Supra condylar fractures


Published on

  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Supra condylar fractures

  1. 1. Supracondylar fractures of humerus supracondylar fractures of humerus in children <ul><li>zameer ali </li></ul>
  2. 2. Range of motion. <ul><li>Extension 0 degrees </li></ul><ul><li>Flexion 145 degrees </li></ul><ul><li>Pronation 80 degree </li></ul><ul><li>Supination 75 degrees </li></ul>
  3. 3. Functional range of motion. <ul><li>Arc of elbow flexion is about 100 degres. </li></ul><ul><li>30-130 degrees. </li></ul><ul><li>Arc of forearm rotation is 100 degrees. </li></ul><ul><li>50 degrees of pronation to 50 degree of supination </li></ul>
  4. 4. <ul><li>Supracondylar fracture of humerus is very common in children </li></ul><ul><li>It is also called malgaigne;s fracture </li></ul><ul><li>Supracondylar fracture is one of most common fractures due to fall on outstretched hands and is more common in children because children are more playfull and hence prone to fall </li></ul><ul><li>Thus upper extremity are vulnerable to fractures </li></ul>
  5. 5. <ul><li>75 % of all fractures in children are seen in upper limbs </li></ul><ul><li>Incidence of fractures around elbow </li></ul><ul><li>Supracondylar 65.4% </li></ul><ul><li>Condylar fractures 25.3% </li></ul><ul><li>Fracture neck of radius 4.7% </li></ul><ul><li>Monteggia fracture 2.2% </li></ul><ul><li>Olecranon fracture 1.65% </li></ul><ul><li>T condylar fracture 0.8% </li></ul>
  6. 6. <ul><li>Incidence of supracondylar # being almost 65.4 % of fractures around elbow </li></ul><ul><li>REASONS </li></ul><ul><li>MECHANISM OF INJURY </li></ul><ul><li>BONY ARCHITECTURE OF SUPRACONDYLAR AREA </li></ul><ul><li>LAXITY OF LIGAMENTS AROUND ELBOW </li></ul>
  7. 7. <ul><li>Bony architecture of supracondylar area is weak and vulnerable </li></ul><ul><li>Cortex is thin </li></ul><ul><li>Anterior cortex has defect in area of coronoid fossa </li></ul><ul><li>Metaphysis is just distal to fossa </li></ul><ul><li>Laxity of ligaments permit hyper extension at elbow </li></ul>
  8. 8. <ul><li>Hyperextension converts linear force into bending force and olecranon concentrates all this force at supracondylar region </li></ul>
  9. 9. <ul><li>MOI- Fall on outstretched hand with elbow in full extension and forearm in supination </li></ul><ul><li>In patients falling with their forearms supinated, the distal fragment displaces posterolaterally since the periosteum disrupts posteromedially and vice-versa. </li></ul>
  10. 10. Supracondylar fractures of humerus in children <ul><li>Incidence Age- 5-7 yrs.. Avg. 6.7yrs. </li></ul><ul><li>Sex- M:F= 3:2 boys almost 66% </li></ul><ul><li>Non dominant side more commonly injured. (left 59% right 41%) </li></ul><ul><li>Almost all occur following an accidental trauma. </li></ul><ul><li>Open fracture 2.3 % </li></ul>
  11. 11. <ul><li>Nerve injury 7 % radial nerve 45%,median nerve 32%,ulnar nerve 23% </li></ul>
  12. 12. <ul><li>Supracondylar fracture is broadly classified into </li></ul><ul><li>Extension type 97.7% </li></ul><ul><li>Flexion type 2.3% </li></ul><ul><li>In extension type fracture line runs upwards and backwards </li></ul><ul><li>And in flexion type it runs downwards and backwards </li></ul>
  13. 13. <ul><li>MOI- Fall on with outstretched hand with elbow in full extension. </li></ul><ul><li>In patients falling their forearms supinated, the distal fragment displaces posterolaterally since the periosteum disrupts posteromedially and vice-versa. </li></ul>
  14. 14. <ul><li>Medial displacement of the distal fragment places the radial nerve at risk, </li></ul><ul><li>and lateral displacement places median nerve and the brachial artery at risk. </li></ul>
  15. 15. <ul><li>Account for only 2% of humeral fractures. </li></ul><ul><li>MOI- fall on the elbow, so that the distal fragment displaces anteriorly and may migrate proximally in a totally displaced fracture. </li></ul>
  16. 16. Gartland’s classification of supracondylar fractures in children <ul><li>Based on the radiographic appearance of fracture displacement. </li></ul><ul><li>Type1- Undisplaced. </li></ul><ul><li>Type2- # extended with intact posterior cortex </li></ul><ul><li>Type3- Circumferential break with loss of posterior continuity. and distal fragment could be either displaced </li></ul><ul><li>A) posteromedial; </li></ul><ul><li>B ) poster lateral </li></ul>
