Your SlideShare is downloading. ×
0
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Phycology lecture
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Phycology lecture

2,066

Published on

Published in: Education, Technology, Business
1 Comment
0 Likes
Statistics
Notes
  • Thanks, much appreciated.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

No Downloads
Views
Total Views
2,066
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
95
Comments
1
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Phycology LectureCoverage: Algae: Microalgae - phytoplankton Macroalgae - seaweeds Sea grasses – vascular (upper margin of the intertidal zone) Mangroves – vascular (estuarine) Beach and coastal – seashore (inland)Plants Require: Water and CO2 Mineral ions/Nutrients Light – for photosynthesis
  • 2. Development:Life cycle – alternation of sporophytic and gametophytic generationHigher plants –involve tissues (xylem – conduction of water (phloem – conduction of food / by products of photosynthesis)Sporophytic Generation Multi-celled diploid body producing haploid sporesGametophytic Generation Multi-celled haploid body producing haploid gametes
  • 3. Algae Division Cyanophyta (blue-green) - Pyrrophyta/ Monera Dinophyta (dinoflagellates) Chrysophyta (golden algae/ diatoms) Englenophyta (photosynthetic flagellates) Plantae Pyrrophyta/Dinophyta (dinoflagellates) Rhodophyta – red algae Phaeophyta – brown algae Chlorophyta – green algae
  • 4. Intertidal Communication TiesSpecies Major Sub-division Algal GroupsUltra, Enteromorpha supra littoral zone species w/ stand dessicationProstrate brown algae supra littoral fringe species w/ strong wavesSargassum, Turbinaria mid littoral species w/ anchored in deep substrateBrown Algae sub littoral w/ stand variable illumination w/ stand wave action w/ stand temperatureFactorsa. Tide tidal amplitude (vertical range) tidal frequency (diurnal, semi diurnal mixed)b. Exposure of Algae shore topography wave action time of dessicationc. Type of substrate basic composition (material forming) peeble calcified rock
  • 5. Algal Body/Thallus Higher Plants Algae Roots rhizoids/rhizomes (holdfast) Stems stipes Leaves blades Pigments: Chlorophyll – a, b, c, d, e Carotenoids – B carotene, L-carotene (yellow) Xantophyll – Lutein, Zeaxanthin, Fucoxanthin, Neoxanthin ( yellow/golden) Phycobillins – Phycocyanin (blue-green), phycoerythrin (red, purple)Reserved Foods Cellulose Mannitol Laminarin/chrysolaminarin Oil Starch
  • 6. Morphology Filamentous – single/double stranded Foliose – blade like Siphonoceous – siphon Crustose – encrusted with CaCo3 Parenchymatous-medulla cells cuboidal/spherical Pseudoparenchymatous-medulla cells isodiametricLocation of Meristems – actively dividing cell Apical- apex region (elongate) Diffuse-all over (foliose) Intercalary-at certain regions (usually give rise to branches)Habit: sessile/attached Phytoplankton free-floating picoplankton- 2 um planktonic ultraplankton – 2-5 um nanoplankton – 5-20 microplankton – 20-200 um
  • 7. Division Pigment Reserved Food HabitCyanophyta chloro a starch planktonic Carotene benthic PhycobillinChrysophyta chloro a & b oil planktonic Xanthophyll chrysolaminarin Carotene benthicPyrophyta chloro a & c starch planktonic Xanthophyll oil Carotene fatsPhaeophyta chloro a & c laminarin benthic Xantophyll oil Carotene
  • 8. Rhodophyta chloro a starch benthic Carotenes PhycobillinChlorophyta chloro a & b starch benthic CaroteneAnthophyta chloro a & b starch benthic CarotenesTypes of Gametes 1. isogametes (sex cells appear the same) 2. anisogametes (unequal) 3. heterogametes (unequal) 4. homogametes (sex cells appear the same)
  • 9. Spores Produced Organs Monospore – monosporgangium Tetraspore – tetrasporangia Carpospores- carposporangium Conchospore- conchosporagium Auxospore – auxosporangia Organs: Special Types Male – antherium/spermatium Female – ooganium Homogametes (sex cells appear the same)
  • 10. Forms: Morphology Crustose – encrusted w/ CaC03 -Coenocytic Filamentous – as a filament -Cylindrical Foliaceous – leafy -Cartilaginous Siphonaceous –Distribution - Based on availability of photosynthetic pigments (red and blue) and activation of accessory pigments, carotenoids, xanthophylls and phycobillins HTM Green (dominant) Intertidal/Litoral Brown RedPhotosynthesis at; LTM- Red and Blue Brown (dominant) Effective Light Red Green Red (dominant) Green Brown
  • 11. R O Y G B I V Water Levelchlorophyll xanthophylls carotenoids chlorophyll
  • 12. Water Characteristics:Transparency -affect photosynthesis at certain depthTurbidity -Low penetration -Limits photosynthesisSubstrate Characteristics: Algae types based on Root Structure Holdfast – discoid holdfast Rhizoids – stolon Haptere – spines/spiresEcology of the AlgaePhysical: Temperature - factor for the rate of metabolism. Higher the temperature, rate of metabolism up to the optimum range.
