Your SlideShare is downloading. ×
0
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Abg’s, cpap, & vents
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Abg’s, cpap, & vents

1,201

Published on

Published in: Health & Medicine
0 Comments
6 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,201
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
135
Comments
0
Likes
6
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Respiratory Care for Paramedics ABG, CPAP, Ventilation1-13 Voitek A. Novakovski BSRC, RRT, NREMT-P, CCEMT-P 1
  • 2. Ventilation vs. Respiration1-13 Voitek A. Novakovski RRT, CCEMT-P 2
  • 3. 1-13 Voitek A. Novakovski RRT, CCEMT-P 3
  • 4. 1-13 Voitek A. Novakovski RRT, CCEMT-P 4
  • 5. Respiratory Cycle, Capacities, and Volume
  • 6. Physiology of Respiration1-13 Voitek A. Novakovski RRT, CCEMT-P 6
  • 7. Normal ABG Values
  • 8. Abnormalities of Respiration Ventilation / perfusion (V/Q) defect –  Ratio of pulmonary alveolar ventilation to pulmonary capillary perfusion is disrupted –  Normal V/Q ratio is 1:0.8 = VA/CO –  Area of lung receives ventilation little or no blood flow = dead space ventilation u  IncreasedFIO2 results in increased SpO2 u  PCO2 may be normal or increased –  Area of lung receives blood flow but no ventilation = shunt unit u  IncreasedFIO2 does not result in increased SpO2 u  PCO2 may be normal or decreased© 2011 UMBC Breathing Management CCEMT-P SM 1-13 8
  • 9. Pathophysiology of Respiratory Disorders Shunt Normal Dead Space1-13 Voitek A. Novakovski RRT, CCEMT-P 9
  • 10. 1-13 Voitek A. Novakovski RRT, CCEMT-P 10
  • 11. Types of Failureu  Hypoxemic – Room air PaO2 ≤ 50 or SpO2 ≤ 85%u  Hypercarbic – PaCO2 ≥ 50 – pH ≤ 7.32u  Caution with patients that have acute on chronic failure – Their normal SpO2 may be ≈ 88% – Their normal PCO2 may be ≥ 501-13 Voitek A. Novakovski RRT, CCEMT-P 11
  • 12. Manifestations of Respiratory Distressu  Altered Mental Statusu  Increased Work of Breathing –  Tachypnea -the single most important indicator of critical illness –  Accessory muscle use, retractions, paradoxical breathing patternu  Catecholamine release –  Tachycardia, diaphoresis, hypertensionu  Abnormal blood gas values –  Oxyhemaglobin Saturation1-13 Voitek A. Novakovski RRT, CCEMT-P 12
  • 13. 1-13 Voitek A. Novakovski RRT, CCEMT-P 13
  • 14. Pulse Oximetryu  IR spectroscopyu  Arterial oxygen saturationu  False readings – CO poisoning – Temperature extremes – Medications causing vasoconstriction – Nitrates – Movement – Extraneous light sources 14
  • 15. Oxygen Saturation Curve1-13 Voitek A. Novakovski RRT, CCEMT-P 15
  • 16. Pathophysiology of Hypoxemiau  Ventilation/Perfusion Mismatch – Shunt effect – Increased Dead Space u Alveolar Hypoventilationu  Decreased Diffusion – Pulmonary Contusion – High Altitude – Pulmonary Edema1-13 Voitek A. Novakovski RRT, CCEMT-P 16
  • 17. A nasty mosis Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P, 17
  • 18. Pathophysiology of Hypercapniau  Bradypnia – decreased f (resp rate)u  Hypopnia – decreased Vt (tidal vol) a.  VT=VA+VD Average VD=150 ml or≈30% b.  Minute Volume = the total amount of air going in and out of the lungs per minute c.  Minute Alveolar Ventilation = the total amount of air going into and out of the alveoli per minute = f X (VT-VD)1-13 Voitek A. Novakovski RRT, CCEMT-P 18
  • 19. Pathophysiology of Hypercapnia1-13 Voitek A. Novakovski RRT, CCEMT-P 19
