0
Satellite Navigation                  (and positioning)                                                          Picture: ...
Today’s topics• Course organisation• Course contents• Introduction navigation and positioning   • History and principles  ...
Course organisationInstructors:• Sandra Verhagen (a.a.verhagen@tudelft.nl)• Hans van der Marel (h.vandermarel@...)• Christ...
Course organisation•     Period 2 + 3•     1 lecture per week (2h)•     Computer exercises•     Final part: Space and Geom...
Course organisation• Book:      Global Positioning System, Signals, Measurements, and      Performance, 2nd edition, Prata...
Course contents1. Technical principles   • space, control and user segments   • satellite ephemeris and reference systems ...
Course contents2. Positioning and integrity   • observation equations   • parameter estimation in dynamic environments   •...
Course contents4a. Geomatics track: RTK services, Location Based     Services, surveying and mapping, civil engineering   ...
Navigation and positioning                                                 9Satellite Navigation (AE4E08) – Lecture 1
History• Magellan (1519):  sea charts, terrestrial globe,  wooden and metal theodolites,  quadrants, compasses,  magnetic ...
History• Harrison (~1730):  invented marine chronometer      longitude!                                                   ...
HistorySputnik•   apogee 1450 km, perigee 223 km•   29,000 km/h•   orbital period ~100 minutes•   radio signals: 20.005 an...
HistoryGlobal Positioning System (1995)    3D position, velocity and time•   accurate•   instantaneous•   continuous•   ev...
Navigation principles• Dead reckoning:   • keep track of direction and distance   • inertial navigation systems (INS),    ...
Radionavigation – radio waves• Radio waves: electromagnetic waves with frequencies  from 10 kHz – 300 GHz• Frequency      ...
Radio navigation – frequency spectrumBand                                 Frequency         Wavelength ExamplesVery Low (V...
Radionavigation - methods        Trilateration        Time of Arrival (TOA) measurements        rk = c ⋅ tk             ( ...
Radionavigation - methods        Hyperbolic positioning        Time Difference of Arrival (TDOA) measurements             ...
Radionavigation - methods        Doppler positioning        Doppler shift measurements:        distance determined based o...
Radionavigation - systems• Loran (Long-range navigation system):      hyperbolic system developed in World War II, marine ...
Radionavigation - systems• Transit (1964)        •    4-7 satellites at 1100 km, polar orbits        •    150 and 400 MHz ...
GNSS – principle                                                          From: Misra and Enge                            ...
GNSS – essential technologies• stable space platforms in predictable orbits             ranges measured to >3 satellites w...
Applications                                                           Photo: ESA/DLR                                     ...
Applications - land• geodynamics: plate tectonic, sea level rise (0.01 – 0.1  ppm)• continental 3D reference frame (0.1 – ...
Applications - sea •     hydrographic surveying (0.1 – 10 m) •     marine 3D seismic surveys (1 – 5 m) •     marine gravit...
Applications - air • airborne laser profiling (Hor. 1 – 10 m, Vert. 5 – 50 cm) • aero-triangulation (0.5 – 2 m) • airborne...
Applications - space •     precise orbit determination (cm – m) •     orbit determination (10 – 100 m) •     formation fly...
Homework and outlook• Assignment 1 on Blackboard:   • Four GNSSs: characteristics, differences,     interoperability   • R...