  • 13. Shelford’s Law of Tolerance optimum deficient excessive fatal fatal Factor (Temperature/Salinity etc.)
  • 14. Temperature Sources: 1. radiation 2. radioactive decay of substances 3. day lengthHeat Loss - conductive process - convection - current flowWater Current/Movement - waves - currents -distribution of nutrients - tides
  • 15. Photynthesis – spectrum (ROYGBIV) Day length: long – chlorophyll & carotenoids short –xanthophylls and phycobilins Affects; -Metabolism -Growth -Occurrence -Distribution -Reproductive MaturityPenetration and Absorbance Visible light – 390 nm to 760 nm Ultra violet light – 290 nm to 390 nm Infrared – 760 nm to 3000 nm________290_________390________760________30000 UV VL IR
  • 16. FATE OF LIGHT reflected (90%) scattered scattered & reflected back absorbed absorbed (10-45%)Transmittance T = I1 / I2 Overall I1 = irradiance at depth 1 Transmitance 25 m I1 I2 = irradiance at depth 50 m I2
  • 17. Distribution Zonation of Algae Light - irradiance Green (upper) - temperature - substrate Brown (mean) Red (deeper water) Change of Light Effects: - color pigmentation/activation - reserve food production rate - reproductive biology - gametophytic development - sporophytic development
  • 18. TemperatureEffect:Biological organization - Molecular (biochemical reaction; carbohydrate, protein metabolism) - Cellular - Organismal - Community StructureOrgans: Spermatangium – sperm (male) Ooganium – egg (female) Sporangium – sporeEffects: High temperature - denaturation of protein - damage to enzymes - damage in the cell membrane
  • 19. Low temperature: - causes disruption of lipids - damage to cell membrane - mechanical damage of cell through the formation of ice crystalTolerance - increase in cellulose - increase in cell membrane - frost camouflage - increase in the reserve food products - efficient but minimal use of productsWater Movement - Current flow - tradewind - easterlies - westerlies
  • 20. Effect - distribution of heat(- conduction, convection) - distribution of nutrients effected by: - surface rate - vertical movement - upwelling - distribution of gases - distribution of spores, sex cellsGeneration of Waves 1. caused by wind (meteorological) 2. caused by tide (gravitational pull ) 3. earthquake and land slide (geologic)Waves Result from: 1. Deflection of wind as it blows over the surface 2. changes in atmospheric pressure
  • 21. Anatomy of Waves Length H – height Crest T – time L – length Height Depth D – water depth Wave Break: Time D = (4/3) H (shallow water) H = 1/7 (L) (deep water)
  • 22. 1st quarter Neap TideFull Moon Spring tide Spring tide New Moon Neap Tide 3rd quarter
  • 23. Waves WC – wave crest WT – wave time/period WH – wave height WD – wave depthShallow water break happens when ¾ H ; i.e Drag/Friction at the bottom of the wave happensTides – the periodic rise or fall of sea level due to gravitational attraction between sun, moon and earth
  • 24. Neap Tide (1st & 3rd Quarter) Gravitational PullCentrifugalforce Moon(rotation of theearth in itsaxis) Spring Tide
  • 25. Classifications: Semi-diurnal – 2 Low and 2 High Diurnal – Single Low and Single High Mixed – Semi-diurnal and single low/single high Spring tide (S – M – E aligned) Neap tides (S – M- E at 45o angle)
  • 26. Currents Horizontal current – wind driven ( westernlies, easterlies, trade winds) Caused by prevailing wind patterns Deep Vertical Currents C-slope, C-rise and abyssal plain (the result of salinity and temperature gradient) Air - mixture of different kinds of gases Process; First;Equator and at warmer latitudes, heated air expands and rises Later:  Low pressure area is produced and cooled air moves  Rising air is carried north or south of the equator and eventually cools, contracts and sinks, creating a high pressure area
