCS 18% (22%) Note: The first percentage number refers to its share in cumulative CO 2 reductions between 2009 and 2050, while the percentage in parentheses refers to the annual reduction, in 2050.Electricity demand savings and renewables are each responsible for one-third ofthe cumulative CO2 reductions in the power sector in the 2DS. © OECD/IEA 2012
    34. 34. Electricity generation scenarios 45 000 Other 100% 40 000 4DS Wind 19% 35 000 80% 36% Solar 13% 30 000 Renewables Hydro 60% 25 000 12% Nuclear NuclearW 3% Fossil w CCShT 20 000 Biomass and waste 40% Fossil w/o CCS 15 000 67% 10 000 Oil 49% Gas 20% 5 000 0 Coal 0% 2009 2020 2030 2040 2050 2009 2050 45 000 Other 100% 40 000 2DS Wind 19% 35 000 80% Solar 13% 57% Renewables 30 000 Hydro 60% Nuclear 25 000 NuclearW Fossil w CCShT 20 000 Biomass and waste 40% Fossil w/o CCS 15 000 67% 19% 10 000 Oil 20% 5 000 Gas 14% Coal 9% 0 0% 2009 2020 2030 2040 2050 2009 2050In the 2DS, global electricity supply becomes decarbonised by 2050. © OECD/IEA 2012
    35. 35. Electricity generation capacityGeneration capacity is higher in the 2DS due to great deployment of variable renewables with lower capacity factors. © OECD/IEA 2012
    36. 36. Electricity system flexibilityPower system flexibility expresses the extent to which a power system can modify electricity production or consumption in response to variability, expected or otherwise. ± MW / time © OECD/IEA 2012
    37. 37. Flexibility needs and resources Existing and new flexibility needs can be met by a range ofresources in the electricity system – facilitated by power system markets, operation and hardware. © OECD/IEA 2012
    38. 38. T&D infrastructure investments inthe 4DS and 2DS are similar ...but sectoral allocation differs © OECD/IEA 2012
    39. 39. Smart grid benefits exceed costs by a factor of between 1.5 and 4.5..., but direct benefits of investment in one sector may be found in other sectors. © OECD/IEA 2012
    40. 40. ASEAN ContextLow-carbon electricity is at the core of a sustainable energy system © OECD/IEA 2012
    41. 41. ASEAN : Sectoral Contributions toachieve the 2DS from the 4DSCO2 emissions in the 2DS are brought back to today’s level. © OECD/IEA 2012
    42. 42. ASEAN : Electricity generation in the 4DS and 2DSWhile the electricity mix in the 4DS is dominated by coal, renewablesprovide more than half of the electricity in the 2DS in 2050. © OECD/IEA 2012
    43. 43. Key technologies to decarbonise ASEAN power generationRenewables provide almost half of the CO2 reductions in the power sector inthe 2DS. © OECD/IEA 2012
    44. 44. Regional electricity mixes in the 2DS in 2050 US 4% 24% 22% 6% 15% 18% 12%South Africa 2% 23% 24% 2% 28% 16% 6% Russia 5% 8% 28% 28% 1% 14% 17% Mexico 20% 10% 8% 7% 21% 19% 15% India 19% 14% 17% 16% 21% 6% 7% EU 2% 6% 22% 13% 10% 29% 18% China 7% 21% 24% 14% 10% 15% 9% Brazil 2% 5% 0% 60% 6% 7% 19% ASEAN 25% 14% 5% 18% 6% 10% 22% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Fossil w/o CCS Fossil w CCS Nuclear Hydro Solar Wind Other renewablesPortfolios to decarbonise the power sector depend on regional challengesand opportunities. © OECD/IEA 2012
    45. 45. In the 2DS, electricity becomes a near zero carbon fuel by 2050 1 000 900 800 700 600 500 W q h-e k / 400 300 200OC2g 100 0 2009 2030 2050 2030 2050 4DS 2DS World European Union United States China India ASEAN Carbon intensity drops by 90% by 2050 in the 2DS . © OECD/IEA 2012