Upcoming SlideShare
Loading in...5
×

Satellite Navgation Lecture 1

4,181

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
4,181
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
149
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Satellite Navgation Lecture 1"

  1. 1. Satellite Navigation (and positioning) Picture: ESAAE4E08Instructors:Sandra Verhagen, Hans van der Marel, Christian TiberiusCourse 2010 – 2011, lecture 1
  2. 2. Today’s topics• Course organisation• Course contents• Introduction navigation and positioning • History and principles • Radionavigation methods and systems • Applications 2Satellite Navigation (AE4E08) – Lecture 1
  3. 3. Course organisationInstructors:• Sandra Verhagen (a.a.verhagen@tudelft.nl)• Hans van der Marel (h.vandermarel@...)• Christian Tiberius (c.c.j.m.tiberius@...) 3Satellite Navigation (AE4E08) – Lecture 1
  4. 4. Course organisation• Period 2 + 3• 1 lecture per week (2h)• Computer exercises• Final part: Space and Geomatics track!• Assessment: • graded assignments (report / presentation) • Assignments (pass / fail) • written exam 4Satellite Navigation (AE4E08) – Lecture 1
  5. 5. Course organisation• Book: Global Positioning System, Signals, Measurements, and Performance, 2nd edition, Pratap Misra and Per Enge http://www.gpstextbook.com• Blackboard: • slides • assignments • schedule and course info • links, glossary • graduation topics 5Satellite Navigation (AE4E08) – Lecture 1
  6. 6. Course contents1. Technical principles • space, control and user segments • satellite ephemeris and reference systems • signals, clocks and receivers • propagation errors 6Satellite Navigation (AE4E08) – Lecture 1
  7. 7. Course contents2. Positioning and integrity • observation equations • parameter estimation in dynamic environments • integrity3. High-precision GNSS • relative positioning and Precise Point Positioning • permanent networks 7Satellite Navigation (AE4E08) – Lecture 1
  8. 8. Course contents4a. Geomatics track: RTK services, Location Based Services, surveying and mapping, civil engineering applicationsor4b. Space track: space based GNSS for navigation, control and guidance of space missions, formation flying, attitude determination 8Satellite Navigation (AE4E08) – Lecture 1
  9. 9. Navigation and positioning 9Satellite Navigation (AE4E08) – Lecture 1
  10. 10. History• Magellan (1519): sea charts, terrestrial globe, wooden and metal theodolites, quadrants, compasses, magnetic needles, hour glasses, … speed, direction, latitude 10 Satellite Navigation (AE4E08) – Lecture 1
  11. 11. History• Harrison (~1730): invented marine chronometer longitude! 11Satellite Navigation (AE4E08) – Lecture 1
  12. 12. HistorySputnik• apogee 1450 km, perigee 223 km• 29,000 km/h• orbital period ~100 minutes• radio signals: 20.005 and 40.002 MHz• monitored by amateur radio operators throughout world Photo: NASADiscovery: observed Doppler shift can be used for positioning!!! 12 Satellite Navigation (AE4E08) – Lecture 1
  13. 13. HistoryGlobal Positioning System (1995) 3D position, velocity and time• accurate• instantaneous• continuous• everywhere (Earth, air, space)• inexpensive• effortless• in all weather circumstances 13 Satellite Navigation (AE4E08) – Lecture 1
  14. 14. Navigation principles• Dead reckoning: • keep track of direction and distance • inertial navigation systems (INS), microelectromechanical systems (MEMS)• Guidance systems: • provide course to steer • lighthouses, radio beacons, Instrument Landing System and Microwave Landing System, heat sensors• Position finding systems: • Loran, Omega, Transit, GNSS 14Satellite Navigation (AE4E08) – Lecture 1
  15. 15. Radionavigation – radio waves• Radio waves: electromagnetic waves with frequencies from 10 kHz – 300 GHz• Frequency : f [1 Hz = 1 cyc/s]• Wavelength : λ = c/ f• Propagation speed : c = 299, 792, 458 ≈ 3 ×108 m/s λ 15Satellite Navigation (AE4E08) – Lecture 1