  • 27. Deflection of air masses : to the right in N. Hemisphere and to the left in S. Hemisphere due to Coriolis effect because of the spinning of the planet.Easterly Tradewind - produces the equatorial current EQ Current : North – western B. current Eastwind - Western Trade windVertical Currents Upwelling/Downwelling Caused by: 1. halocline/thermocline (salinity/density and temperature grdient) 2. Offshore winds – push the surface and cause the deep water to move to the surface.
  • 28. 3. Divergence – produced when deep water and surface current interaction occurs that is possible when currents pass through another current4. Wake strain – nearby water surface is pulled along with a strong current5. Turbulence – due to rapid current passing over shallow and rough benthos
  • 29. Chemical FactorsAffect the: Occurrence of marine plants Distribution Abundance Rep cycle – seasonal (die-off; dormant in the production of sex cell/sporeFactors: Pure water plus salt (Na, Cl, Mg ,Ca) increase, correspondingly increase 1. osmotic pressure 2. boiling pt 3. density 4. conductanceLower: 1. vapor pressure 2. freezing pt (solidify pure water)
  • 30. Salinity Ranges; Oceanic – 32-38 ppt Neritic – 25 – 32 ppt Estuarine – 1-15-32 ppt Hypersaline (Red Sea) – above 38 pptSeaweeds Classification Euryhaline – 30 to 40 ppt Polyhaline – 18 to 30 ppt Mesohaline – 3 to 18 ppt Oligohaline - .5 to 3 ppt Brackist - .5 to 5 ppt
  • 31. Measurement of Salinity1. Density – hydrometer – specific gravity pycnometer – wt of salts both consider standard temperature and pressure2. Resistance to electrical current – conductivity meter - salinometer3. Bending of right from air to seawater –refractometer4. Concentration of chlorine – chlorinity; titration with AgN03 as major salt Hydrometer – sp. Gravity x salt (k) Pycnometer – weight of salts Refractometer – measures the refraction index of medium air to pure water = 1.3330
  • 32.  Conductivity Meter – amount of chlorine Cl (ppt) = 0.7324 R15 R15 = rate of electrical conductance of one sample to one where; Salinity = 35 ppt; 1 atms 15oC Sal = .003 + (1.805 x chlorinity (20oC)Lab: AgN03 + NACl – AgCl + NaN03Dissolved Oxygen; 0.9% in water 21% in airSources: Air, Plants
  • 33. Concentration: Polar – (2x) – compared to tropical region Lower temperature/salinity Below photic zone = 0.2 to .3% (low) Run-off = high O2C02 in Seawater Available either as: C03 HC03 H2C03 H + removal (Acid) – negative effect (Nutrients/elements are tied up until Alkaline free)
  • 34. Ion Concentration in Seawater 6.8 – 8.4 (normal reading) pH – rises ; C02 is removed via photosynthesis pH – lowered; C02 is added via respirationRemoval of C02 - Carbonate - Bicarbonate - Carbonic acidNutrients 2l – essential elements other trace elements 4 – elements for plant growth -C, N, P, K, O S - major component in protein synthesis (300 mg/L (Si02) diatoms)
  • 35.  0 – 857,000 mg/L N – 28 mg/L P – 0.07 mg/L K – 0.03 mg/L C – 28 mg/L Auxotrophic (seaweeds) req. some Vitamins: B12 – Cyanocobalamin B1 - Thiamine BiotinNitrogenous N03 – nitrate – 1 to 43 ; H2PO4 0.07- 0.07 N02 - nitrite – 0.01 to 3.5 NH3 - ammonia – 0.35 to 3.5
  • 36. Nitrogen Cycle Plants Animals Urine Decomposition (bacteria and fungi) Atmosphere Amino acid Dissolved N2 Ammonification N2 fixation Photochemical fixation Denitrification Ammonia (Lightning) (Blue green algae) ammonia Nitrate(NO3) Nitrite(NO2) Nitrification
