Upcoming SlideShare
×

# Lecture Slides: Biomechanics Case Study

480

Published on

The lecture slides of lecture Biomechanics Case Study of the Modelling Course of Industrial Design of the TU Delft

Published in: Education, Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
480
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
15
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Lecture Slides: Biomechanics Case Study

1. 1. H-L-3 Biomechanics case study The Modelling Team Faculty of Industrial Design Engineering Delft University of Technology Challenge the future 1
2. 2. Table of Contents Digital Human Model A case study 01. The Solidworks® Model 02. Data Source Summary Tracker 01. Basic functions 02. Tracking movements Contents 1 • This is not a complete case study (Demo only) 2 • The main purpose: How to use the tools Challenge the future 2
3. 3. Case brief Case brief To explore how much torque a person applied on his/her shoulder joint in an abduction movement. Courtesy of http://medical-dictionary.thefreedictionary.com/adduction Challenge the future 3
4. 4. Analysis System Forearm Upper arm Hand + Weight Shoulder joint Challenge the future 4
5. 5. Modelling - Sketch 1 2 3 Challenge the future 5
6. 6. Modelling - Model 1 1 2 3 3 5 2, 4, 5 Measurement (individual) or Digital human model 1, 2, 1 1 2 3 3 5 0 1 3, 1, 3 Body mass segments 2 Tracker 3 Challenge the future 6
7. 7. The digital human Model Challenge the future 7
8. 8. The model - Components Romp (trunk) Hoofd (head) 2* Bovenarm (forearm) 2* Onderarm (lower arm) 2* Hand 2* Bovenbeen (upper leg) 2* Onderbeen (lower leg) 2* Voet (foot) Challenge the future 8
9. 9. The model A design table driven DHM: Assembly MV1200-MV2100: Pre-defined Size: For your inputs Challenge the future 9
10. 10. For an individual part A design table driven DHM: Part MV1200-MV2100: Pre-defined Size: For your inputs Challenge the future 10
11. 11. The source of data dined.io.tudelft.nl/dined/ Challenge the future 11
12. 12. A simplified version The excel file Check the validity of your Attention: model 1. It is simplification of DINED data; 2. It is a linear approximation, the most accurate region is 1473mm~1981mm Challenge the future 12
13. 13. How to setup customized data The excel file (each part) Usage 1. Input the desired stature in the blue Region of excel 2. Copy the data of “size” to the design table of each part, respectively (use paste values option). The design table of a component in Solidworks Challenge the future 13
14. 14. Sizing - Customize You must modify each components Input the desired stature in the excel Copy data regarding the component here Using “Size” Challenge the future 14
15. 15. Direct Sizing – In Assembly MV-1200 MV-1700 MV-1800 MV-1900 MV-2000 MV-2100 Attention: The validity of your model Challenge the future 15
16. 16. Pose Using mouse drag & move a part Challenge the future 16
17. 17. Measurement 1. Click - Tab Evaluate 2. Click - Button Measure 3. Click - The items to be measured 4. The measurements are presented Challenge the future 17
18. 18. Measuring length Upper arm length 0.272 meter Challenge the future 18
19. 19. Measuring length Forearm length 0.238 meter Challenge the future 19
20. 20. Measuring length From wrist to center of the hand 0.07 meter Challenge the future 20
21. 21. Body mass segments Challenge the future 21
22. 22. Centre of gravity (c.g.) of body segments Proximal side Distal side Challenge the future 22
23. 23. Mass of body segment Following Biomechanics and Motor Control of Human Movement Segment Segment Total Body Weight Centre of Mass Centre of Mass Segment length Segment length Hand Forearm Upper arm F'arm+hand Upper limb Foot Shank Thigh Foot + shank Lower Limb 0.006 0.016 0.028 0.022 0.05 0.0145 0.0465 0.1 0.061 0.161 Proximal 0.506 0.43 0.436 0.682 0.53 0.5 0.433 0.433 0.606 0.447 Distal 0.494 0.57 0.564 0.318 0.47 0.5 0.567 0.567 0.394 0.553 Head, neck, trunk Head, neck, arms, trunk Head and neck 0.578 0.66 0.34 0.678 0.626 0.374 0.081 Ref. http://books.google.nl/books?id=_bFHL08IWfwC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=snippet&q=mass%20segment&f=false Challenge the future 23
24. 24. Mass of body segment by Zatsiorskji and Selujanov (1979), based on athlete's data Mass (kg) Mass of the segment (kg) + + Height (cm) Coefficient Segment name B0[kg] B1 B2[kg/cm] Head+neck Hand Forearm Upperarm Leg Shank Thigh Trunk 1.296 -0.1165 0.3185 0.25 -0.829 -1.592 -2.649 0.0171 0.0036 0.01445 0.03012 0.0077 0.03616 0.1463 0.0143 0.00175 -0.00114 -0.0027 0.0073 0.0121 0.0137 Upper part of the trunk 8.2144 0.1862 -0.0584 Middle part of the trunk 7.181 0.2234 -0.0663 Lower part of the trunk -7.498 0.0976 0.04896 Courtesy of http://biomech.ftvs.cuni.cz/pbpk/kompendium/biomechanika/geometrie_hmotnost_en.php Challenge the future 24
