Nir Hus Absite review q6

1,608 views
1,497 views

Published on

Slides with topics that are covered and were tested in the recent Absite exams.
Nir Hus MD., PhD.
http://www.nirhus.com

Published in: Health & Medicine, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,608
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
42
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • A
  • D
  • D, E
  • C
  • A 30% sat
  • D – 80% sat
  • Nir Hus Absite review q6

    1. 1. Absite topic PA Nir Hus
    2. 2. Pulmonary Artery Flow-directed Catheter (Swan-Ganz) <ul><li>Measurements obtained </li></ul><ul><ul><li>Pulmonary arterial Pressure(PAP) </li></ul></ul><ul><ul><li>Pulmonary Capillary Wedge Pressure(PCWP) </li></ul></ul><ul><ul><li>Central Venous Pressure(CVP) </li></ul></ul><ul><ul><li>Cardiac Output measurement </li></ul></ul><ul><ul><li>Mixed Venous Blood gas measurement </li></ul></ul><ul><ul><li>Saturation of venous oxygen concentrations(SVO2) </li></ul></ul>
    3. 3. Anatomy of the Catheter
    4. 4. Pulmonary Artery Flow-directed Catheter (Swan-Ganz) <ul><ul><li>four lumens </li></ul></ul><ul><ul><ul><li>proximal lumen-located in the right atrium and is used for infusion of drugs or fluids as indicated per patient’s status. May also be used for CVP monitoring </li></ul></ul></ul><ul><ul><ul><li>Distal Lumen-lies in the pulmonary artery when correctly positioned and is used to monitor PA pressures, withdraw mixed venous blood specimens and deliver fluids. </li></ul></ul></ul>
    5. 5. Pulmonary Artery Flow-directed Catheter (Swan-Ganz) <ul><li>The distal lumen is also surrounded by a balloon connected to an external valve via a second lumen. The balloon inflation has 2 purposes </li></ul><ul><ul><li>to allow moving blood to float the catheter forward during insertion </li></ul></ul><ul><ul><li>to allow measurement of PCWP </li></ul></ul>
    6. 6. Pulmonary Artery Flow-directed Catheter (Swan-Ganz) <ul><li>Pulmonary artery pressure-systolic, diastolic and mean pressures are usually monitored when a PA line is in place. PA measurement is obtained at the end of expiration of the Pt. so the intrathoracic pressure changes do not cause changes in the measurement </li></ul><ul><li>May measure systolic or diastolic </li></ul><ul><ul><li>Systolic-20-30’s </li></ul></ul><ul><ul><li>diastolic 5-12 </li></ul></ul><ul><li>PAD-Referred to as Pulmonary artery diastolic pressure </li></ul><ul><li>PAWP-Pulmonary artery wedge pressrue=PCWP </li></ul><ul><ul><li>Are sensitive indicators of fluid volume status and cardiac function. </li></ul></ul>
    7. 7. Thermodilution Cardiac Output <ul><li>Cardiac output-monitored in patients who are hemodynamically unstable. Usually the PA catheter is used to measure CO </li></ul><ul><li>Thermodilution technique is often used-a known amount of solution(saline or d5w) of known temperature(room or chilled) is injected rapidly into the right atrial lumen of the PA catheter. A drop in blood temp is detected by a thermister embedded in the catheter tip in the pulmonary artery. </li></ul><ul><li>CO is then calculated by a computer from the temperature waveform </li></ul><ul><li>Normal CO should be 4-8 l/min </li></ul><ul><li>CI-cardiac index = CO divided by BSA </li></ul><ul><li>CO or CI will be decreased in hypovolemia, shock, heart failure </li></ul><ul><li>Increases may be associated with sepsis prior to septic shock </li></ul>