  • 37. Phosphorous Silica (cell wall formation) Si02 – 0 – 0.5 mg/LPhosphorous CycleLand Plants Higher OrganismsWeathering Dissolved Phosphate Dissolved Phosphate (inorganic) (organic) Particulate Phosphorus (inorganic + organic) Sediment
  • 38. Macro Algae (Seaweeds) 1. Unicellular to filamentous - Chlorophyta 2. filamentous to thalloid - Phaecophyta - Rhodophyta Evolved – Pre-cambrianTypes of Meristem 1. apical meristem – division of apical cells 2. diffuse meristem – throughout the plant 3. intercallary meristem – specific growth regionsGrowth Construction 1. filamentous – one to two rows of cells (Cladophora) 2. foliose – flattened/membranous (Halymenia)
  • 39. Cytology of Green AlgaeI. Physiological Characteristics 1. chloro a and b 2. B – carotene 3. xanthophylls - lutein - zeaxanthin - violaxanthin - siphonin - siphonoxanthin (play a role in acclimation in deep water to the b-g spectrum
  • 40. II. Cell Structure - eukaryotic - uninucleated (most) - multi nucleated (few) - coenocytic – multinucleated in a single cellIII. Chloroplast (thyllakoids) - cup- shaped - discoid - reticulate - laminate Pyrenoids – amylase containing protein bodies
  • 41. IV. Cell Wall - cellulose microfibrils – typical in flowering plants and Ulvalves - highly crystalline siphonodadales (Cladophorales) - polymers of xylan and mannan (Caulerpales) - CaC03V. Cell Division a. Karyokinesis - closed (intranuclear) – no break of n. membrane - open (nuclear envelop disappears , e.g. like in flowering plants)
  • 42. b. Cytokinesis - closed - spindle fibers parallel to cross wall - open – spindle fibers at right angle Asexual spores – zoospores Motile cells: - Isokontae – pair of apically inserted flagella of equal length that lack hairs - Heterokontae – unequal lengthLife History Alternation of: Haploid (gametophytic) Diploid (sporophytic)
  • 43. Patterns Haplontic – dominant phase is haploid with zygote only as diploid Fusion zygote 1N 2N gametes Zygospore Meiosis 2N Zygospore
  • 44.  Diplontic Life History – diploid phase is dominant Anteridia Fusion Oogonia 1N 2N Meiosis 1N 2N
  • 45.  Haplodiplontic – dominant phases are haploid and diploid Fusion Gametophytic 1N 2N Sporophytic Meiosis Isomorphic
  • 46. Heteromorphic – haploid & diploid; unequal Fusion 1N 2N Meiosis
  • 47. ChlorophytaTaxonomy Class (phyceae) 1. Chlorophyceae 2. Prasinophyceae 3. CharophyceaePrasinophyceae Features: 1. unicellular, motile and appearing as green 2. cells with one or more layers of fibrillar scales 3. the flagella is always attached in groove covered with scales and hairs 4. the flagellal roots with complex basal body 5. with single round- shaped chloroplast with pyrenoids 6. specialized ejectosome. e.g. Pyraminomas – pear- shaped unicel with 4 flagella
  • 48. Charophyceae – stone worts; ancient origin/evolutionDivision: Chlorophyta Class: Chlorophyceae Chloroplast with pyrenoid – multi- uninucleated – haploid – haplodiplontic life history – filamentous/caenocytic morphology1. Order: Ulvales Family: Percuriaceae - biserriate Schizomeraceae - uniseriate Prasiolaceae - filamentous/monostromatic Monostromaceae - monostromatic Ulvaceae - diastromatic and tubular
  • 49. Common Characterictics: Parietal chloroplast Laminate Pyrenoid Rep-roduction(Anisogany/Isogamy)2. Order: Chladophorales Genera: Cladophoraceae- filamentous Rhizoclonium - delicate, unbranched filament with rhizoids Chaetomorpha- coarse, unbranched Cladophora - branching filament