    46. 46. Natural gas is not a panacea The global average CO2 intensity from power generation falls belowthe carbon intensity of CCGTs in 2025 in the 2DS; CCS can play a role in reducing emissions from gas © OECD/IEA 2012
    47. 47. Two very different profiles for natural gas use in power generation Power generation from natural gas increases to 2030 in the 2DS and the 4DS. From 2030 to 2050, generation differs markedly.Natural gas-fired power generation must decrease after 2030 to meet the CO2 emissions projected in the 2DS scenario.Notes: Natural gas-fired power generation includes generation in power plants equipped with CCS units. Biogas is not included here. © OECD/IEA 2012
    48. 48. Buildings energy consumptionStrong population growth in ASEAN countries will drive energy demand upwards © OECD/IEA 2012
    49. 49. Passenger light-duty vehicle salesPassenger LDV’s are expected to grow significantly in the coming decades. © OECD/IEA 2012
    50. 50. Transport energy use in 2050Shipping energy use is substantial and efficiency improvements are expected to be limited © OECD/IEA 2012
    51. 51. Final Global Comments © OECD/IEA 2012
    52. 52. Clean energy investment pays off USD trillion Every additional dollar invested in clean energy can generate 3 dollars in return. © OECD/IEA 2012
    53. 53. Key messages1. A sustainable energy future is still feasible and technologies exist to take us there2. Despite potential of technologies, progress is too slow at the moment3. A clean energy future requires systemic thinking and deployment of a variety of technologies4. It even makes financial sense to do it.5. Government policy is decisive in unlocking the potential © OECD/IEA 2012
    54. 54. For much more, please visitwww.iea.org/etp © OECD/IEA 2012
    55. 55. The Next Challenge Greening ExistingBuildings in Singapore Ang Kian Seng Group Director, Research Executive Director, BCA Centre for Sustainable Buildings
    56. 56. Why Green our Built Environment?End-Use Electricity Consumption in Singapore (2005)
    57. 57. BCA Green Mark SchemeEstimated 10% to 15% 15% to 25% 25% to 30% > 30%Energy Savings
    58. 58. Singapore Green Building Roadmap at a glance Envelop Thermal Transfer Value (ETTV) CP24:1999 EE Standard for Bldg Services and equipment80’s ––2005 80’s 2005 2005 2005 2006 --2007 2006 2007 2009 2009(Energy (Energy (green buildings) (green buildings)conservation) conservation)Energy Efficient Energy EfficientBuilding Awards Building Awards(Oct 2001 to (Oct 2001 to2005) 2005)
    59. 59. Imposing Minimum Standards on Environmental Sustainability All New Buildings and Existing Buildings undergoing major retrofitting works (with GFA ≥ 2000 m2) to meet at least GM -Certified Standard (April 2008)
    60. 60. Green Mark Building Projects in Singapore
    61. 61. Barriers to greening existing building
    62. 62. Training and Capacity Building- Green Collar workforceTraining and Capacity Building- Green Collar workforce 540 2700 attended Green Mark attended Green Mark Manager Course Facilities Manager Course >200 190 attended Green Certified SingaporeMark Professional Course Certified Energy Manager Newly introduced a Certificate Course in Measurement and Verification for Central Chilled Water Plant Efficiency – 120 attended
    63. 63. Green Buildings Enhance Asset Value BCA- NUS PROJECT ON VALUATION OF GREEN COMMERCIAL PROPERTIES A saving of 10% in operating expense will translate intoa 2% increase in capital value.
