Your SlideShare is downloading. ×
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Calculus II - 15
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Calculus II - 15

245

Published on

Stewart Calculus Section 10.1

Stewart Calculus Section 10.1

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
245
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Transcript

    • 1. 10.1 Parametric Equations Curves can be defined by functions: = ( ) = + ··· But they cannot describe all general curves.
    • 2. Parametric equations: = ( ), = ()Ex: = , = + , = , = , ···
    • 3. Parametric curve: = , = + ,
    • 4. Parametric curve: = , = + ,
    • 5. Parametric curve: = , = + ,
    • 6. Parametric curve: = , = + ,
    • 7. Parametric curve: = , = ,
    • 8. Parametric curve: = , = ,
    • 9. Parametric curve: = , = ,
    • 10. Parametric curve: = , = ,
    • 11. More examples:= + , = + ,
    • 12. More examples: = = , + +
    • 13. More examples:= + , = + ,
    • 14. More examples: = =
    • 15. Find parametric equations for the circleswith center ( , ) and radius . y r (h,k) o x
    • 16. Find parametric equations for the circleswith center ( , ) and radius . y r (h,k) o x = + = +
    • 17. Eliminate the parameter to find the Cartesianequation of the curve. = , = ,
    • 18. Eliminate the parameter to find the Cartesianequation of the curve. = , = , +( ) = y (0,3) o x
    • 19. Eliminate the parameter to find the Cartesianequation of the curve. = , = , +( ) = y s pos sible! N ot alway (0,3) o x
    • 20. 10.2 Calculus with parametric Curves = ( ), = ()TangentsAreasArc LengthArea of Surfaces of Revolution
    • 21. Tangents:
    • 22. Tangents: If = , =
    • 23. Tangents: If = , = = =
    • 24. Tangents: If = , = = = !! =
    • 25. Ex: Find the tangents of the curve at ( , ): = , =
    • 26. Ex: Find the tangents of the curve at ( , ): = , =At ( , ), = ± . = = =±
    • 27. Ex: Find the tangents of the curve at ( , ): = , =At ( , ), = ± . = = =±The equations of the tangents are: =± ( )

    ×