Your SlideShare is downloading. ×
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Tablas ´para espectroscopía 2011
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Tablas ´para espectroscopía 2011

1,303

Published on

tablas para espectroscopia

tablas para espectroscopia

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,303
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
33
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. E. Pretsch, P. Buhlmann, C. Affolter Structueetermination of Organic Compounds Tables of Spectral Data Third Completely Revised and Enlarged English Edition Corrected first Printing Cortesía deCatalino De la Rosa Torres Marzo 9 del 2011 Springer
  • 2. Professor Emoe PretschETH ZurichLaboratory of Organic ChemistryCH-8092ZurichSwitzerlandDr. Philippe BiihlmannDepartment of ChemistrySchool of ScienceThe University of TokyoHongo 7-3-1, Bunkyo-KuTokyo 113-0033JapanDr. Christian AffolterAengerich 8CH-3303 MuenchringenSwitzerlandISBN 3-540-678 15-8 Springer-Verlag Berlin Heidelberg New YorkCIP-Data applied forPretsch, Ernoe: Structure determination of organic compounds : tables of spectral data /E. Pretsch ; P. Biihlmann ; C. Affolter. - 3., completely rev. and enl. engl. ed..Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ;Singapore ; Tokyo : Springer, 2000 ISBN 3-540-67815-8This work is subject to copyright. All rights are reserved, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication orparts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,in its current version, and permission for use must always be obtained from Springer-Verlag. Violationsare liable for prosecution act under German Copyright Law.Springer-Verlag Berlin Heidelberg New Yorka member of BertelsmannSpringer Science+Business Media GmbH0 Springer-Verlag Berlin Heidelberg 2000Printed in GermanyCopyright for the CD-ROM: Upstream Solutions GmbH, CH-6052 Hergiswil, SwitzerlandThe use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,even in the absence of a specific statement, that such names are exempt from the relevant protective lawsand regulations and therefore free for general use.Typesetting: Camera-ready by editorsCover layout: design & production GmbH, HeidelbergPrinted on acid-free paper SPIN: 10896235 52/3020 - 5 4 3 2 1 0 .
  • 3. PrefaceWhile modern techniques of nuclear magnetic resonance and mass spectrometrychanged the ways of data acquisition and greatly extended the capabilities of thesemethods, the basic parameters, such as chemical shifts, coupling constants, andfragmentation pathways remain the same. This explains the ongoing success ofthe earlier editions of this book. However, since the amount of available data hasconsiderably increased over the years, we decided to prepare an entirely newmanuscript. It follows the same basic concepts, i.e., it provides a representative,albeit limited set of reference data for the interpretation of 13C NMR, H NMR,IR, mass, and UV/Vis spectra. On the other hand, the book has undergone anumber of changes. The amount of reference data has been doubled at least(especially for MS and IR) and the order and selection of data for the variousspectroscopic methods is now arranged strictly in the same way. In addition, thethe enclosed compact disc contains programs for estimating NMR chemical shiftsand generating isomers based on structural information. Unfortunately, our teachers and colleagues, Prof. Wilhelm Simon and Prof.Thomas Clerc are no longer among us, and Prof. Joseph Seibl has retired yearsago. Their contributions to developing the concept and the earlier editions of thiswork cannot be overemphasized. We also thank numerous colleagues who helpedus in many different ways to complete the manuscript. We are particularly indebtedto Dr. Dorothee Wegmann for her expertise with which she eliminated many errorsand inconsistencies of the first versions. Special thanks are due to Dr. RichKnochenmuss (ETH Zurich) for the MALDI mass spectra of matrix materials, Dr.Kikuko Hayamizu for her help with the Spectral Database System of the NationalInstitute of Materials and Chemical Research, Tsukuba, Ibaraki (Japan), Prof.Bernhard Jaun and Dr. Martin Badertscher (ETH Zurich) for critically reading partsof the manuscript. Dr. Martin Badertscher is also thanked for the tutorial of thestructure generator, Assemble 2.0, and Upstream Solutions (Hergiswil,Switzerland) for providing free versions of the computer programs on the enclosedcompact disk. In spite of great efforts and many checks to eliminate errors, it is likely thatsome errors or inconsistencies remain. We would like to encourage our readers tocontact us with comments and suggestions or any kind of problems when usingthe book or the enclosed programs under one of the following addresses:Prof. Ern0 Pretsch, Laboratory of Organic Chemistry, CH-8092 Zurich,Switzerland, e-mail: pretsch@org.chem.ethz.ch, or Prof. Philippe Buhlmann,Department of Chemistry, University of Minnesota, 207 Pleasant St., SE,Minneapolis, MN 55455, USA, e-mail: buhlmann@chem.umn.edu.Zurich and Tokyo, August 2000
