Breakwaters and Closure Dams: chapter 7

899 views
804 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
899
On SlideShare
0
From Embeds
0
Number of Embeds
302
Actions
Shares
0
Downloads
51
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Breakwaters and Closure Dams: chapter 7

  1. 1. Chapter 7: Stability of randomly placed rock moundsct5308 Breakwaters and Closure DamsH.J. VerhagenApril 12, 2012 1Faculty of Civil Engineering and GeosciencesVermelding onderdeel organisatieSection Hydraulic Engineering
  2. 2. History•Iribarren * Equilibrium of forces on a block•Hudson * Experiments and curve fitting•Van der Meer * More experiments, analysis, curve fitting•Van Gent * Shallow water conditionsApril 12, 2012 2
  3. 3. Equilibrium after Iribarren Fwave = ρw g Dn2 H W − B = ( ρr − ρw ) g Dn3 W = ρr g Dn3April 12, 2012 3
  4. 4. Equations for uprush and downrush N ρr gH 3 N ρr gH 3 W≥ W≥ Δ ( μ cosα + sin α ) Δ ( μ cosα − sin α ) 3 3 3 3type of block downward stability upward stability transition slope (μ cos α - sin α) 3 (μ cos α + sin α) 3 between upward and downward stability μ N μ N cot αrough angular 2.38 0.430 2.38 0.849 3.64 quarry stone cubes 2.84 0.430 2.84 0.918 2.80 tetrapods 3.47 0.656 3.47 1.743 1.77 April 12, 2012 4
  5. 5. Hudson ρr g H 3 W ≥ Δ KD cot α 3 structure trunk structure head number KD KDtype of block of layers breaking non breaking non (N) wave breaking wave breaking wave waverough angular quarry stone 1 ** 2.9 ** 2.3 *rough angular quarry stone 2 3.5 4.0 2.5 2.8*rough angular quarry stone 3 3.9 4.5 3.7* 4.2*tetrapod 2 7.2 8.3 5.5* 6.1*dolos 2 22.0 25.0 15.0 16.5*cube 2 6.8 7.8 5.0 April 12, 2012 5
  6. 6. structure trunk structure headspm 1977 number KD KD type of block of layers breaking non breaking non (N) wave breaking wave breaking wave wave rough angular quarry stone 1 ** 2.9 ** 2.3 * rough angular quarry stone 2 3.5 4.0 2.5 2.8* Hs rough angular quarry stone 3 3.9 4.5 3.7* 4.2* tetrapod 2 7.2 8.3 5.5* 6.1* dolos 2 22.0 25.0 15.0 16.5* cube 2 6.8 7.8 5.0 rough angular quarry 1 ** 2.9 ** 2.2 stonespm 1984 rough angular quarry 2 2.0 4.0 1.6* 2.8* stone rough angular quarry 3 2.2 4.5 2.1* 4.2* stone tetrapod 2 7.0 8.0 4.5* 5.5* dolos 2 15.8 31.8 8.0 16.0* cube 2 6.5 7.5 5.0 akmon 2 8 9 n.a. n.a. Accropod ® (1:1.33) 12 15 * There is a slight variation of recommended KD value for different slopesH10 = 1.27 Hs ** Use of single layer is not recommended under breaking waves April 12, 2012 6
  7. 7. Damage multiplier for HudsonUnit Damage (D) in % 0-5 5-10 10-15 15-20 20-30 30-40 40-50Quarry stone 1.00 1.08 1.14 1.20 1.29 1.41 1.54(smooth)Quarry stone 1.00 1.08 1.19 1.27 1.37 1.47 1.56(rough)Tetrapod 1.00 1.09 1.17 1.24 1.32 1.41 1.50Dolos 1.00 1.10 1.14 1.17 1.20 1.24 1.27 Damage due to overloading (H/Hno damage)April 12, 2012 7
  8. 8. comparison of Hudson and Iribarren • shape of blockH • layer thickness = 3 KD cot α • placing mannerΔD • roughness, interlockH • type of wave attack = ( μ cosα ± sin α ) N 3 −1 • head/trunkΔD • angle of incidence • size/porosity underlayer • crest level • crest type • wave period • foreshore shape • reflection April 12, 2012 8