  • 20. Pathophysiology of HypercapniaA.  f=12, VT=400ml A.  ? VA=B.  f=24, VT=250ml A.  ? VA=1. Which patient will have a higher CO2?1-13 Voitek A. Novakovski RRT, CCEMT-P 20
  • 21. Pathophysiology of Hypercapniau  Hypovolemiau  Low cardiac outputu  Pulmonary embolusu  High mean airway pressuresu  Short-termcompensation by increasing tidal volume and/ or respiratory rate 1-13 Voitek A. Novakovski RRT, CCEMT-P 21
  • 22. Capnographyu  IR spectroscopyu  CO2 levels at airway entranceu  Alveolar CO2 levels may be estimatedu  Excellent detector of cardiac output – CPR – Keep ETCO2 ≥ 10 – ROSC – Sudden increase to ≥ 35-40 22
  • 23. Arterial Blood Gas (ABG)Acid-base balance / respiratory involvement–  pH, PO2, & PCO2 are measured (HCO3 is calculated)–  Assess pH: acidosis / alkalosis e.g. ± pH 7.40–  Assess pCO2: hyper / hypocapnea ± 40–  Changes in pH from changes in PCO2 u Acute: 10 mmHg change in PCO2 = 0.08 change in pH u Chronic: 10 mmHg change in PCO2 = 0.03 change in pH 23
  • 24. Arterial Blood Gas (ABG) – There is no such thing as complete compensation u If change in pH not from PCO2 than there is a metabolic component1-13 Voitek A. Novakovski RRT, CCEMT-P 24
  • 25. ABG Samplingu  Radial artery puncture –  Modified Allen Test – needs to be doneu  Indwelling access –  Procedure varies by deviceu  I-STAT, IRMA etc. portable blood gas analyzers known as POC devices. Know the law, CLIA determines who can analyze. 25
  • 26. Quiz Time2. pH 7.28, PCO2 55, PO2 583. pH 7.52, PCO2 25, PO2 484. pH 7.25, PCO2 50, PO2 705. pH 7.50, PCO2 30, PO2 756. pH 7.22, PCO2 34, PO2 947. pH 7.37, PCO2 52, PO2 501-13 Voitek A. Novakovski RRT, CCEMT-P 26
  • 27. Ventilator Management9/11/2011 Voitek A. Novakovski BSRC, RRT, NREMT-P, CCEMT-P 27
  • 28. Insufflation of Tobacco Smoke per Rectum Copyright Intensive Care On-line Network 2002
  • 29. Ventilator ProceduresIn case of instability or mechanical difficulty, disconnect the ventilator and use manual ventilation. 29
  • 30. On-Board O2 Calculationu  To calculate how long an oxygen tank will last (safety factor ≠! 200 psig) –  Know the tank factors: u  H or K = 3.14 u  M = 1.65 u  E = 0.28 u  D = 0.16u  Tank Life in Minutes = (tank pressure in psi x factor) liters per minute8. You have a Pt on a non-rebreather @ 15 Lpm. You are using an E cylinder with 1800 psig. How long will it last before you should change it? 1-13 30
  • 31. Terminologyu  Fraction of Inspired u  I:E Ratio Oxygen (FiO2) u  Airway Pressureu  Tidal Volume (VT) –  Actualu  Deadspace (VD) –  Mean –  Peaku  Frequency (f) u  Complianceu  Minute Ventilation (VE)u  Minute Alveolar u  PEEP (Positive End Ventilation (VA) Expiratory Pressure)/u  Flow Rate CPAPu  Inspiratory Time 31
  • 32. Fraction of Inspired Oxygenu  Oxygenconcentration, expressed as fraction in decimal form – e.g. 50% O2 = FiO2 0.5 – FiO2 of 0.65 = 65% O2 32
  • 33. Airway Pressureu  Actual (Paw) – Real-time airway pressureu  Mean (MAP) – Mean pressure over one complete ventilatory cycle or over a specific period of timeu  Peak (PIP) – Highest pressure over a single ventilatory cycle SM CCEMT-P 6/98 33
  • 34. Inspiratory (I) Timeu  Amount of time to deliver a single breath, measured in secondsu  In Time Cycled Ventilation: I time x flow rate = VT9. If frequency is 12, and I time is 1.5 seconds, what is the Expiratory (E) time?10. How long is each breath cycle SM CCEMT-P 6/98© 2001 UMBC Breathing Management 34