  • 4. Table of Contents VIITable of Contents1 Introduction ......................................................................... 1 1.1 Scope and Organization ........................................................ 1 1.2 Abbreviations and Symbols .................................................. 32 Summary Tables .................................................................. 5 2.1 General Tables .................................................................... 5 2.1.1 Calculation of the Number of Double Bond Equivalents from the Molecular Formula ..................................... 5 2.1.2 Properties of Selected Nuclei ..................................... 6 2.2 13c NMR Spectroscopy ...................................................... 7 2.3 l NMR Spectroscopy ........................................................ H 10 2.4 IR Spectroscopy ................................................................. 13 2.5 Mass Spectrometry .............................................................. 18 2.5.1 Average Masses of Naturally Occurring Elements with Exact Masses and Representative Relative Abundances of Isotopes ................................................................ 18 2.5.2 Ranges of Natural Isotope Abundances of Selected Elements ............................................................... 24 2.5.3 Isotope Patterns of Naturally Occurring Elements ......... 25 2.5.4 Calculation of Isotope Distributions........................... 26 2.5.5 Isotopic Abundances of Various Combinations of Chlorine. Bromine. Sulfur. and Silicon ....................... 28 2.5.6 Isotope Patterns of Combinations of C1 and Br ............. 30 2.5.7 Indicators of the Presence of Heteratoms ...................... 31 2.5.8 Rules for Determining the Relative Molecular Weight (Mr) ..................................................................... 33 2.5.9 Homologous Mass Series as Indications of Structural Type .................................................................... 34 2.5.10 Mass Correlation Table ............................................ 36 2.5.11 References ............................................................. 46 2.6 UVNis Spectroscopy .......................................................... 473 Combination Tables ............................................................ 49 3.1 Alkanes. Cycloalkanes ......................................................... 49 3.2 Alkenes. Cycloalkenes ......................................................... 50 3.3 Alkynes ............................................................................ 51 3.4 Aromatic Hydrocarbons ........................................................ 52 3.5 Heteroaromatic Compounds .................................................. 53
  • 5. Vlll Table of Contents 3.6 Halogen Compounds ........................................................... 54 3.7 Oxygen Compounds ............................................................ 56 3.7.1 Alcohols and Phenols .............................................. 56 3.7.2 Ethers ................................................................... 57 3.8 Nitrogen Compounds....................... ................................ 59 3.8.1 Amines ................................................................. 59 3.8.2 Nitro Compounds ................................................... 60 3.9 Thiols and Sulfides .............................................................. 62 3.10 Carbonyl Compounds.......................................................... 63 3.10.1 Aldehydes .............................................................. 63 3.10.2 Ketones ................................................................ 64 3.10.3 Carboxylic Acids .................................................... 65 3.10.4 Carboxylic Esters and Lactones ................................. 66 3.10.5 Carboxylic Amides and Lactams ................................ 684 13C NMR Spectroscopy ..................................................... 71 4.1 Alkanes ............................................................................. 71 4.1.1 Chemical Shifts ..................................................... 71 4.1.2 Coupling Constants ................................................ 80 4.1.3 References ............................................................. 81 4.2 Alkenes ............................................................................. 82 4.2.1 Chemical Shifts ..................................................... 82 4.2.2 Coupling Constants ................................................ 86 4.2.3 References ............................................................. 87 4.3 Alkynes ............................................................................ 88 4.3.1 Chemical Shifts ..................................................... 88 4.3.2 Coupling Constants ................................................ 89 4.3.3 References ............................................................. 89 4.4 Alicyclics .......................................................................... 90 4.4.1 Chemical Shifts ..................................................... 90 4.4.2 Coupling Constants ................................................ 95 4.4.3 References ............................................................. 95 4.5 Aromatic Hydrocarbons ........................................................ 96 4.5.1 Chemical Shifts ..................................................... 96 4.5.2 Coupling Constants ................................................ 102 4.5.3 References ............................................................. 103 4.6 Heteroaromatic Compounds .................................................. 104 4.6.1 Chemical Shifts ..................................................... 104 4.6.2 Coupling Constants ................................................ 111 4.7 Halogen Compounds ........................................................... 112 4.7.1 Fluoro Compounds. ................................................ 112 4.7.2 Chloro Compounds ................................................. 114 4.7.3 Bromo Compounds ................................................. 115 4.7.4 Iodo Compounds .................................................... 116 4.7.5 References ............................................................. 116 4.8 Alcohols. Ethers. and Related Compounds ............................... 117 4.8.1 Alcohols ............................................................... 117 4.8.2 Ethers ................................................................... 119