  • 50. Family: Anadyomanaceae - filamentous but fused to form blades Anadyomene - brilliant green with anastomosed filaments3. Order Acrosiphonales Family: Acrosiphonaceae Genera: Urospora - unbranched filament Spongopora - branched, uninucleated Acrosiphonia - branched, multinucleated General Characteristics: - single perforated chloroplast with hetero – haplodiplontic life history
  • 51. 4. Order Siphonocladales Family: Siphonocladaceae - filamentous Family: Boodleaceae - net like blade with anastomosing filaments Family: Volaniaceae - aggregation of vesicle Siphoclodales Boodlea ValoniaGeneral Characteristics: - segregated cell division - they enlarge to form and equal or similar vesicle e.g. velonia degagropila dictyospharia caveriosa
  • 52. 5. Order Caulerpales – siphonous, coenocytic Family: Bryopsidaceae Genera: Broyopsis – hetero- haplo-diplontic life history Derbesia Family Caulerpaceae – erect blades with rhizoid - Trebeulae in growth of cell wall - Leucoplast – without cross wall (coenocytic) Genera: Caulerpa Family Codiaceae – coenocytic with filament called siphons - surface cell is made of utricles - diplontic, onisogametes
  • 53. Family Udoteaceae – heavily certified to Genera: Halimeda Udotea Penicillus Chlorodesmis Avrainvillea6. Order Dassyclaudales 2 Family - Dasaycladaceae Acetabulariaceae Characteristics: whorl branching Superficial calcification Diplontic, isogametic (produced in cyst) Genera: Dasycladea Cymopolia Acetabularia
  • 54. Division: Phaeophyta (Brown Algae) Class: Phaeophyceae 265 genera 1,500 – 2,000 species Construction a. filamentous b. massive intertidal growth c. lithophytic – attached to stable substrate d. epiphytic – living on surface of other plants e. drift population (S. filamentous (S. ratens Uses: - alginic acid (medicine, ice cream, shampoo) - fodder (food of animal additives - fertilizer
  • 55. Cytology - Chloro a & c - B. carotene fucoxanthin and neofucoxanthin – brownish, golden brown, brown-green, greenish, yellow color - Carotenoids - Uninucleated - Thallykoid in bonds of 3 - Reserved foodMotile Cells - heterokontae (unequal flagellum – usually inserted) a. acronomatic - shorter - smooth - basally oriented
  • 56. b. pleuronomatic - long - anteriorly nemated - hairy Life History - diplontic -gametes derived in sporangia 1. unilocular 2. plurilocularTaxonomy1. Ectocarpales Ectocarpaceae Ectocarpus
  • 57. Characteristics: - uniseriate filament - isomorphic – equal in form2. Ralfsiales Ralfsiaceae Ralfsia Neoderma Characteristics: - crustose morphology - diplontic - gametes (isogametes, heterogametes)3. Sphacelariales Sphacelariaceae Clodostaphus Holotrix
  • 58. Characteristics: -small, filamentous, multiseriated4. Class Tiliopteridales - filamentous construction - uniseriate – multiseriate - trichothallic growth Genus: Halospora5. Class Cutleriales - amisogamete - crustose morphology - trichothallic - alternation of isomorphic life history
  • 59. 6. Class Dictyotales - pan tropical - isomorphic – haplo-diplomatic - parenchymatous constructionDIVISION PHAEOPHYTA Characteristics: - chloro a and c - fucoxanthin (xanthophylls) predominate - laminarin and oil are reserved foods - haplo-diplomatic life history asexual – fragmentation (vegetative) sexual – isogametes - products: alginate
  • 60. Order Fucales Blade morphology - crustose – encrusted with lime - duplicated – double margin - cystic – enclosed reproductive structure (antheridium – sperm) (ooganium – egg) 2 years life cycle 1st year – vegetative growth 2nd year – reproductive age