  9. 9. application of Hudson• increase of block density• increase of block weight• decrease slope• grout smaller blocks• increase KD by special shaped blocks H = 3 KD cot α ΔDApril 12, 2012 9
  10. 10. Optimal angle and interlock of blocks ongoing MSc work by Bart van ZwichtApril 12, 2012 10
  11. 11. Hudson and measurementsApril 12, 2012 11
  12. 12. Damage according to Van der Meer A S = Dn502 A - erosion area Dn50 - nominal diameter ( = W50 /gρ)1/3 W50 - “mean” weight of the armour stonesApril 12, 2012 12
  13. 13. Damage(S) based on erosion area (A)April 12, 2012 13
  14. 14. classification of S-values Slope Initial Damage Intermediate Damage Failure (needs no repair) (needs repair) (core exposed) 1:1.5 2 3–5 8 1:2 2 4–6 8 1:3 2 6–9 12 1:4 3 8 – 12 17 1:6 3 8 – 12 17April 12, 2012 14
  15. 15. wave period tan α 2π H ξ = s= 2 s gT Van der Meer uses deep water values: ξs0m thus: significant wave deep water period based on TmApril 12, 2012 15
  16. 16. Permeability coefficientsApril 12, 2012 16
  17. 17. Van der Meer Hsc = 6.2 P018 . FG S IJ 0.2 ξ −0.5 Δ dn50 H NK (plunging breakers) Hsc = 10 P−013 . FG S IJ 0.2 ξ P cot α Δ dn50 . H NK (surging breakers) FG 1 IJ ξ transition = 6.2 P 0.31 tan α H P+0.5K ξ > ξtransition surging breakers ξ < ξtransition plunging breakersApril 12, 2012 17
  18. 18. reference case sign. wave height Hs 2m slope of revetment cotα 3 “Permeability” P 0.5 mean period Tm 6s number of waves N 3000 rock size dn50 0.6 m (300-1000 kg) relative density Δ 1.65 damage level S 2 Hudson coefficient KD 2April 12, 2012 18
  19. 19. Wave periodApril 12, 2012 19
  20. 20. permeability notional:P = notional permeability factor belonging to the realm of ideas, not of experience; existing only in the mind (denkbeeldig; begrips-) April 12, 2012 20
  21. 21. number of waves maximum number of waves: 7500 3000 waves of 6 s is 5 hoursApril 12, 2012 21
  22. 22. damage levelApril 12, 2012 22
  23. 23. slope angleApril 12, 2012 23
  24. 24. damage developmentApril 12, 2012 24
  25. 25. mild slopesApril 12, 2012 25
  26. 26. measured values for plunging breakers coefficients can be considered as stochastic parameters: σ6.2 = 0.5 σ1.0 = 0.08April 12, 2012 26
  27. 27. Hudson and Van der MeerApril 12, 2012 27
  28. 28. shape of quarry stone Rock shape Plunging waves Surging waves Elongate/Tabular 6.59 1.28 Irregular 6.38 1.16 Equant 6.24 1.08 Standard v.d. Meer 6.2 1.0 Semi-round 6.10 1.00 Very round 5.75 0.80 coefficients in the Van der Meer equationApril 12, 2012 28
  29. 29. visual comparison of block shapesApril 12, 2012 29
  30. 30. Shallow water conditions (wave height)• Rayleigh distribution no longer valid • in deep water H2% = 1.4 Hs • in shallow water H2% = (1.2 - 1.3) Hs• So, use adapted design formula (you may use H2% instead of Hs)April 12, 2012 30
  31. 31. Shallow water conditions (wave period) • When waves come in shallow water, wave spectrum changes • in shallow water longer periods are more relevant • recommended to use Tm-1,0April 12, 2012 31