  • 6. Table of Contents IX 4.9 Nitrogen Compounds ........................................................... 121 4.9.1 Amines ................................................................. 121 4.9.2 Nitro and Nitroso Compounds ................................... 123 4.9.3 Nitrosamines ......................................................... 124 4.9.4 Imines and Oximes ................................................. 124 4.9.5 Hydrazones and Carbodiimides ................................... 125 4.9.6 Nitriles and Isonitriles ............................................. 126 4.9.7 Isocyanates. Thiocyanates and Isothiocyanates .............. 127 4.9.8 References............................................................. 127 4.10 Sulfur-Containing Functional Groups ..................................... 128 4.10.1 Thiols .................................................................. 128 4.10.2 Sulfides ................................................................ 128 4.10.3 Disulfides and Sulfonium Salts ................................. 130 4.10.4 Sulfoxides and Sulfones ........................................... 130 4.10.5 Sulfonic and Sulfinic Acids and Derivatives ................. 131 4.10.6 Sulfurous and Sulfuric Acid Derivatives...................... 131 4.10.7 Sulfur-Containing Carbonyl Derivatives ..................... 132 4.1 1 Carbonyl Compounds .......................................................... 133 4.11.1 Aldehydes .............................................................. 133 4.11.2 Ketones ................................................................ 134 4.1 1.3 Carboxylic Acids and Carboxylates ............................ 136 4.1 1.4 Esters and Lactones ................................................. 138 4.1 1.5 Amides and Lactams ................................................ 140 4.11.6 Miscellaneous Carbonyl Derivatives ........................... 142 4.12 Miscellaneous Compounds ................................................... 144 4.12.1 Derivatives of Group IV Elements ............................. 144 4.12.2 Phosphorus Compounds .......................................... 145 4.12.3 Miscellaneous Organometallic Compounds .................. 147 4.13 Natural Products ................................................................. 148 4.13.1 Amino Acids ......................................................... 148 4.13.2 Carbohydrates ........................................................ 152 4.13.3 Nucleotides and Nucleosides ...................................... 154 4.13.4 Steroids ................................................................ 156 4.14 Spectra of Solvents and Reference Compounds ......................... 157 4.14.1 3C NMR Spectra of Common Deuterated Solvents ..... 157 4.14.2 I3C NMR Spectra of Secondary Reference Compounds . 159 4.14.3 13C NMR Spectrum of a Mixture of Common Nondeuterated Solvents ............................................ 1605 H NMR Spectroscopy ....................................................... 161 5.1 Alkanes ............................................................................. 161 5.1.1 Chemical Shifts ..................................................... 161 5.1.2 Coupling Constants ................................................ 166 5.1.3 References............................................................. 167 5.2 Alkenes ............................................................................. 168 5.2.1 Substituted Ethylenes .............................................. 168 5.2.2 Dienes .................................................................. 174 5.3 Alkynes ............................................................................ 175
  • 7. X Table of Contents 5.3.1 Chemical Shifts and Coupling Constants .................... 175 5.4 Alicyclics .......................................................................... 176 5.5 Aromatic Hydrocarbons ........................................................ 180 5.6 Heteroaromatic Compounds .................................................. 186 5.6.1 Non-Condensed Heteroaromatic Rings ........................ 186 5.6.2 Condensed Heteroaromatic Rings ............................... 193 5.7 Halogen Compounds ........................................................... 198 5.7.1 Fluoro Compounds ................................................. 198 5.7.2 Chloro Compounds ................................................. 199 5.7.3 Bromo Compounds ................................................. 200 5.7.4 Iodo Compounds .................................................... 201 5.8 Alcohols, Ethers, and Related Compounds ............................... 202 5.8.1 Alcohols ............................................................... 202 5.8.2 Ethers ................................................................... 204 5.9 Nitrogen Compounds ........................................................... 207 5.9.1 Amines ................................................................. 207 5.9.2 Nitro and Nitroso Compounds .................................. 210 5.9.3 Nitrosamines, Azo, and Azoxy Compounds ................. 210 5.9.4 Imines, Oximes, Hydrazones, and Azines .................... 211 5.9.5 Nitriles and Isonitriles ............................................. 