    64. 64. Green Building Advertorials • 4 weekly advertorials on business case of greening existing buildings • In Straits Times July 2012
    65. 65. Once in 15 years Opportunity Upfront Capital •Invest in cost efficient 10% - 20% Chiller Plant Energy /maintenance cost 80% - 90%
    66. 66. Incentives & Financing Assistance S$100mil Incentives for retrofitting EXISTING BUILDINGS (since 2009) Building Retrofit Energy Efficiency Financing (BREEF) Scheme Provide financing to undertake energy efficiency retrofits
    67. 67. Enhanced Green Mark Incentive Scheme – Existing BuildingsUp to S$3Million Amended in July 2012Co-fund includes supply & installation ofenergy efficient equipment andprofessional services Enhanced GMIS-EB Qualifying CriteriaGreen Mark Requirement(Ver 3) + Air-conditioning Co-funding Rate Cap Amount System Efficiency Gold + 0.7 kW/RT 35% $1,500,000 Goldplus + 0.65 kW/RT 40% $2,250,000 Platinum + 0.6 kW/RT 50% $3,000,000
    68. 68. Four-Phased Approach to Green our Existing Building Stock Legislation – Incentive Energy Data Legislation – New Bdgs Scheme Submission Existing Buildings (April 08) (April 09) Minimum EE GMIS (Existing Yearly submission Minimum EE standards on energy for Existing Buildings Standards for New Buildings) scheme consumption to and meet GM Certified Building and co-fund upgrading Existing Buildings for energy BCA. undergoing major improvement. Building owners to New and retrofitted retrofitting submit energy existing buildings – (GFA of >2000m2) related building 3 yearly system information. efficiency audit
    69. 69. • Min. GM standard for existing buildings• Three-yearly energy audit on cooling system• Annual submission of building info & energy consumption data
    70. 70. Min. GM Standard for Existing Buildings• Phase 1 – Any hotel, retail building or office building – GFA > 15,000m2 Energy Consumptions in Buildings – Installing/replacing chilled- water cooling system. Cooling system – Must meet minimum GM Lift Cooling system Cooling system Lighting Standard for Existing Equipment accounts forOthers much accounts foras much as Buildings as 50% of the building’s as 50% of the building’s total energy total energy• Lifespan of chilled-water consumption. consumption. cooling system is between 15 – 20 years
    71. 71. Min. GM Standard for Existing Buildings • Owner engages a PE(Mech). • PE (Mech) looks into the overall building design and ensures that the building can achieve at least Green Mark 50 points. Planning • Owner to submit the Green Mark design score, retrofitted design, drawings, computations for approval before commencement of the energy improvement works. • Owner must complete the energy improvement works within three years from the date of approval of the design score by BCA.Retrofitting • Submit the Green Mark as-built score (at least 50 points) (includingCompletion commissioning of the cooling system).
    72. 72. Min. GM Standard for Existing Buildings
    73. 73. 3-Yearly System Efficiency Audit Buildings involved New buildings (except industrial and residential) with centralised chilled-water Existing buildings which have building cooling system which undergone retrofitting and are are required to comply with the required to meet min. GM enhanced Green Mark standard for existing buildings. standards for new buildings implemented on 1 December 2010
    74. 74. Chiller Plant Load and Efficiency Audit 3-Yearly System Efficiency
    75. 75. 3-Yearly System Efficiency AuditBCA serve Notice to buildingowner to carry out energyaudit Building owner engage PE(Mech) or Energy Auditor to carry out energy audit and comply with requirements Submit complying energy audit results to BCA by deadline stipulated in Notice
    76. 76. Annual Submission of Energy Data Purpose Sharing of data with MeasureBasis of the building owners effectivenessnational for pro-active of energyenergy improvement to efficiencybenchmarks the energy initiatives performance of buildings
    77. 77. Annual Submission of Energy DataSubmit to BCAthroughBuildingEnergySubmissionSystem (BESS) Useful links  user submission manual  technical guide  demo-video
    78. 78. Annual Submission of Energy Data 1000 1000 1000Similar Building Similar Building EEI of Similar BuildingActivity Type Activity Type Your Activity Type(Lowest) (Average) Building (Highest)
    79. 79. Green Buildings with Green TenantsGM for Non-ResidentialBuilding GM for Office Interior GM for GM for Restaurants Supermarkets Ne GM for Retail w Ne w
    80. 80. Thank youWe shape a safe, high quality, sustainable and friendly built environment.

    ×