  • 61. Family Fucaceae Genera: Hormophysa (triangular blade) Sargassum duplication S. crispifolium S. polycystum S. giganteifolium Characteristics: - predominantly floating (pneumatocyst) - erect thallus with air bladder - at the margin of littoral and sub-littoral zone Genera: Turbinaria ornata (ornate leaf without branching) T. trialata (with branching)
  • 62. Family Cystoseriaceae Characteristics: - triangular type of thallus - seldom with air bladder Genera: Hormophysa triquetra’ CystoseiraOrder Scytosiphonales General Characteristics: - hallow ball structure erupting at maturity - morphology net-like to ball-like - sexual reproduction only - seasonal (summer)
  • 63. Family Scytosiphonacea Genera: Scytosiphon Hydroclathus Chnoosepora ColpomeniaOrder Dictyotales General Characteristics - divaricate branching - heavily calcified - linear branching to flabellate
  • 64. Family Dictyotaceae Genus Dictyoty – linear branch, turcated, semi-permanent Padina – flabellate blades, destructs lines of growth, heavy calcificationEconomic Importance - source of alginate - medicinal property - fertilizer - insecticidal property - animal fodderLaminariales - large group of brown algae - hetero morphic (unequal; sporophytic; gametophytic) - developed: rhizoid stem blade
  • 65. RED ALGAE (RHODOPHYTA)Characteristics - intertidal to subtidal – chloro to phycoerythrin change in color - enkaryotic - flagella lacking - phycobillin (phycoerythrin - reserved food (Floridean starch) long chain of glucose to lipid
  • 66. Cytology - Chloro A packed in a thyllakoid - Phycocyanin r – phycocyanin c – phycocyanin - Carotenoids B- carotene L – carotene - pyrenoid (starch grain) distinct - phycocolloids agar-(agarophytes) carrageenan –( carrageenophyte) funoran fucellarian - starch (Floridean) Xylose amylase
  • 67. Life History - triphasic (3 life stages)life history 1. gametophytic – produce gametes 2. carposphorophytic – produce carpaspore 3. tetrasporophytic – produce tetrasporeOther Spore Types (Asexual) - monospore – derived monosporagia - paraspore – derived parasporangia - carpospore – derived carposporangia
  • 68. TaxonomyDIVISION – RHODOPHYTA Class – Rhodophycidae Sub class – Bangiophycidae FloridiophycidaeCharacteristics: – uninucleate cells – single stellate central plastids – diffuse (intercellary) meristem – absence of pit connection – must have absent sexual reproduction – except, parphyra, bangia and polysiphonia – simple venicellular in multicellular group
  • 69. 3 Orders Parphyridiales Campsogonales Bangiales a) Prephyridiales – Unicellular - pseudofilamentous – Colonial - no sexual reproduction b) Comprogonales – produce monospore of unequal division – Rep Groups: - Erythrocladia – filamentous - Erythrotrichia c) Bangiales monotype – monostroma – diatromatic – filamentous Rep. Group - Bangia - Porphyra
  • 70. Sub-class – Florideophycidae occurrence of multinucleated cells presence of pit plug presence of several discoid chloroplast apical cell division multicellular (macroscopic) sexual reproduction (gametophytic plant)Order: Bangiales Family: Bangiaceae Genera: Porphyra BangiaOrder: Palmariales Genera: Rhodymenia
  • 71. Order: Nemalionales Genera: Liagora ;soft calcareous HelminthocladiaOrder: Bonnemaisorales Genera: Bonnamaisona AsparagosisOrder: Cryptomoniales Genera: Halymenia Crytonemia w/ auxiliary cells GrateloupiaOrder: Corallinales Genera: Corallina Lithothammion Amphiroa JaniaOrder: Gigartinales Family: Chaetangiaeecae
  • 72. Order: Gigantinales Family: Solieriaceae Eucheuma Kappaphycus Family: Gracilariaceae GracilariaOrder: Ceremiales Family: Ceremiaceae Genera: Ceramium Lithothamnium Family: Dellesereaceae Genera: Rhodomelaceae Laurancia Acanthophora