212 5.9.6 Cyanates, Isocyanates, Thiocyanates, and Isothiocyanates 213 5.10 Sulfur-Containing Functional Groups ..................................... 214 5.10.1 Thiols .................................................................. 214 5.10.2 Sulfides ................................................................ 215 5.10.3 Disulfides and Sulfonium Salts ................................. 216 5.10.4 Sulfoxides and Sulfones ........................................... 216 5.10.5 Sulfonic, Sulfinic, Sulfurous, and Sulfuric Acids and Derivatives ............................................................ 217 5.10.6 Thiocarboxylate Derivatives ...................................... 217 5.1 1 Carbonyl Compounds .......................................................... 218 5.1 1.1 Aldehydes .............................................................. 218 5.1 1.2 Ketones ................................................................ 219 5.1 1.3 Carboxylic Acids and Carboxylates ............................ 220 5.1 1.4 Esters and Lactones ................................................. 221 5.1 1.5 Amides and Lactams ................................................ 223 5.1 1.6 Miscellaneous Carbonyl Derivatives ........................... 226 5.12 Miscellaneous Compounds ................................................... 228 5.12.1 Silicon Compounds ................................................ 228 5.12.2 Phosphorus Compounds .......................................... 229 5.12.3 Miscellaneous Compounds ....................................... 232 5.13 Natural Products ................................................................. 233 5.13.1 Amino Acids ......................................................... 233 5.13.2 Carbohydrates ........................................................ 236 5.13.3 Nucleotides and Nucleosides ...................................... 237 5.13.4 References ............................................................. 239 5.14 Spectra of Solvents and Reference Compounds ......................... 240 * 5.14.1 H NMR Spectra of Common Deuterated Solvents ....... 240 5.14.2 1H NMR Spectra of Secondary Reference Compounds ... 242
  • 8. Table of Contents XI . 5.14.3 1H NMR Spectrum of a Mixture of Common Nondeuterated Solvents ............................................ 2436 IR Spectroscopy.................................................................. 245 6.1 Alkanes ............................................................................. 245 6.2 Alkenes ............................................................................. 248 6.2.1 Monoenes ............................................................. 248 6.2.2 Allenes ................................................................. 251 6.3 Alkynes ............................................................................ 252 6.4 Alicyclics .......................................................................... 253 6.5 Aromatic Hydrocarbons ........................................................ 255 6.6 Heteroaromatic Compounds .................................................. 258 6.7 Halogen Compounds ........................................................... 260 6.7.1 Fluoro Compounds ................................................. 260 6.7.2 Chloro Compounds ................................................. 261 6.7.3 Bromo Compounds ................................................. 262 6.7.4 Iodo Compounds .................................................... 262 6.8 Alcohols, Ethers, and Related Compounds ............................... 263 6.8.1 Alcohols and Phenols., ............................................ 263 6.8.2 Ethers, Acetals, Ketals ............................................. 264 6.8.3 Epoxides ............................................................... 266 6.8.4 Peroxides and Hydroperoxides .................................... 267 6.9 Nitrogen Compounds ........................................................... 268 6.9.1 Amines and Related Compounds ................................ 268 6.9.2 Nitro and Nitroso Compounds ................................... 270 6.9.3 Imines and Oximes ................................................. 272 6.9.4 Azo Compounds ..................................................... 274 6.9.5 Nitriles and Isonitriles ............................................. 275 6.9.6 Diazo Compounds .................................................. 276 6.9.7 Cyanates and Isocyanates .......................................... 277 6.9.8 Thiocyanates and Isothiocyanates ............................... 278 6.10 Sulfur-Containing Functional Groups ..................................... 280 6.10.1 Thiols and Sulfides ................................................. 280 6.10.2 Sulfoxides and Sulfones ........................................... 281 6.10.3 Thiocarbonyl Derivatives ......................................... 283 6.10.4 Thiocarbonic Acid Derivatives ................................... 283 6.1 1 Carbonyl Compounds .......................................................... 286 6.1 1.1 Aldehydes .............................................................. 286 6.1 1.2 Ketones ................................................................ 287 6.1 1.3 Carboxylic Acids .................................................... 290 6.1 1.4 Esters and Lactones ................................................. 292 6.1 1.5 Armdes and Lactames .............................................. 295 6.1 1.6 Acid Anhydrides ..................................................... 298 6.1 1.7 Acid Halides .......................................................... 300 6.1 1.8 Carbonic Acid Derivatives ........................................ 301 6.12 Miscellaneous Compounds ................................................... 304 6.12.1 Silicon Compounds ................................................ 304 6.12.2 Phosphorus Compounds .......................................... 305