  • 35. Flow Rateu  Inspiratory(I) flow measured in lpmu  Maintain desired I : E ratiou  Flow may affect pressuresu  In Time Cycled Ventilation: flow rate x I time = VT 30 Lpm x 1.5 seconds = 750 ml 60 Lpm x 0.5 seconds = 500 ml11. 40 Lpm x 0.75 second = ? VT 35
  • 36. I:E Ratiou  Ratio of time for I:E for normal breathing is 1:2u  Clinical situations may require ratio to change (ET tubes cause resistance to exhalation and may require longer expiratory times and I:E of 1:3 or longer. 36
  • 37. Complianceu  Measure of the willingness of the lungs to expand with a positive pressure breath – Increased compliance u Lungs are more receptive to a mechanical breath u Reflected in lower airway pressures 37
  • 38. 1-13 Voitek A. Novakovski RRT, CCEMT-P 38
  • 39. Spontaneous vs. Mechanical breathing - supine u  increases ventilation to non-perfused areas u  increases V/Q mismatch u  increases posterior consolidation/atelectasis u  increased diaphragmatic tone decreases atelectasis u  decreases venous return and cardiac output9/11/2011 39 Voitek A. Novakovski BSRC, RRT, NREMT-P, CCEMT-P, AE-C
  • 40. Compliance – Decreased compliance u Lungs are less receptive to a mechanical breath, and airway pressures increase –  Patient may be developing a pneumo or hemothorax, –  Restrictive lung disease or process such as pneumonia, or atelecasis –  Developing ARDS or pulmonary edema u Patients with COPD usually have high compliance with increased expiratory resistance.1-13 Voitek A. Novakovski RRT, CCEMT-P 40
  • 41. Resistanceu  This is reflected when there is a high PIP but low plateau pressures and a long exhalation time. – Common with Asthma or Acute COPD exacerbation1-13 Voitek A. Novakovski RRT, CCEMT-P 41
  • 42. Mechanical Ventilationu  Complications –  Bio-mechanical Trauma/Pneumothorax u  Reduced by PEEP u  Avoid overdistention –  Airway trauma Keep head aligned with u  torso –  Atelectasis u  Humidify the air (HME) u  Avoid excessive suction u  Vary Pt’s position –  Oxygen toxicity Use the lowest FIO2 that u  results in adequate PaO2 –  Device dependence 42
  • 43. Portable Ventilatorsu  Complications –  Machine failure –  Hypotension –  Pulmonary infection –  GI malfunction –  Renal malfunction –  CNS malfunction –  Psychological trauma 43
  • 44. Potential Complications of MVu  Ventilator malfunction –  Manually ventilate patientu  Cardiovascular compromise –  Especially initial hypotension which responds well to fluid bolus –  Careful to avoid fluid overload u  Check BS for cracklesu  Dysrhythmias –  Monitor vital signsu  Monitor PIP for changes –  Breath sound equality
  • 45. Potential Complications of MVu  Pulmonary oxygen toxicity – goal: FIO2 as low as possible while maintaining a PaO2 > 70, SpO2 ≥ 94%u  Positive fluid balance – monitor BP, I/O, and breath soundsu  Gastric distention – monitor bowel sounds, NG tube
  • 46. 1-13 Voitek A. Novakovski RRT, CCEMT-P 46
  • 47. Principles of Ventilatory Supportu  Oxygenation – PO2 u Affected by controlling FiO2, FRC, and/or Mean Pawu  Ventilation – pH – PCO2 u Affectedby controlling VA (Minute Alveolar Ventilation) 47
  • 48. Common Mechanical Ventilator Characteristics (1 of 2)u  Power source: pneumatic or electric – External – Internalu  Cycling – Which variable terminates inspiratory phase of breath: vol, time, flow, or pressureu  Breath delivery – Either positive or negative pressure