    8. 8. Mixed venous oxygen saturation <ul><li>PA catheters have a sensor located on them which measures oxygen saturation of hemoglobin of pulmonary artery blood which is mixed venous blood </li></ul><ul><li>Normal SVO2 at rest is 60-80% </li></ul><ul><li>Blood gases may also be drawn from the PA line to determine mixed venous blood gas analysis and SVO2 </li></ul>
    9. 10. Floating the Swan <ul><li>Flush all ports, check balloon and zero </li></ul><ul><li>Once catheter tip is passed the introducer check pressure tracing and inflate balloon </li></ul><ul><li>While watching the waveforms advance the catheter smoothly </li></ul><ul><li>The catheter is advanced until a PA “wedge” is obtained (approximately 40-60 cm) </li></ul>
    10. 11. Floating the Swan
    11. 15. <ul><li>a wave – is the pressure wave seen in the jugular vein, as a result of the backward flow of blood produced after atrial contraction </li></ul><ul><li>c wave – depicts the pressure in the jugular as a result of the tricuspid valve closing after ventricular systole </li></ul><ul><li>x descent – occurs just after the c wave, and it depicts a significant drop in jugular pressure as a result of ventricular contraction and early atrial filling </li></ul><ul><li>v wave – is jugular pressure resulting from back-pressure from right atrial filling, occurring in late systole or in early diastole </li></ul><ul><li>y descent – follows the v wave and is a result of the tricuspid valve opening and passive filling of the ventricle </li></ul>
    12. 20. Measured Variables <ul><li>Mean arterial blood pressure </li></ul><ul><li>Heart rate </li></ul><ul><li>Mean right atrial pressure </li></ul><ul><li>Systolic and diastolic pulmonary artery wedge pressures </li></ul><ul><li>Cardiac output </li></ul>
    13. 21. Calculated Variables <ul><li>Cardiac index </li></ul><ul><li>Stroke index </li></ul><ul><li>Systemic vascular resistance </li></ul><ul><li>Pulmonary vascular resistance </li></ul><ul><li>Left and right ventricular systolic work index </li></ul>
    14. 22. Normal Cardiac Hemodynamics (Adult) Mean Pressure Diastolic pressure Systolic pressure Pressure site 70 – 105mmHg 60 – 90mmHg 90 – 140 mmHg Aorta 2 – 12mmHg 90 – 140 mmHg L ventricle 1 – 12mmHg Pulmonary art wedge 10 – 18mmHg 5 – 15 mmHg 15 – 30 mmHg Pulmonary artery 0 – 8 mmHg 5 – 30 mmHg R ventricle 0 – 8 mmHg R atrium
    15. 23. Normal Cardiac Hemodynamics (Adult) <ul><li>Fisk CO </li></ul><ul><ul><li>CO 3.5 – 8.5 L/min </li></ul></ul><ul><ul><li>CI 2.5 – 4.5 L/min/sq m </li></ul></ul><ul><li>Vascular resistance </li></ul><ul><ul><li>SVR 640 - 1200 dyne-sec-cm </li></ul></ul><ul><ul><li>PVR 45 -120 dyne-sec-cm </li></ul></ul><ul><li>Valve gradients </li></ul><ul><ul><li>Aortic <10 mmHg </li></ul></ul><ul><ul><li>Mitral Negligible </li></ul></ul><ul><li>Valve area </li></ul><ul><ul><li>Aortic 2.0 - 3.0 sq cm </li></ul></ul><ul><ul><li>Mitral 4.0 - 6.0 sq cm </li></ul></ul><ul><li>EF 40 – 60 % </li></ul>
    16. 24. Oxygen Parameters 120-160 ml/min/m sq Oxygen consumption index 200-250 ml/min Oxygen consumption (VO2) 60-80% Mixed venous saturation (SvO2) 95-100% Arterial oxygen saturation (SaO2) 7.38-7.42 pH 22-28mEq/L Bicarbonate (HCO3) 35-45 mm Hg Partial pressure of arterial CO2 (PaCO2) 80-100 mm Hg Partial pressure of arterial O2 (PaO2) Normal Range Parameter
    17. 25. Principal Indications for Swan-Ganz Catheter <ul><li>Acute myocardial infarction </li></ul><ul><li>Acute left ventricular failure </li></ul><ul><li>Shock </li></ul><ul><li>Cardiac tamponade </li></ul><ul><li>Pulmonary embolism </li></ul><ul><li>Acute respiratory failure </li></ul><ul><li>Cardiac surgery </li></ul>