  • 9. XI1 Table of Contents 6.12.3 Boron Compounds .................................................. 308 6.13 Amino Acids ...................................................................... 309 6.14 Solvents. Suspension Media. and Interferences .......................... 310 6.14.1 Infrared Spectra of Common Solvents ......................... 310 6.14.2 Infrared Spectra of Suspension Media .......................... 311 6.14.3 Interferences in Infrared Spectra .................................. 3127 Mass Spectrometry ............................................................. 313 7.1 Alkanes ............. ............................................................ 313 7.1.1 Unbranched Alkanes ................................................ 313 7.1.2 Branched Alkanes .................................................... 313 7.1.3 References ............................................................. 314 7.2 Alkenes ............................................................................. 315 7.2.1 Unbranched Alkenes ................................................ 15 7.2.2 Branched Alkenes .................................................... 315 7.2.3 Polyenes and Polyynes ............................................ 316 7.2.4 References ............................................................. 316 7.3 Alkynes ....................................................................... 317 7.3.1 Aliphatic Alkynes ................................................... 317 7.3.2 References ............................................................. 317 7.4 Alicyclic Hydrocarbons ............ ..................................... 318 7.4.1 Cyclopropanes ....................................................... 318 7.4.2 Saturated Monocyclic Alicyclics ................................ 319 7.4.3 Polycyclic Alicyclics ............ ............................... 319 7.4.4 Cyclohexenes ......................................................... 319 7.4.5 References ............................................................. 320 7.5 Aromatic Hydrocarbones ....................................................... 321 7.5.1 Aromatic Hydrocarbons ............................................ 321 7.5.2 Alkylsubstituted Aromatic Hydrocarbons ..................... 321 7.5.3 References ...................... .................................. 322 7.6 Heteroaromatic Compounds .................................................. 323 7.6.1 General Characteristics ............................................. 323 7.6.2 Furans .................................................................. 323 7.6.3 Thiophenes ............................................................ 323 7.6.4 Pyrroles ................................................................ 324 7.6.5 Pyridines ............................................................... 324 7.6.6 N-Oxides of Pyridines and Quinolines......................... 325 7.6.7 Pyridazines and Pyrimidines ............................... 325 7.6.8 Pyrazines ...... ....................................... 326 7.6.9 Indoles .................................................................. 326 7.6.10 Quinolines ............................................................ 326 7.6.1 1 Cinnoline .............................................................. 327 7.6.12 References ........... ............................................. 327 7.7 Halogen ............................................................................ 328 7.7.1 Saturated Aliphatic Halides ....................................... 328 7.7.2 Polyhaloalkanes ..................................................... 329 7.7.3 Aromatic Halides .................................................... 329 7.7.4 References ............................................................. 329
  • 10. Table of Contents Xlll7.8 Alcohols ........................................................................... 330 7.8.1 Aliphatic Alcohols .................................................. 330 7.8.2 Alicyclic Alcohols .................................................. 331 7.8.3 Unsaturated Aliphatic Alcohols ................................. 331 7.8.4 Vicinal Glycols., .................................................... 331 7.8.5 Aliphatic Hydroperoxides ......................................... 332 7.8.6 Phenols ................................................................ 332 7.8.7 Benzyl .................................................................. 332 7.8.8 Aliphatic Ethers ..................................................... 333 7.8.9 Unsaturated Ethers .................................................. 334 7.8.10 Alkyl Cycloalkyl Ethers .......................................... 335 7.8.11 Cyclic Ethers ......................................................... 335 7.8.12 Aliphatic Epoxides .................................................. 336 7.8.13 Methox ybenzenes ................................................... 337 7.8.14 Alkyl Aryl Ethers ................................................... 337 7.8.15 Aromatic Ethers ..................................................... 337 7.8.16 Aliphatic Peroxides ................................................. 337 7.8.17 References ............................................................. 3387.9 Nitrogen Compounds........................................................... 339 7.9.1 Saturated Aliphatic Amines ...................................... 