  • 73. Classes: Palmariales - male gametophye and tetrasporophytes are microscopic - female gametophyte is microscopic - tetrasporophyte is parasite in female gametophyte Genus: Palmaria/Rhodymenia Nemaliales - heterotrichous – crest or postrate thallus Family: Helminthocladaceae e.g. Liagora – heavily calcified Helmithocladia – gelatinous
  • 74. Gelidiales - typical triphasic life history gametophytic tetrasporophytic - presence of nutritive cells (afterfertilization) - agar sources Genera: Gelidiella Gelidium Bonnemaisonales Bonnemaisona- heteromorphic gametophytic, tetrasporophytic generation Asparagopsis – fee living filamentous; tetrasporophytic
  • 75. Cryptonemiales - auxiliary cells on a vegetative branch Genera: - Cryptonemiales – heteromorphic life history w/ crustae -Gloiosiphon – tetrasporic phase and fleshy gametophyte e.g. Halymenia, Grateloupia, GloiosiphonCorallinales - with white cells - reproduction structure in pits conceptacle - intercalary and apical meristem
  • 76. Articulated species (non-calcified with genicula , joint between segments) e.g. Amphiroa Non-articulated species - lack genicula which are crustose with erect non- jointed branched e.g. LithothannionFamily: Solieriaceae Genera: Soliera, EucheumaFamily; Kappaphyceae Characteristics: - fission of cells that occur during fertilization - some have filamentous medulla
  • 77. Family: Gracilariaceae - multiaxial construction w/ medullary layer which is parenchymatous Genera: Gracilaria Gigartina Mastocarpus Rhodymeniales - multi axial growth and triphasis life history (isomorphic) - gametophyte with a procarp (arrangement of 3 to 4 cells carpogonial branches adjacent 2 auxiliary cells e.g. Genera: Champia Chrysonemia
  • 78. Ceremiales - filamentous, uniseriated - carposporophytic stage is exposed - multinucleated cell - pit connection visible 3 Family (Dascyaceae, Rhodomelaceae, are provided with trichoblast /colorless hair) Genera: Laurencia Hypnea Acantophora Dasya
  • 79. Intertidal Communication TiesSpecies Major Sub-division Algal GroupsUltra Enteromorpha supra littoral zone species w/ stand dessicationProstate brown algae supra littoral fringe species w/ strong wavesSargassum turbinaria mid littoral species w/ anchored in deep SubstrateBrown Algae sub littoral w/ stand variable illumination w/ stand wave action w/ stand temperatureFactorsa. Tide tidal amplitude (vertical range) tidal frequency (diurnal, semi diurnal mixed)b. Exposure of Algae shore topography wave action time of dessication
  • 80. c. Type of substrate basic composition (material forming) peeble calcified rock calcified rock limestone rock silt / mud textures smooth ruggedd. Biological Interaction -relationship among algae
  • 81. 1. Succession- involves seral Bare - pioneer -succeeding 1 Climax 2 Species species 3 Community Bare -seagrass –Ulva –Sargrassum -Gracilacia Stablea.) Progressive –bare – climaxb) Reverse –climax -bare
  • 82. 2. Competition a.) Interspecies –between 2 different species b.) Among a particular species shading of Ulva against Enteromorpha Ulva shading Laurencia Sargassum shading Ulva, Enteromopha Caulaperpa Species of Ulva-competing for a limited space Sargassum species competing for light3. Grazing -feeding -preferences (profifying) disappear -less preferences
  • 83. Micro algae Communities Division –Cyanophyta blue green (phycobillin) nitrogen fixer (heterocyst) Significance: -food chain / food web (Iry producers) absorb inorganic substances -Nutrient recycling Distribution -epizoic, epiphytic -endozoic, endophypic -sessile (substrate attached)