  • 49. Common Mechanical Ventilator Characteristics (2 of 2)u  Parameters – Mode, tidal volume, respiratory rate, flow, FiO2, PEEP selected by clinicianu  Ventilator circuit – Reusable or disposableu  Alarms – Vary in type – Set for individual patient, never disabled
  • 50. Ventilator Setup Procedures–  FiO2: Always start at 1.0 and adjust by SpO2–  Select mode (if Pt transport try to mimic settings of ventilator patient is on)–  Set respiratory rate–  Set tidal volume, Insp time, or Pressure–  Set flow rate; if adjustable–  Set PEEP–  Connect ventilator and observe for stability–  Check PIP, Plateau Pressure, and return Vol,–  Set alarms–  Patency of circuitry and all connections–  Check vital signs, SpO2, and ETCO2 50
  • 51. Modes of Ventilationu  Overview – Control – Assist/Control – Synchronized Intermittent Mandatory Ventilation (SIMV) – Pressure Control – Pressure Support – Continuous Positive Airway Pressure (CPAP) 51
  • 52. ControlAll parameters of the ventilator cycle (frequency, VT, flow rate) are controlled by the ventilator – Patient is “locked out” from triggering a breath – Patient has no active role in ventilatory cycle – Rarely used 52
  • 53. Assist/Controlu  Usually Volume cycled ventilation – Most popular and easily applied – Essential parameter to control is volume delivery, inspiratory flow (time), f (rate), FiO2, and sensitivity (-2cmH2O)u  Tidal volume (VT) and minute volume (VE) are predictable, PIP variableu  Anxious patients may create stackingu  Ventilator may be triggered by road vibrations. 53
  • 54. Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 54
  • 55. SIMV or SIMV with PSu  Ventilator delivers set number of machine breaths at set FiO2 –  Respiratory rate, Insp Flow, and VT are set –  Synchronized with patient’s spontaneous effortsu  Additional spontaneous breaths possible through circuit –  Spontaneous breaths may Pressure assisted –  Flow rate and VT are patient controlled –  Keeps respiratory muscles active and coordinatedu  Decreases stacking and need for sedation 55
  • 56. Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 56
  • 57. Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 57
  • 58. Pressure Controlu  Pressure limited-time cycled ventilation –  Inspiration ends at a pre-set time and airway pressure –  Volume per breath may be variable –  Often used with ARDS to limit applied pressure –  Exhaled volume must be monitored closely –  Not well tolerated by awake patients and usually requires deep sedation1-13 Voitek A. Novakovski RRT, CCEMT-P 58
  • 59. Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 59
  • 60. Pressure Supportu  Pressure limited-flow cycled ventilation –  Inspiration limited by applied pressure, and ends at a pre-set terminal flow –  Volume per breath may be variable –  Lungs should be relatively free of resistance and compliant –  Patient sedated or cooperative –  Usually support needed for less than 24 hours or weaning from long term ventilation –  May be used for long-term chronic supportu  Often used with SIMV to enchance spontaneous breaths and overcome ET tube resistance. 60
  • 61. Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 61