  32. 32. Stone stability (vdMeer vs. vGent) 2.0 Van Gent et al (2003) Van der Meer (1988): Permeable core Van Gent et al (2003); Permeable core 1.6 1.2 (-) 0.5 S/N 0.8 0.4 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0.5 Hs/ΔDn50 . tanα . ( 1/(1+Dn50-core/Dn50) ) (-)April 12, 2012 32
  33. 33. The original van der Meer equation 5 S ⎡ 1 ⎛ H 2% ⎞ H s ⎤ =⎢ ⎜ ⎟ ξm P ⎥ 0.18 (for plunging breakers) N ⎢ c pl ⎝ H s ⎠ ΔDn 50 ⎣ ⎥ ⎦ Values of the coefficient cpl: Original Van der Meer: 8.68 Transformation to Tm-1,0: 9.13 Recalibration on data Van Gent: 8.40 For deep water: H2%/Hs = 1.4April 12, 2012 33
  34. 34. Data of Van Gent and original Van derMeer equation correct factor H2%/Hs incorrect conversion from Tm to Tm-1,0 Van Gent: Tm= 0.957 Tm-1,0 Van der Meer: Tm=0.904 Tm-1,0April 12, 2012 34
  35. 35. Data of Van Gent and original Van derMeer equation 1.4 used as fixed factor for ratio H2%/Hs incorrect conversion from Tm to Tm-1,0 Van Gent: Tm= 0.957 Tm-1,0 Van der Meer: Tm=0.904 Tm-1,0April 12, 2012 35
  36. 36. Data of Van Gent and original Van derMeer equation Data of Van Gent, recalibrated formula Plunging waves cpl changed from 8.68 to 8.4April 12, 2012 36
  37. 37. Data of Van Gent and original Van derMeer equation Data of Van Gent, recalibrated formula Surging waves csu changed from 1.4 to 1.3April 12, 2012 37
  38. 38. Datasets of Van der Meer• 309 tests• slope of foreshore: horizontal (47 tests with 1:30)• slope of structure: 1:1.5 to 1:6• core: permeable and impermeable• ratio Hs/d: 0.12 - 0.26 (deep water) April 12, 2012 38
  39. 39. Datasets of Van Gentcore # of tests foreshore slope Hs/dPermeable 37 1:100 1:2 0.34-0.51Permeable 34 1:100 1:2 0.34-0.52Permeable 31 1:100 1:4 0.31-0.51Permeable 26 1:30 1:2 0.23-0.78Permeable 24 1:30 1:4 0.34-0.73Impermeable 34 1:30 1:2 0.15-0.48Impermeable 21 1:30 1:2 0.27-0.53VdMeerPermeable & 309 mainly 1:2 0.12-0.26impermeable horizontal to 1:6April 12, 2012 39
  40. 40. Observations• In paper significant difference between results of Van Gent and of Van der Meer• In paper Van Gent erroneously assumed a conversion factor of 0.957, while it had to be 0.904 (because Van der Meer did not use in his original test a standard spectrum)• Largest part of the Van Gent data are different from the original deep water situation of Van der Meer; also the slope of the foreshore was different for most testsApril 12, 2012 40
  41. 41. Conclusions• For the period one should use Tm-1,0• In case of standard (deep water) spectrum one may use Tm= 0.957 Tm-1,0• But be careful: the spectrum used in the tests of Van der Meer gave a conversion of Tm=0.904 Tm-1,0• The recalibration of Van Gent should not be applied for deep water• For the time being the following coefficients are recommended: deep shallow cpl 9.13 8.4 csu 1.33-1.39 1.3April 12, 2012 41
  42. 42. Comparison after all corrections Marcel Mertens, 2007April 12, 2012 42
  43. 43. inconsistency 5 S ⎡ 1 ⎛ H 2% ⎞ H s ⎤ =⎢ ⎜ ⎟ ξ m −1,0 P ⎥ 0.18 N ⎢ c pl ⎝ H s ⎠ ΔDn 50 ⎣ ⎥ ⎦ ξm-1,0 is a function of HsApril 12, 2012 43
  44. 44. General equations (deep & shallow) 0.2 0.18 ⎛ S ⎞ H 2% ( sm−1,0 ) 0.25 = c pl P ⎜ ⎟ cot α for plunging waves Δd n50 ⎝ N⎠ 0.2 ⎛ S ⎞ ( sm−1,0 ) (ξ s−1,0 ) H 2% −0.25 P −0.5 = cs P −0.13 ⎜ ⎟ Δd n50 ⎝ N⎠ for surging waves 1 ⎡ c pl 0.31 ⎤ ξcr = ⎢ P tan α ⎥ P +0.5 transition ⎣ cs ⎦April 12, 2012 44