  • 84. Characteristics: -cyanophycean starch -chloro a and b (chlorophyta) -some endolithic –within rocks -oligotrophic Cytology: Cytoplasm of 2 types -chromoplasm – periphery and pigmentry -centroplasm – center and usually pail
  • 85. Accessory Pigments: -Carotene -Xanthophylls (myxoxanthin) zeaxanthin -PhycobillinsArranged in a thyllakoid (phycobillisomes) -Phycocyanin Arranged in a -Phycoerythrin thyllakoid (phycobillisomes) -Allophycocyanin -Gas vacuole –bounded by carboxysomes -Reserved Food -Starch -Granules -polyhedral -polyglucan
  • 86. Reproduction: -fragmentation of filaments at hormogonia -occur where akinets are locatedResting spore Resting spore -endospore – product of internal division of cytoplasm
  • 87. Taxonomy: Cyanophyceae Orders: Chamaesiphonales (filamentous and endopore producing) Chroococcales (unicellular or colonial) Oscillatoriales (filamentous)
  • 88. Division: Prochlorophyta composed of 3 genera; 3 Genera Prochloron Prochlorotrix Chloro a and b Prochlorococcus Prochloron-intracellular, obligate symbionts ; free living group Prochlorotrix, Prochlorococcos- filamentous; causes blooms in lakes
  • 89. Division Euglenophyta -grass green motile unicells -chloro a and b, B carotene -xanthophyll (neoxanthin) -astaxanthin (responsible for red color)
  • 90. Flagellum Ampulla (reservoir) Non-emergent falgellumParamylum (starechgrain) Blepharroplast Chloroplast C. vacuole Nucleus Cytoplasm
  • 91. Taxonomy: Class Euglenophyceae Trophic Classification -phageotrophic (particle absorbing, particle ingesting) -osmotrophic –absorption of organic matter to photosynthesis Orders: Eutretiales -photosynthetic -flagella, unequal -active, euglenoid movement
  • 92. Euglenales -photosynthetic, one emergent flagella -sessile (attached to substate) -with lorica (in capsulized) Heteronematales -phageotrophic, particle colorless and leaking photoreceptors; flagellar swelling Rhabdonematales -osmotrophic type Sphenomodales -both (osmotrophic, phageotrophic)
  • 93. Division Pyrrophyta (Dinoflagellates) Trophic Forms: -autotrophs –free living -auxostrophic –need other accessory elements (vitamins) -heterotrophic –phageotrophic -symbiotic –with zooxanthellae
  • 94. Cytology: -chloro a and b -B carotene -peridinine -diadinoxanthin -specialize cells -trichocyst –rod of protein material -nematocyst –ejectile organelle -pusule –sac-like (function as contractile vacuole) -muciferous odies – mucilage bodies that attach to the subatate
  • 95. Eyespot Forms: 1. mass of lipid globules 2. single layer of globules 3. double layer of globules 4. complex ocellus Life History: 1. isogametes (sexual fusion) onisogametes 2. haplontic life history
  • 96. Taxonomy Heterotrophic: 1. Ebriophyceae –colorless, nakedParasitic naked cells 2. Ellobiophyceae Parasitic naked cells 3. Syndimophyceae 4. Dinophyceae Group a. Blastodiniales –parasitic b. Dingamoebomeales –amoeboid c. Dinoclomiales –filamentous d. Gleodiniales –colonial e. Pyrocystales –coccoid
  • 97. Peridianiales -motile -armonia -toxicCause of ciguatera –fish poisoning e.g. Ceratium Cause of ciguatera Gonyaulax –fish poisoningGymnodiales (common red tide forming species) e.g. Gymnodinium
  • 98. Division: Cryptophyta (Cryptomonels) Characteristics: -assymetrical (dorso-ventral flatter) Top/ventral cross-section -pleuronematic flagella, unequal -ejectosomes at the reservoir -single chloroplast -one to many pyrenoids -red, brown, olive, yellow –is due to chlorophyll and phycobillin -Nucleomorph –double membrane DNA enclosed in ER

×