  • 62. Dual Modesu  Starts as a Pressure Limited mode which adjusts the pressure limit on a breath by breath basis in order to achieve a desired Tidal Vol (VT) and/or Minute Vol (VE)u  Utilize the advantages of pressure limited modes which allow flow to more accurately meet patient demand. –  PRVC: Pressure Regulated Volume Control –  Volume Control Plus –  Volume Support –  Automode 62
  • 63. General Clinical GuidelinesTidal volume (VT) 6-8 ml/KgRespiratory rate (f) 10-14 bpm (ETCO2 35-40)FiO2 ABG (PO2) or SpO2≥94%Flowrate 40-60 lpm (I:E ratio)PIP ≤ 40 cmH2OMinute volume (VE) ABG(PCO2/pH)ETCO2Sensitivity -2 cm, adjust as neededHigh Pressure Limit 10 cm above PIPLow Pressure Limit 10 cm below PIP 63
  • 64. Monitorsu  Airway Pressure (Paw or PIP) – Real time manometer or graph – Range: 0-120 cm H2O (depends on vent)u  Monitor Display – Breath rate – Flow – High pressure alarm – Low pressure alarm – PEEP – I time or I:E – VT – VE 64
  • 65. Ventilator Alarmsu  High airway pressure (PIP)u  Low airway pressureu  High respiratory rateu  Low respiratory rateu  High minute volumeu  Low minute volumeu  Low exhaled tidal volumeu  Apnea
  • 66. Ventilator Alarms (con’t)u  High pressure limit –  Usually set 10 cm H2O above patient’s average PIP –  When activated, ventilator terminates breathu  Causes of high pressure alarm violation –  Resistance to gas flow: kinks or water in tubing, secretions, bronchospasm, patient coughing, gagging, “fighting the ventilator” –  Decrease in lung compliance, lungs become “stiffer”: atelectasis, pneumothorax, pulmonary edema
  • 67. Ventilator Alarms (con’t)u  Low pressure limit –  Primary cause: patient disconnect, or leak in system –  Inspiratory flow too low and patient gasping for air (increase flow to meet demand)u  Low exhaled volume or minute ventilation –  Usually set ~10% below set VT and average VE –  Ensures adequate alveolar ventilation is maintained –  Causes: air leaks, decrease in compliance with PSV and PCV, high pressure alarm triggered and breath delivery terminated –  Check for bubbling in chest tubes
  • 68. Ventilator Alarms (con’t)u  High Rate: usually set ≈ 10 over average rate – Alarm indicates agitation, hypoxia, or insufficient VT – Check vital signs, SpO2, ETCO2, exhaled VT, or provide sedation – May be due to “auto-cycling”, check sensitivity, or check for leaks in circuit1-13 Voitek A. Novakovski RRT, CCEMT-P 68
  • 69. Ventilator Alarms (cont)u  Highexhaled tidal volume or minute ventilation – Increased metabolic demand – Neurologic abnormality – May indicate hypoxemia – Anxiety – Pain – Fever – Acidosis
  • 70. Ventilator Alarms (con’t)u  Low Rate: usually set ≈ 10 below average rate – For spontaneous breathing modes like PS or CPAP this alarm is critical and indicates either patient is fatigued or over sedated.u  Low tidal volume: usually ≈ 10% below average or set VT – Alarm usually due to leak in the system – In PS or CPAP pt fatigued or over sedated1-13 Voitek A. Novakovski RRT, CCEMT-P 70
  • 71. Ventilator Alarms (cont)u  Apnea Alarm: this alarm is mostly used with PS or CPAP: – Patient has stopped breathing – May initiate apnea backup ventilation on some ventilatorsu  Disconnect: some ventilators have this alarm in addition to a low pressure alarm. 71
  • 72. Ventilator Alarms (cont)u  Apnea Alarm: this alarm is mostly used with PS or CPAP: – Patient has stopped breathing – May initiate apnea backup ventilation on some ventilatorsu  Disconnect: some ventilators have this alarm in addition to a low pressure alarm.