  45. 45. A new formula by Van Gent 5 ⎛ ⎞ S ⎜ Hs 1 ⎟ = ⎜ 0.57 tan α ⎟ N ⎜ ΔDn 50 1+ Dn 50 core ⎝ Dn 50 ⎟ ⎠ Extra in this formula: Not in this formula: Dn50core P period or steepnessApril 12, 2012 45
  46. 46. Results of the Van Gent formulaApril 12, 2012 46
  47. 47. Reliability of the various equations Equation Structure type σ Modified vdM permeable 0.098 Modified vdM impermeable 0.133 Modified vdM all 0.109 Van Gent permeable 0.103 Van Gent impermeable 0.121 Van Gent all 0.109April 12, 2012 47
  48. 48. Observations on the Van Gent formula• Reliability of the Van Gent formula seems as good as the (recalibrated) Van der Meer formula• Especially for permeable cores results are better• But Period/Steepness is not included, and is considered as irrelevant• Reliability is only based on the Van Gent database (shallow water, gentle foreshore)April 12, 2012 48
  49. 49. Conclusions on the Van Gent Formula• Because on deep water period is relevant (see dataset of Van der Meer) and because spectrum shape is also relevant (introduction of Tm-1,0) it is not advisable to exclude the period in stability formulas 1• The parameter Dn 50 core is maybe a better 1+ Dn 50 parameter for describing the permeability of a structure than the P-value of Van der Meer, because P cannot be determined objectivelyApril 12, 2012 49
  50. 50. low crested dams (1) crest above water level 1 Reduction d n50 = Rc s0 p 125 − 48 . . Hs 2π crest below water level Hs = −7 ln FG 1 hc IJ Δdn50 H 21 + 01S h . . K 3 sp Rc crest height with respect to SWL s0p (deep water) wave steepness (from Tp) h waterdepth hc height of damApril 12, 2012 50
  51. 51. low crested dams (2)April 12, 2012 51
  52. 52. low crested dams (3)• Given formula are for the front side of the breakwater• According to Van der Meer: in case of same block size at rear slope, no problems.• But probably over-dimensioned.• Tests performed in our lab to find out • split research into two steps • load of plunge on inner slope • dimension of plunge • try to understand stability processApril 12, 2012 52
  53. 53. The overtopping processApril 12, 2012 53
  54. 54. photo of model in labApril 12, 2012 54
  55. 55. what happens during a plungeApril 12, 2012 55
  56. 56. Layer thickness as function of timeApril 12, 2012 56
  57. 57. The uchar as describing parameterFor velocity use “characteristic velocity” The characteristic velocity is the maximum discharge divided by maximum layer thickness (and by flume width) (uchar cos( β − α )) 2 Rc Θuchar //, Rc ,α ,i = sin(α ) i ΔgDn 50 Dn 50April 12, 2012 57
  58. 58. Overall resultsApril 12, 2012 58
  59. 59. toe stabilityApril 12, 2012 59
  60. 60. Example using toe piles Scarborough seawall improvementApril 12, 2012 60
  61. 61. stability of toesa: deep toes with small damage b: shallow toes Hs FG IJ ht 14 . Hs FG = 11 0.24 ht IJ + 16 Δd n50 = 8.7 H K hm Δ dn50 . H dn50 . K April 12, 2012 61
  62. 62. typical damage pattern breakwaterheadApril 12, 2012 62

×