  17. 18. Signs and symptoms of supracondylar fracture <ul><li>Pain / tenderness. </li></ul><ul><li>Inability to use the upper limb / restriction of movements. ( both active and passive) </li></ul><ul><li>Swelling. </li></ul><ul><li>+/- Deformity & Abnormal mobility. </li></ul><ul><li>Crepitations </li></ul><ul><li>Arm is short forearm is normal in length </li></ul>
  18. 19. <ul><li>S shaped deformity </li></ul><ul><li>Dimple sign due to one of spikes of proximal fragment penetrating the muscle and tethering skin </li></ul><ul><li>Relation between three point bony relation maintained </li></ul>
  19. 20. <ul><li>RADIOLOGY </li></ul><ul><li>AP & lat.of the distal humerus without externally rotating the humerus. </li></ul><ul><li>Oblique veiws are rarely required. </li></ul>
  20. 21. RADIOLOGICAL PARAMETERS <ul><li>Baumans angle </li></ul><ul><li>Angle between horizontal line of the elbow and line drawn through lateral epiphysis and long axis of arm </li></ul><ul><li>Normal; value it is less than 5 degree </li></ul><ul><li>Tear drop sign it is disturbed in supracondylar fracture but it is seen in normal radiograph </li></ul>
  21. 22. <ul><li>Anterior humeral line </li></ul><ul><li>A line drawn along anterior border of humerus shaft usually passes through middle 1/3 of capitulum if it passses through 1/3 it indicates posterior displacement of distal fragment </li></ul><ul><li>Coronoid line ; a line directed proximally along anterior border of coronoid process of ulna should barely touch anterior portion of lateral condyle . </li></ul><ul><li>Posterior displacement of lateral condyle will project the ossification center posterior to this line </li></ul>
  22. 23. <ul><li>Fat pad sign </li></ul><ul><li>Olecranon fossa is deep and thus the fat pad here lies totally contained within fossa. not seen on normal lateral radiograph of elbow at 90 degree </li></ul><ul><li>Distension of capsule with an effusion due to trauma or infection causes olecranon pad to be visualised as radiolucent gap </li></ul>
  23. 24. <ul><li>Fish tail sign </li></ul><ul><li>Due to rotation of distal fragment ,the anterior border of proximal fragment looks like a sharp spike </li></ul>
  24. 25. <ul><li>Crescent sign </li></ul><ul><li>Here the normal radiolucent gap of elbow joint is missing and a crescent shaped shadow due to overlap of capitulum over olecranon is evident and indicates varus /valgus tilt of distal fragment </li></ul>
  25. 26. Quick facts <ul><li>Posterior displacement of distal fragment indicated by </li></ul><ul><li>loss of tear drop sign </li></ul><ul><li>Coronoid line </li></ul><ul><li>Anterior humeral line </li></ul>
  26. 27. <ul><li>Coronal tilt of distal fragment usually varus tilt rarely valgus indicated on radiograph by </li></ul><ul><li>Crescent sign </li></ul><ul><li>bauman’s angle . </li></ul>
  27. 28. <ul><li>Horizontal rotation of distal fragment indicated by </li></ul><ul><li>Fish tail sign </li></ul>
  28. 29. <ul><li>Dameron has listed depending on fracture ,four basic types of treatment </li></ul><ul><li>1 side arm skin tractioon </li></ul><ul><li>2 over head skeltal traction </li></ul><ul><li>3 Closed reduction and casting , with or without per cutaneous pinning , and </li></ul><ul><li>4 open reduction and internal fixation </li></ul>
  29. 30. Anatomical Closed reduction <ul><li>Longitudinal traction and counter traction. </li></ul><ul><li>If the length is not restored, “milking maneuver”. </li></ul><ul><li>Correction of the medial or lateral translation. </li></ul><ul><li>. </li></ul>
  30. 31. <ul><li>Flexion reduction maneuvre. </li></ul><ul><li>Hyperflexion and pronation at the elbow. </li></ul><ul><li>Check x-rays with elbow kept flexed </li></ul>
  31. 33. Cast immobilization technique <ul><li>Type III fracture are intrinsically unstable. </li></ul><ul><li>They need the elbow to be kept in 120 degrees of flexion whenever possible. </li></ul><ul><li>If not possible, then the fracture should be stabilized with k-wires. </li></ul>
  32. 34. <ul><li>Type 1 undisplaced type can be satisfactorily treated closed with external fixation such as plaster </li></ul><ul><li>Type 2 fracture is displaced and is difficult to reduce and to hold by external methods </li></ul>
  33. 35. <ul><li>Type 3 fracture is displaced postero medially or posterolaterally with no cortical contact and periosteum may be striped ;reduction is difficult and maintaining reduction is almost impossible without some form of internal fixation </li></ul>