  • 73. Ventilator Alarms (continued)u  Ventilator Inoperative (some vents) –  normal operation ceases u  Breathe room air if spontaneous breathing is present –  recoverable u  Lossof external power or voltage out of range u  Mode switch temporarily set to Off –  non-recoverable u  Software or CPU problemu  External Power Low/Fail –  Ventilators with this alarm switch to internal battery 73
  • 74. Ventilator Alarms (cont)u  Battery Low/Fail – Switch to external poweru  Low PEEP – Monitored PEEP value deviates from manually set value: check for leaks in systemu  Transducer Calibration – Self test shows baseline pressure +/- 2 cm H2O from zero – Calibrate ventilator 74
  • 75. Flow-Restricted, Oxygen-Powered Ventilation Device (1 of 4)u  Third potential source for artificial ventilation – Manually triggered ventilator or demand valve – Used to ventilate apneic patients or to administer supplemental oxygen to spontaneously breathing patients
  • 76. Flow-Restricted, Oxygen-Powered Ventilation Device (2 of 4)Demand valve triggered by the negative pressure generated during inhalationValve automatically delivers 100% oxygen and stops the flow of gas at the end of inhalation.Patients find it mostcomfortable if theyhold the mask to theirface themselves.
  • 77. Flow-Restricted, Oxygen-Powered Ventilation Device (3 of 4)u  Apneic patients –  Pushbutton on top of the FROPVD can control the flow of oxygen. –  When depressed, 100% oxygen flows at a rate of 40 L/min.u  Requires an oxygen source –  Operator cannot feel whether the patient is being adequately ventilated with this device.
  • 78. Flow-Restricted, Oxygen-Powered Ventilation Device (4 of 4)u  Use –  Has been used for several years –  Recent findings suggest that it should not be used routinely because of the high incidence of gastric distention and damage to intrathoracic structures caused by barotraumas. –  Should not be used when ventilating infants or children or for patients with possible cervical spine or chest injury –  Cricoid pressure may need to be maintained to ventilate nonintubated patients.
  • 79. Skill Drill 11-21: Flow-Restricted, Oxygen-Powered Ventilation for Apneic Patients (1 of 2)Step 1 Step 2 Step 3
  • 80. Skill Drill 11-21:Flow-Restricted, Oxygen-PoweredVentilation for Apneic Patients (2 of 2) Step 4 Step 5
  • 81. Skill Drill 11-22: Flow-Restricted, Oxygen-Powered Ventilation Device for Conscious, Spontaneously Breathing PatientsStep 1 Step 2 Step 3
  • 82. PEEP vs. CPAP ? ? ?? ?
  • 83. Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 83
  • 84. Lung Volume TOTAL LUNG CAPACITY (6000 cc) 3100 cc Inspiratory Reserve Inspiratory Capacity 500 cc Tidal volume Expiratory 1200 cc Reserve F.R.C. Functional Residual Capacity Residual 1200 cc Volume Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 84
  • 85. PEEP u  Positiveend expiratory pressure u  Increases functional residual capacity (FRC) Voitek A. Novakovski BSRC, RRT, NREMT-P, CCEMT-P,9/11/2011 CCEMT-P AE-C 85
  • 86. Collateral channels of ventilation: Pendeluft Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 86
  • 87. 1-13 Voitek A. Novakovski RRT, CCEMT-P 87
  • 88. PEEPu  Definition – Positive End Expiratory Pressure: The Application of positive pressure to the airway at end exhalation. – Used to increase FRC to normal levels.u  Used with other mechanical ventilation modes such as A/C, SIMV, PS, or PCV 5 cm H2O PEEP
  • 89. CPAPu  Definition: PEEP applied to a spontaneously breathing patient: without mechanical assist. –  Continuous Positive Airway Pressure: Constant positive pressure throughout the ventilatory cycle –  Requires spontaneous respiratory drive –  Rate and VT determined entirely by the patient 10 cm H2O PEEP Time
  • 90. Spontaneous Breathing Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 90