    18. 26. Hypotension Low SVR High SVR High SVR High CI Low CI Low CI Low CVP High CVP Low CVP Vasogenic Cardiogenic Hypovolemic
    19. 27. Shock High SVR High SVR Low VO 2 Normal VO 2 Low CI Low CI High CVP High CVP Cardiogenic Heart Failure
    20. 28. Right Atrial Pressure <ul><li>Abnormally low </li></ul><ul><ul><li>True hypovolemia (hemorrhage) </li></ul></ul><ul><ul><li>Relative hypovolemia (vasodilators) </li></ul></ul><ul><ul><li>Negative intrathoracic pressure </li></ul></ul>
    21. 29. Pulmonary Artery Wedge Pressure <ul><li>Abnormally low </li></ul><ul><ul><li>Identical to those listed for right atrial pressure (low) </li></ul></ul><ul><ul><li>True hypovolemia (hemorrhage) </li></ul></ul><ul><ul><li>Relative hypovolemia (vasodilators) </li></ul></ul><ul><ul><li>Negative intrathoracic pressure </li></ul></ul>
    22. 30. Pulmonary Artery Wedge Pressure <ul><li>Abnormally high </li></ul><ul><ul><li>True or relative hypervolemia </li></ul></ul><ul><ul><li>Systolic or diastolic left ventricular dysfunction </li></ul></ul><ul><ul><li>Hindrance to left atrial emptying </li></ul></ul><ul><ul><li>Mitral regurgitation </li></ul></ul><ul><ul><li>Cardiac tamponade </li></ul></ul><ul><ul><li>Constrictive pericarditis </li></ul></ul><ul><ul><li>Positive intrathoracic pressure </li></ul></ul><ul><ul><li>Venous occlusive disease </li></ul></ul>
    23. 31. Cardiac Output <ul><li>Three main methods of measurement </li></ul><ul><ul><li>Flick method </li></ul></ul><ul><ul><li>Indicator-dilution method </li></ul></ul><ul><ul><li>Angiographic method </li></ul></ul>
    24. 32. Flick Method <ul><ul><ul><ul><li>The principal is that the amount of oxygen extracted by the lungs from air is equal to the amount taken up by blood in its passage through the lungs. Therefore, by measuring the rate of lung oxygen extraction and the oxygen content of the pulmonary arterial and pulmonary venous blood, the rate of pulmonary blood flow can be calculated. Unless there is a shunt, pulmonary blood flow equals cardiac output. </li></ul></ul></ul></ul>
    25. 33. The Indicator-dilution Technique <ul><ul><li>Is based on the principle that the dilution of an indicator is proportional to the volume of fluid to which it is added </li></ul></ul><ul><ul><li>If the amount and concentration of an indicator is known the volume of fluid in which it is diluted can be calculated </li></ul></ul><ul><ul><li>There are several specific indicator methods available, however, until several years ago, only two were used clinically. The most common is the thermodilution method. </li></ul></ul>
    26. 34. Cardiac Output (High) <ul><li>Acute </li></ul><ul><ul><li>Acute hypervolemia </li></ul></ul><ul><ul><li>ARDS, severe pneumonia </li></ul></ul><ul><ul><li>Septic shock </li></ul></ul><ul><ul><li>Drugs </li></ul></ul><ul><ul><li>Acute intoxications </li></ul></ul><ul><ul><li>Fever, heat stress, malignant hyperthermia </li></ul></ul><ul><ul><li>Anxiety, emotional stress </li></ul></ul><ul><ul><li>Delirium tremens (DT’s) </li></ul></ul>
    27. 35. Cardiac Output (High) <ul><li>Chronic </li></ul><ul><ul><li>Severe chronic anemia </li></ul></ul><ul><ul><li>Cirrhosis </li></ul></ul><ul><ul><li>Chronic renal failure </li></ul></ul><ul><ul><li>Pregnancy </li></ul></ul><ul><ul><li>Thyrotoxicosis </li></ul></ul><ul><ul><li>Polycythemia vera </li></ul></ul><ul><ul><li>Labile hypertension </li></ul></ul><ul><ul><li>Congenital heart disease (PDA) </li></ul></ul>