  34. 36. <ul><li>General Principles: </li></ul><ul><li>Splinting (immobilisation for 3 weeks). </li></ul><ul><li>Assesment of the neurovascular status. </li></ul><ul><li>Other injuries. </li></ul>
  35. 37. Type1 (undisplaced) <ul><li>Long arm splint with forearm in neutral position and elbow flexed to not more than 90 degrees. </li></ul><ul><li>After 3-7 days, check x-rays to see any displacement. Long arm cast with a ring at the distal portion and a sling around the neck to support the cast for 3 weeks followed by active mobilisation. </li></ul>
  36. 38. <ul><li>If the x-rays show displacement, the fracture is reduced with hyperflexion of the elbow to 120 degrees with pinning. </li></ul><ul><li>Acceptable x-rays : </li></ul><ul><li>Anterior humeral line crossing the capitellum, </li></ul><ul><li>A Baumann’s angle of 70-78 degrees or equal to the opposite side, and </li></ul><ul><li>An intact olecranon fossa. </li></ul>
  37. 39. Type2 (Displaced with post. Cortex intact) <ul><li>Closed reduction followed by: </li></ul><ul><li>Plaster cast with elbow at 120 degrees flexion, OR </li></ul><ul><li>2. Pinning and plaster cast with elbow at 90 degree flexion. </li></ul><ul><li>3. Collar and cuff with elbow at 120degree flexion. </li></ul>
  38. 40. <ul><li>Indications of pinning: </li></ul><ul><li>Significant swelling. </li></ul><ul><li>Obliteration of pulse on flexion. </li></ul><ul><li>Neurovascular injuries </li></ul><ul><li>Other injuries in the same limb. </li></ul>
  39. 41. Type3 <ul><li>If no vascular compromise, traction and casting. </li></ul><ul><li>Or </li></ul><ul><li>Closed reduction, pinning and casting </li></ul><ul><li>If vascular compromise present, immediate exploration with skeletal stabilisation. </li></ul>
  40. 42. <ul><li>Dameron stated that reduction is not only difficult to achieve but also to maintain in type 2 and type 3 supracondylar fractures because of thinness of bone in supracondylar area of distal humerus </li></ul><ul><li>For this reason many authors have described percutaneous pinning techiniques </li></ul>
  41. 43. <ul><li>Danielsson and petterson noted loss of reduction when only one pin was used </li></ul><ul><li>Swenson ,casiano and associates useed two cross pins </li></ul><ul><li>Arino et al recommended 2 lateral pins </li></ul><ul><li>Fowles,kassab used one vertical pin and other oblique pin </li></ul>
  42. 44. <ul><li>haddad.,saer and riordian used 2 pins laterally and one pin medially </li></ul><ul><li>Transient and permanent ulnar nerve damage were rare in all reports even when both medial and lateral pins were used </li></ul>
  43. 45. <ul><li>Per cutaneous fixation after closed reduction has advantage of providing excellent stability of supracondylar fracture in any position of elbow </li></ul><ul><li>If fracture is not reduced satisfactory and held in unsatisfactory position the outcome will be not good and will be equivalent to as if no pin was used </li></ul>
  44. 46. <ul><li>Cubitus varus deformity is quite high if primary fracture reduction is not good </li></ul><ul><li>According to wilkins The flexion type of supracondylar fracture is only two to three % of supracondylar fractures </li></ul><ul><li>Steinmenn pins through condyles and metaphysis are inserted one from medial and one from lateral condyle of humerus </li></ul>
  45. 47. <ul><li>Pins are cut and bent so as they do not migrate proximally and can be retrieved after 3 to 4 weeks </li></ul>
  46. 48. Complications <ul><li>Vascular injury- 10-20% </li></ul><ul><li>Compartment syndrome- <1%. </li></ul><ul><li>Elbow stiffness </li></ul><ul><li>Neurologic deficit- 10-20%. </li></ul><ul><li>Iatrogenic- ulnar nerve- 1-5%. </li></ul>
  47. 49. <ul><li>Myositis ossificans-rare </li></ul><ul><li>Non union </li></ul><ul><li>Avascular necrosis </li></ul><ul><li>Angular deformity- cubitus varus. </li></ul>
  48. 51. <ul><li>Cubitus varus deformity is most common angular defromity that results from supracondylar fractures in children </li></ul><ul><li>Cubitus valgus is other deformity which can cause tardy ulnar nerve palsy </li></ul>
  49. 52. <ul><li>Three basic types of osteotomies have been described for cubitus varus/valgus deformity </li></ul><ul><li>1 lateral close wedge osteotomy </li></ul><ul><li>2 medial open wedge osteotomy and with bone graft and an oblique osteotomy </li></ul>
  50. 53. <ul><li>thanks </li></ul>