  • 91. Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 91
  • 92. CPAPu  Must set back-up ventilation parameters if availableu  Benefits by normalizing FRC: – Increases compliance – Decreases atelectasis – Reduces pulmonary edema – Increases PaO2 – Decreases work of breathing (WOB) – Splints airways in Asthma and COPD 92
  • 93. CPAP The National Association of EMS Physicians (NAEMSP) believes that noninvasive positive pressure ventilation (NIPPV) is an important treatment modality for the prehospital management of acute dyspnea. This document is the official position of the NAEMSP. Read More: http://informahealthcare.com/doi/abs/ 10.3109/10903127.2011.561418 Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 93
  • 94. 10 Commandments of Transport Ventilation 1)  Maintain set PEEP (bagging) 2)  Hold ETT when switching 3)  Your vent = their vent 4)  Transition to vent early and observe 5)  Security of airway. Re-tape if necessary 6)  Adequate portable oxygen supply 7)  Judicious use of paralytics or sedatives 8)  Track plateau versus PIP 9)  Maintain EtCO2 and SpO2 10)  Minimal to no changes Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 94
  • 95. Critical Care Ventilator Transportu  It is important that you set your ventilator to settings as close as possible to what kept the patient stable in the hospital. Adjust as neededu  If you are unable to stabilize the patient on your ventilator, then a respiratory therapist may be required to accompany you using the hospital ventilator, or you may have to refuse transport.u  If you take their ventilator, make sure it is compatible with your power source.u  Do not attempt to transport a patient that is beyond your capability to maintain. Voitek A. Novakovski BSRC, RRT, NREMT-P, 9/11/2011 CCEMT-P CCEMT-P, AE-C 95
  • 96. Pharmacologic Adjunctsu  Bronchodilators – β2-agonists – Anticholinergics (ipratropium)u  Corticosteroidsu  Sedativesu  Paralyticsu  Pressorsu  Inotropic agents1-13 Voitek A. Novakovski RRT, CCEMT-P 96
  • 97. Paul Andrate Voitek A. Novakovski BSRC, RRT, NREMT-P,9/11/2011 CCEMT-P CCEMT-P, AE-C 97
  • 98. Quizu  Pt 32 y/o intubated on vent, VT 450ml, f 14, FiO2 1.0 – ABG pH 7.37, PCO2 42, PO2 64 – What would you change or add?u  Pt 17 y/o Asthmatic on 4L/NC with bilat insp and exp wheezes. – ABG pH 7.43, PCO2 36, PO2 92 – What 2 classes of drugs plus other options might help this young man? Voitek A. Novakovski BSRC, RRT, NREMT-P,1-13 CCEMT-P 98
  • 99. Noninvasive Positive-Pressure Ventilation (NPPV)1-13 Voitek A. Novakovski RRT, CCEMT-P 99
  • 100. Relative Contraindications for NPPVu  Decreased level of consciousnessu  Poor airway protective reflexesu  Copious secretionsu  Cardiovascular instabilityu  Progressive pulmonary decompensationu  Upper gastrointestinal hemorrhage1-13 Voitek A. Novakovski RRT, CCEMT-P 100
  • 101. Initiation of NPPVu  Set FIO2 at 1.00u  Hypoxemic failure – Inspiratory pressure (IPAP) 10 cm H2O – Expiratory pressure (EPAP) 5 cm H2O – Titrate EPAP in 2 cm H2O incrementsu  Ventilatory failure – IPAP 10 and EPAP 2 cm H2O – Titrate IPAP in 2 cm H2O increments
  • 102. Initiation of NPPVu  Make changes every 15-30 minutesu  Monitor vital signs, appearance, pulse oximetry and blood gasesu  Head of bed at 45° angleu  Consider gastric decompressionu  Intubation if patient deteriorates
  • 103. Airway pressure release ventilation Copyright Intensive Care On-line Network 2002
  • 104. APRVCopyright Intensive Care On-line Network 2002
  • 105. APRVu  Advantages u  Potential –  Lower peak/plateau disadvantages –  Spontaneous –  Change in compliance breathing permitted = change in volume –  Decreased sedation –  New technology –  Elimination of NMB –  Limited access u  (Frawley & Habashi –  More research 2001) –  Transports Copyright Intensive Care On-line Network 2002
  • 106. 1-13 Voitek A. Novakovski RRT, CCEMT-P 106

×