25. 25. Take a simple approach Upper arm M1= 60 * 0.028 = 1.68 Forearm If the mass of the person is 60kg M2 = 60 * 0.016 = 0.96 Hand M3 = 60 * 0.006 = 0.36 Challenge the future 25
26. 26. Gravity center Challenge the future 26
27. 27. The tracker Challenge the future 27
28. 28. Tracker Tracker The Tracker is a free video analysis and modeling tool built on the Open Source Extract position (angle), velocity Physics(OSP) Java framework. It (angular) and acceleration is designed to be used in physics (angular) of an object in the video education Challenge the future 28
30. 30. Basic interface Challenge the future 30
31. 31. Prepare a video for Tracker Background Uniform & different from the subject Origin marker Increase the contrast Camera range: Enough room to cover the movements Camera direction: Perpendicular Frame rate: At least 24p Resolution: as high as possible The dumbbell You can also use marker to increase the contrast Challenge the future 31
32. 32. Procedure Tracker Import video Open Set “desired” video span Or Setup origin Drag video in Tracker Setup point mass Export data Challenge the future 32
33. 33. Procedure Tracker Import video Set “desired” video span Setup origin Mouse click Setup point mass Export data Challenge the future 33
34. 34. Procedure 1. Mouse click Tracker Import video Set “desired” video span Setup origin Setup point mass Export data 2. Mouse click Challenge the future 34
35. 35. Procedure Tracker Y Import video Set “desired” video span θ  X Setup origin Setup point mass Export data Challenge the future 35
36. 36. Procedure Tracker Mouse click Import video Set “desired” video span Setup origin Setup point mass Export data Challenge the future 36
37. 37. Procedure Tracker Import video Set “desired” video span Setup origin Setup point mass Fixed Or Dynamic (Demo is dynamic) Export data Challenge the future 37
38. 38. Procedure Mouse click Tracker Import video Set “desired” video span Setup origin Setup point mass Export data Challenge the future 38
39. 39. Procedure Tracker Import video Set “desired” video span Setup origin Setup point mass CTRL+SHIFT+Mouse click Export data Challenge the future 39
40. 40. Procedure Mouse click Tracker Import video Set “desired” video span Setup origin Setup point mass Export data Challenge the future 40
41. 41. Procedure Tracker Import video Set “desired” video span Setup origin Setup point mass Export data Challenge the future 41
42. 42. Procedure Tracker Import video Set “desired” video span Mouse click for acccelerations Setup origin Setup point mass Export data Challenge the future 42
43. 43. The calculation Challenge the future 43
44. 44. The result Calculation Change model to a function Input anthropometric & biomechanics data Input data from tracker (angle, angular velocity & acceleration) Plot Challenge the future 44
45. 45. The result Calculation Change model to a function Challenge the future 45
46. 46. The result Calculation Change model to a function Input anthropometric & biomechanics data Input data from tracker (angle, angular velocity & acceleration) Plot Challenge the future 46
47. 47. The result Calculation Change model to a function Column by column copy your Input anthropometric & biomechanics data excel data to arrays in Maple Input data from tracker (angle, angular velocity & acceleration) Plot Challenge the future 47
48. 48. The result Angular acceleration Angular velocity Calculation Change model to a function Input anthropometric & biomechanics data Input data from tracker (angle, angular velocity & acceleration) Plot Torque Angle Challenge the future 48
49. 49. H-A-1 assignments Challenge the future 49
50. 50. H-A-1-F H-A-1-F In the new set of dumbbells, CAP Barbell® want to specify the optimal weight and training positions in the manual. For this, they have asked you to help them to explore the relations between the mass of the dumbbells, the maximum angular velocity, the torques applied on the elbow joints and the start position (angle) as in the figure. Challenge the future 50
51. 51. Think Target group Model Improvements … Challenge the future 51
52. 52. Report – Logical: Grading Criteria  Abstract Model with Maple® file (appendix?)  Experiment and its contribution in Modelling 1  Conclusions & recommendations 2 3 4 Introduction  Evaluation Problem Definition  Optimization (possible new advices?) Challenge the future 52
53. 53. Success! The Modelling Team Faculty of Industrial Design Engineering Delft University of Technology Challenge the future 53
1. #### A particular slide catching your eye?

Clipping is a handy way to collect important slides you want to go back to later.