    28. 36. Cardiac Output (Low) <ul><li>Acute </li></ul><ul><ul><li>Acute hypovolemia (absolute or relative) </li></ul></ul><ul><ul><li>Acute severe pulmonary hypertension </li></ul></ul><ul><ul><li>Acute myocardial pump failure </li></ul></ul><ul><ul><ul><li>extensive MI </li></ul></ul></ul><ul><ul><ul><li>myocardial toxic injury (ethanol, CO poisoning, septic shock) </li></ul></ul></ul><ul><ul><ul><li>Following cardiopulmonary bypass </li></ul></ul></ul><ul><ul><li>Acute impairment of ventricular filling </li></ul></ul><ul><ul><ul><li>Increased intrathoracic pressure </li></ul></ul></ul><ul><ul><ul><li>Cardiac tamponade </li></ul></ul></ul><ul><ul><ul><li>Stunned myocardium </li></ul></ul></ul><ul><ul><ul><li>Acute ischemia </li></ul></ul></ul>
    29. 37. Cardiac Output (Low) <ul><li>Acute </li></ul><ul><ul><li>Arrhythmias </li></ul></ul><ul><ul><ul><li>Sustained VT </li></ul></ul></ul><ul><ul><ul><li>Extreme bradycardia </li></ul></ul></ul><ul><ul><li>Acute inotropic changes in a failing myocardium </li></ul></ul><ul><ul><ul><li>Beta-blockers </li></ul></ul></ul><ul><ul><ul><li>Ischemia </li></ul></ul></ul><ul><ul><ul><li>Acidosis </li></ul></ul></ul>
    30. 38. Cardiac Output (Low) <ul><li>Chronic </li></ul><ul><ul><li>Chronic severe pulmonary hypertension </li></ul></ul><ul><ul><li>Chronic myocardial pump failure </li></ul></ul><ul><ul><ul><li>Ischemia </li></ul></ul></ul><ul><ul><ul><li>Hypertensive or dilated cardiomyopathy </li></ul></ul></ul><ul><ul><ul><li>Severe valvular heart disease </li></ul></ul></ul><ul><ul><li>Chronic impairment of ventricular filling </li></ul></ul><ul><ul><ul><li>Constrictive pericarditis </li></ul></ul></ul><ul><ul><ul><li>Restrictive cardiomyopathy </li></ul></ul></ul><ul><ul><ul><li>Mitral or tricuspid stenosis </li></ul></ul></ul><ul><ul><ul><li>Atrial myxoma </li></ul></ul></ul>
    31. 39. Vascular Resistance <ul><li>Factors affecting blood-flow within the vascular tree </li></ul><ul><ul><li>Friction </li></ul></ul><ul><ul><li>Turbulent flow </li></ul></ul><ul><ul><li>Pulsatile flow </li></ul></ul><ul><ul><li>Vessel elasticity </li></ul></ul>
    32. 40. Systemic Vascular Resistance (SVR) <ul><li>Most useful in the management of critically ill patients with shock </li></ul>
    33. 41. Cardiac Tamponade <ul><li>Fluid accumulation in the pericardium causes elevation of intrapericardial pressure and a decrease in the transmural pressure of all four cardiac chambers </li></ul><ul><li>Abnormally high and equalized right atrial pressure and pulmonary wedge pressures </li></ul><ul><li>Heart rate increases </li></ul><ul><li>Cardiac output decreases </li></ul>
    34. 42. Treatment of Cardiac Tamponade <ul><li>Evacuation of pericardial fluid </li></ul><ul><ul><li>Pericardiocentesis </li></ul></ul><ul><ul><li>Median sternotomy </li></ul></ul>
    35. 43. Shunts <ul><li>Demonstrated by a absence of an expected pressure difference </li></ul><ul><li>With a significant ASD the left and right mean atrial pressures are within 5 mm of Hg. of one another </li></ul><ul><li>With VSD’s the ventricular pressures may also equilibrate </li></ul>
    36. 44. Shunts <ul><li>Evaluation of shunts requires: </li></ul><ul><ul><li>Detection </li></ul></ul><ul><ul><li>Classification </li></ul></ul><ul><ul><li>Localization </li></ul></ul><ul><ul><li>Quantitation </li></ul></ul>
    37. 45. Left to Right Shunts <ul><li>Characterized by two basic abnormalities </li></ul><ul><ul><li>Mixing of saturated (systemic arterial or pulmonary venous) with desaturated (systemic venous or pulmonary arterial) blood on the right side of the circulation </li></ul></ul><ul><ul><li>Increased pulmonary blood-flow relative to the systemic blood-flow </li></ul></ul>