  16. 16. Radio navigation – frequency spectrumBand Frequency Wavelength ExamplesVery Low (VLF) < 30 kHz >10 km Submarine comm.Low (LF) 30-300 kHz 1 – 10 km RFID, time signalsMedium (MF) 300 kHz – 3 MHz 100 m – 1 km AM radioHigh (HF) 3-30 MHz 10 – 100 m Radio, RFIDVery High (VHF) 30-300 MHz 1 – 10 m FM radio, TV, aviation, land + maritime mobileUltra High (UHF) 300 MHz – 3 GHz 10 cm – 1 m TV, microwave ovens, mobile phones, WLAN, Bluetooth, GNSSSuper High (SHF) 3-30 GHz 1 – 10 cm Radar, WLAN, satellite comm.Extremely High (EHF) 30-300 GHz 0.1 – 1 cm Radio astronomy, radar remote sensing 16 Satellite Navigation (AE4E08) – Lecture 1
  17. 17. Radionavigation - methods Trilateration Time of Arrival (TOA) measurements rk = c ⋅ tk ( xk − x) 2 + ( yk − y ) 2 = rk From: Misra and Enge 17Satellite Navigation (AE4E08) – Lecture 1
  18. 18. Radionavigation - methods Hyperbolic positioning Time Difference of Arrival (TDOA) measurements 18Satellite Navigation (AE4E08) – Lecture 1
  19. 19. Radionavigation - methods Doppler positioning Doppler shift measurements: distance determined based on frequency difference between source and receiver & r f R − fT = − λ Copyright © Addison Wesley 19Satellite Navigation (AE4E08) – Lecture 1
  20. 20. Radionavigation - systems• Loran (Long-range navigation system): hyperbolic system developed in World War II, marine navigation• Omega early 1960’s, worldwide+continuous, 8 ground-based transmitters (VLF band), hyperbolic system (phase differences), marine and civil aviation apps 20Satellite Navigation (AE4E08) – Lecture 1
  21. 21. Radionavigation - systems• Transit (1964) • 4-7 satellites at 1100 km, polar orbits • 150 and 400 MHz • 1 satellite in view; wait 100 minutes for next satellite pass • record Doppler shift + navigation message (satellite position)• GPS (Global Positioning System) Global Navigation Satellite• GLONASS, Galileo, Beidou, … Systems (GNSS) 21Satellite Navigation (AE4E08) – Lecture 1
  22. 22. GNSS – principle From: Misra and Enge 22Satellite Navigation (AE4E08) – Lecture 1
  23. 23. GNSS – essential technologies• stable space platforms in predictable orbits ranges measured to >3 satellites with “known” positions satellite positions predicted within few meters 1-2 days ahead• ultra-stable clocks transmission time imprinted on signal satellite clocks synchronized• spread spectrum signaling each satellite transmits unique signal on same frequency• integrated circuits receivers are light, compact, relatively cheap 23Satellite Navigation (AE4E08) – Lecture 1
  24. 24. Applications Photo: ESA/DLR 24Satellite Navigation (AE4E08) – Lecture 1
  25. 25. Applications - land• geodynamics: plate tectonic, sea level rise (0.01 – 0.1 ppm)• continental 3D reference frame (0.1 – 1 ppm)• deformation monitoring (surface / constructions) (1 ppm)• national control networks (1 – 10 ppm)• large scale topography (10 – 100 ppm)• land navigation (10 – 50 m) 25Satellite Navigation (AE4E08) – Lecture 1
  26. 26. Applications - sea • hydrographic surveying (0.1 – 10 m) • marine 3D seismic surveys (1 – 5 m) • marine gravity surveys (<10 cm/s) • harbour approach (50 – 100 m) • navigation in open waters (1 – 5 km) 26Satellite Navigation (AE4E08) – Lecture 1
  27. 27. Applications - air • airborne laser profiling (Hor. 1 – 10 m, Vert. 5 – 50 cm) • aero-triangulation (0.5 – 2 m) • airborne gravimetry (Hor. 50 m, Vert. 2 m, Vel. 10 cm/s) • airborne laser bathymetry (Hor. 15 m) • air transport terminal approach (Hor. 100 – 500 m) • air transport en route (1 – 5 km) • aircraft approach and landing (10 – 50 m) 27Satellite Navigation (AE4E08) – Lecture 1
  28. 28. Applications - space • precise orbit determination (cm – m) • orbit determination (10 – 100 m) • formation flying (cm – m) • attitude determination (0.1 – 1o) 28Satellite Navigation (AE4E08) – Lecture 1
  29. 29. Homework and outlook• Assignment 1 on Blackboard: • Four GNSSs: characteristics, differences, interoperability • Report including REFERENCES (to websites / publications / books)• Next: GPS overview (chapter 2) 29Satellite Navigation (AE4E08) – Lecture 1
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×