• Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,407
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
7
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. EL SISTEMA NUMÉRICO BINARIO
    Andrea Leon Caballero139215
  • 2. SISTEMAS NUMÉRICOS
    Los sistemas numéricos más antiguos son:
    Babilónico
    Romano
    Hindú
    Arabe
  • 3. El sistema numérico babilónico tenía base 60 y en la actualidad de éste sólo quedan en uso los grados, horas, minutos y segundos.
    El romano, era el más atrasado de todos. De ese sistema actualmente sólo se utilizan sus números (I, V, X, L, C, D y M) para señalar las horas en las esferas de algunos relojes, indicar los capítulos en los libros
    El hindú y árabe sí han llegado hasta nuestros días; es lo que conocemos como sistema numérico decimal (de base 10), siendo el de uso más extendido en todo el mundo.Este sistema utiliza 10 dígitos, del 0 al 9, con los cuales podemos realizar cualquier tipo de operación matemática.
  • 4. BASE DE UN SISTEMA NUMÉRICO
    La base de un sistema numérico radica en la cantidad de dígitos diferentes que son necesarios para representar las cifras. Por ejemplo, a continuación se puede apreciar la cantidad de dígitos diferentes que emplea un sistema numérico en particular, de acuerdo con su correspondiente base numérica:
    Como se podrá observar, el dígito de mayor valor en el sistema numérico binario es el 1, en el octal el 7, en el decimal el 9 y en el hexadecimal la letra F, cuyo valor numérico es igual a 15.
  • 5. DESCOMPOSICIÓN DE UN NÚMERO EN FACTORES
    Descomposición de un número entero de base 10.
    Para recordar como se realiza la descomposición en factores de un número entero perteneciente al sistema numérico decimal (de base 10), veamos un ejemplo con el número 235. Este número está formado por la centena 200, la decena 30 y la unidad 5, tal como se representa a continuación:235 = 200 + 30 + 5Para descomponer este número será necesario relacionar cada dígito con el factor 10 de la base numérica y con los exponentes de las potencias que corresponden al lugar específico que ocupa cada uno en la cifra, es decir, 100 para la unidad, 101 para la decena, 102 para la centena y así sucesivamente, tal como se puede ver a continuación:
  • 6. Por tanto, matemáticamente la descomposición del número
    235 podemos representarla de la siguiente forma:
    Por acuerdo internacional, no es necesario identificar la base de los números pertenecientes al sistema decimal como se ha hecho en este ejemplo, porque se sobreentiende que es 10. Sin embargo, cualquier otro sistema numérico es necesario identificarlo escribiendo al final de la cifra el número correspondiente a su base con el fin de evitar confusiones.
  • 7. CONVERSIÓN DE UN SISTEMA NUMÉRICO A OTRO
    Descomposición en factores de un número base 2 (binario) y su conversión a un número equivalente en el sistema numérico decimal.
    Veamos ahora cómo llevamos el número binario 101111012 a su equivalente en el sistema numérico decimal. Para descomponerlo en factores será necesario utilizar el 2, correspondiente a su base numérica  y elevarlo a la potencia que le corresponde a cada dígito.Como exponentes utilizaremos el “0”, “1”, “2”, "3" hasta llegar al "7", completando así la cantidad total de exponentes que tenemos que utilizar con ese número binario. La descomposición en factores la comenzamos a hacer de izquierda a derecha empezando por el mayor exponente, como podrás ver a continuación en el siguiente ejemplo:
    En el resultado obtenido podemos ver que el número binario 101111012 se corresponde con el número entero 189 en el sistema numérico decimal.
  • 8. Conversión de un número entero del sistema numérico decimal al sistema de binario.
    Seguidamente realizaremos la operación inversa, es decir, convertir un número perteneciente al sistema numérico decimal (base 10) a un número binario (base 2). Utilizamos primero el mismo número 189 como dividendo y el 2, correspondiente a la base numérica binaria del número que queremos hallar, como divisor. A continuación el resultado o cociente obtenido de esa división (94 en este caso), lo dividimos de nuevo por 2 y así, continuaremos haciendo sucesivamente con cada cociente que obtengamos, hasta que ya sea imposible continuar dividiendo. Veamos el ejemplo:
    Una vez terminada la operación, escribimos los números correspondientes a los residuos de cada división en orden inverso, o sea, haciéndolo de abajo hacia arriba. De esa forma obtendremos el número binario, cuyo valor equivale a 189, que en este caso será: 101111012 .
  • 9. SUMA DE NÚMEROS BINARIOS
    Tabla de sumar de números binarios
    Suma consecutiva de números binarios de 1 en 1 hasta completar 10
  • 10. Suma de dos números binarios
    Sean los números binarios 00102 y 01102
    Primer paso:
    De la misma forma que hacemos cuando sumamos números del sistema decimal, esta operación matemática la comenzamos a realizar de derecha a izquierda, comenzando por los últimos dígitos de ambos sumandos, como en el siguiente ejemplo:
    En la tabla de suma de números binarios podemos comprobar que 0 + 0 = 0
  • 11. Segundo paso
    Se suman los siguientes dígitos 1 + 1 = 10 (según la tabla), se escribe el “0” y se acarrea o lleva un “1”. Por tanto, el “0” correspondiente a tercera posición de izquierda a derecha del primer sumando, adquiere ahora el valor “1”.
  • 12. Tercer paso
    Al haber tomado el “0” de la tercera posición el valor “1”, tendremos que sumar 1 + 1 = 10. De nuevo acarreamos o llevamos un “1”, que tendremos que pasar a la cuarta posición del sumando.
  • 13. Cuarto paso
    El valor “1” que toma el dígito “0” de la cuarta posición lo sumamos al dígito “0” del sumando de abajo. De acuerdo con la tabla tenemos que 1+ 0 = 1.
    El resultado final de la suma de los dos números binarios será: 1 0 00.
  • 14. BITS Y BYTES
    Mediante el uso de este sistema numérico, el ordenador, que no es otra cosa que una sofisticada calculadora, es capaz de realizar no sólo sumas, sino cualquier otro tipo de operación o cálculo matemático que se le plantee, utilizando solamente los dígitos “1” y “0”.
    Seguramente en algún momento habrás oído mencionar las palabras “bit” y “byte”. Bit es el nombre que recibe en informática cada dígito “1” ó “0” del sistema numérico binario que permite hacer funcionar a los ordenadores o computadoras (PCs). La palabra “bit” es el acrónimo de la expresión inglesas BinaryDigIT, o dígito binario, mientras que “byte” (o también octeto) es simplemente la agrupación de ocho bits o dígitos binarios
  • 15. Para que el ordenador pueda reconocer los caracteres alfanuméricos que escribimos cuando trabajamos con textos, se creó el Código ASCII (American Standard CodeforInformationInterchange – Código Estándar Americano para Intercambio de Información), que utiliza los números del 0 al 255. Cada uno de los números del Código ASCII compuestos por 8 dígitos o bits, representan una función, letra, número o signo y como tal es entendido por el ordenador. Por tanto, cada vez que introducimos un carácter alfanumérico en el ordenador éste lo reconoce como un byte de información y así lo ejecuta.
    Tanto la capacidad de la memoria RAM como la de otros dispositivos de almacenamiento masivo de datos, imágenes fijas, vídeo o música, se mide en bytes. Cuando nos referimos a grandes cantidades de bytes empleamos los múltiplos: kilobyte (kB) = mil bytes; megabyte (MB) = millón de bytes; gigabyte (GB) = mil millones de bytes y terabyte (TB) = un billón de bytes.