    38. 46. Right to Left Shunts <ul><li>Characterized by two basic abnormalities </li></ul><ul><ul><li>Mixing of desaturated (systemic venous or pulmonary arterial) with saturated (systemic arterial or pulmonary venous) blood on the left side of the circulation, thus creating a oxygen step-down </li></ul></ul><ul><ul><li>Decreased pulmonary blood flow relative to systemic blood flow </li></ul></ul>
    39. 47. Complications Associated With venipuncture <ul><li>Accidental arterial puncture </li></ul><ul><li>Pneumothorax </li></ul><ul><li>Gas embolism </li></ul><ul><li>Hemothorax </li></ul><ul><li>Chylothorax </li></ul>
    40. 48. Complications Associated With Catheter Insertion <ul><li>Arrhythmias </li></ul><ul><li>Knots </li></ul><ul><li>Injury to the tricuspid or pulmonary valve </li></ul><ul><li>Cardiac tamponade </li></ul>
    41. 49. Q1- Conditions necessary for PA pressure to equal L. atrial pressure include all of the following except <ul><li>High levels of positive end-expiratory pressure are being delivered </li></ul><ul><li>PA pressure is greater than alveolar pressure </li></ul><ul><li>Pulmonary venous pressure is greater than alveolar pressure </li></ul><ul><li>PA cath is wedged. </li></ul>
    42. 50. Q2- Before accurate pressure can be obtained with PA cath., the pressure transducer must be calibrated and zeroed to the level of the: <ul><li>R. atrium </li></ul><ul><li>R. ventricle </li></ul><ul><li>Main PA </li></ul><ul><li>L. atrium </li></ul>
    43. 51. Q3 - Most common complication associated w/ the passage of a PA cath is: <ul><li>Development of dysrhythmia </li></ul><ul><li>Hematoma at entry site </li></ul><ul><li>Knotting in R. ventricle </li></ul><ul><li>PTX </li></ul>
    44. 52. Q4 – All of the following values can be derived from direct measurment during blood-gas analysis EXCEPT: <ul><li>Arterial blood oxygen tension (Pao 2 ) </li></ul><ul><li>Arterial hemoglobin oxygen saturation (Sao 2 ) </li></ul><ul><li>Mixed venous blood oxygen tension (Pvo 2 ) </li></ul><ul><li>Mixed venous hemoglobin oxygen saturation (Svo 2 ) </li></ul><ul><li>Cerebral oxygen consumption (Cvo 2 ) </li></ul>
    45. 53. Q5 - The oxyhemoglobin dissociation curve is shifted to the Left by: <ul><li>Decrease blood pH </li></ul><ul><li>Increased erythrocyte 2,3-diphosphoglycerate (DPG) concentration </li></ul><ul><li>Increased body temp </li></ul><ul><li>Methemoglobinemia </li></ul><ul><li>Carboxyhemoglobinemia </li></ul>
    46. 54. Q6 - The oxyhemoglobin dissociation curve is shifted to the Right by: <ul><li>Decrease blood pH </li></ul><ul><li>Increased H+ concentration </li></ul><ul><li>Increased erythrocyte 2,3-DPG </li></ul><ul><li>Increased body temp </li></ul><ul><li>Rising PCo2 </li></ul>
    47. 55. Q7 – A Swan ganz cath in a 70 kg male was placed through the Left subclavian vein and a wedge pressure is obtained. The approximate distance into the pt. should be? <ul><li>45cm </li></ul><ul><li>50cm </li></ul><ul><li>55cm </li></ul><ul><li>60cm </li></ul>
    48. 56. Q8 – Which sample of blood will have the lowest O2 tension <ul><li>Coronary sinus </li></ul><ul><li>Femoral vein </li></ul><ul><li>Portal vein </li></ul><ul><li>Renal vein </li></ul>
    49. 57. Q9 – Which sample of blood will have the highest O2 tension <ul><li>Coronary sinus </li></ul><ul><li>Femoral vein </li></ul><ul><li>Portal vein </li></ul><ul><li>Renal vein </li></ul>

    ×