Calculus II - 34

  • 530 views
Uploaded on

Stewart Calculus 12.4&5

Stewart Calculus 12.4&5

More in: Technology , Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
530
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
25
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n

Transcript

  • 1. 12.4 The Cross Product The cross product of = , , and = , , is given by = , , = = + It can only be defined for 3D vectors.
  • 2. Properties (I): = ( + )= +( ) = ( )= ( ) = · = · · )= · + ·( + ·( ) = ( · )= ( )· · =
  • 3. Properties (II): =| | = | || | = · =| | · = | || | · =
  • 4. Properties (III):( ) ,( )| | = | || | equals to the area ofthe parallelogram determined by and . The Right Hand Rule: If the fingers of your right hand curl in the direction of a rotation from to , then your thumb points in the direction of .
  • 5. Properties (IV): ·( )=( )· ·( ) is called the scalar triple product of , , . ·( )=The volume of the parallelepipeddetermined by the vectors , , equals | ·( )|.
  • 6. Properties (V): ( )=( · ) ( · ) ( )=( )
  • 7. Properties (V): ( )=( · ) ( · ) ( )=( )Properties (I-IV): = ( + )= +( ) = ( )= ( ) = =| | = | || | =( ) ,( ) ·( )=( )·
  • 8. 12.5 Equations of Lines and Planes Vector equation of a line: = + If = , , , = , , , = , , , then , , = + , + , + Parametric equation: = + , = + , = +
  • 9. Vector equation of a line: = +If = , , , = , , , = , , ,then , , = + , + , +Parametric equation: = + , = + , = +symmetric equation: = =
  • 10. Ex: Find an equation of the line pass throughtwo given points ( , , ) and ( , , )Ex: Show that the lines with parametricequations = + , = + , = = , = + , = +do not intersect and are not parallel.
  • 11. Vector equation of a plane: ·( )=If = , , , = , , , = , , ,then: , , · , , =Scalar equation: ( )+ ( )+ ( )=Linear equation: + + + =
  • 12. Ex: Find an equation of the plane throughthe point ( , , ) with normal vector , ,Ex: Find an equation of the plane that passesthrough ( , , ), ( , , ) and ( , , ).Ex: Find the point at which the line withparametric equations = + , = + , =intersects the plane + = .Ex: Find a equation for the line ofintersection of two planes = , + = .