339 7.9.2 Cycloalkylamines ................................................... 339 7.9.3 Cyclic Amines ....................................................... 340 7.9.4 Piperazines ............................................................ 341 7.9.5 Aromatic Amines ................................................... 341 7.9.6 Aliphatic Nitro Compounds ...................................... 341 7.9.7 Aromatic Nitro Compounds ...................................... 342 7.9.8 Diazo ................................................................... 342 7.9.9 Azobenzenes .......................................................... 342 7.9.10 Aliphatic Azides ..................................................... 342 7.9.1 1 Aromatic Azides ..................................................... 343 7.9.12 Aliphatic Nitriles .................................................... 343 7.9.13 Aromatic Nitriles .................................................... 344 7.9.14 Aliphatic Isonitriles (R-NC) ..................................... 344 7.9.15 Aromatic Isonitriles (R-NC) ..................................... 344 7.9.16 Aliphatic Cyanates (R-OCN) .................................... 345 7.9.17 Aromatic Cyanates (R-OCN) .................................... 345 7.9.18 Aliphatic Isocyanates (R-NCO) ................................. 345 7.9.19 Aromatic Isocyanates (R-NCO) ................................. 346 7.9.20 Aliphatic Thiocyanates (R-SCN) ............................... 346 7.9.21 Aromatic Thiocyanates (R-SCN) ............................... 347 7.9.22 Aliphatic Isothiocyanates (R-NCS) ............................ 347 7.9.23 Aromatic Isothiocyanates (R-NCS) ............................ 347 7.9.24 References ............................................................. 3487.10 Sulfur-Containing Functional Groups ..................................... 349 7.10.1 Aliphatic Thiols ..................................................... 349 7.10.2 Aromatic Thiols ..................................................... 349 7.10.3 Aliphatic Sulfides ................................................... 350 7.10.4 Alkyl Vinyl Sulfides ............................................... 350 7.10.5 Cyclic Sulfides ....................................................... 351
  • 11. XIV Table of Contents 7.10.6 Aromatic Sulfides ................................................... 351 7.10.7 Disulfides .............................................................. 351 7.10.8 Aliphatic Sulfoxides ................................................ 352 7.10.9 Alkyl Aryl and Diaryl Sulfoxides ............................... 352 7.10.10 Aliphatic Sulfones .......................................... 353 7.10.1 1 Cyclic Sulfones...................................................... 354 7.10.12 Alkyl Aryl Sulfones ................................................ 354 7.10.13 Diaryl Sulfones ...................................................... 355 7.10.14 Aromatic Sulfonic Acids .......................................... 355 7.10.15 Alkylsulfonic Acid Esters ......................................... 355 7.10.16 Arylsulfonic Acid Esters .......................................... 356 7.10.17 Aromatic Sulfonamides ............................................ 356 7.10.18 Thiocarboxylic Acid S-Esters .................................... 357 7.10.19 References ............................................................. 357 7.11 Carbonyl Compounds .......................................................... 358 7.1 1.1 Aliphatic Aldehydes ................................................ 358 7.1 1.2 Unsaturated Aliphatic Aldehydes ................................ 358 7.1 1.3 Aromatic Aldehydes ................................................ 358 7.1 1.4 Aliphatic Ketones ................................................... 359 7.1 1.5 Unsaturated Ketones ................................................ 359 7.1 1.6 Alicyclic Ketones ................................................... 359 7.1 1.7 Aromatic Ketones ................................................... 360 7.11.8 Aliphatic Carboxylic Acids .................... ........ 360 7.1 1.9 Aromatic Carboxylic Acids ....... ........................ 361 7.1 1.10 Carboxylic Acid Anhydrides ...................................... 361 7.11.11 Saturated Aliphatic Esters ......................................... 361 7.11.12 Unsaturated Esters ................................................... 362 7.1 1.13 Esters of Aromatic Acids ........... ........................... 363 7.1 1.14 Lactones ................................... ........................ 364 7.1 1.15 Aliphatic Amides .................................................... 364 7.1 1.16 Amides of Aromatic Carboxylic Acids ........................ 365 7.1 1 . 17 Anilides ................................................................ 365 7.1 1.18 Lactams ................................................................ 365 7.1 1.19 Imides .................................................. 367 7.1 1.20 References ............................................................. 368 7.12 Miscellaneous Compounds ................................................... 369 7.12.1 Trialkylsilyl Ethers .............. ............................... 369 7.12.2 Alkyl Phosphates ................................................... 369 7.12.3 Aliphatic Phosphines .............................................. 369 7.12.4 Aromatic Phosphines and Phosphine Oxides .... 370 7.12.5 References ............................................................. 370 7.13 Mass Spectra of Common Solvents and Matrix Compounds ....... 371 7.13.1 Electron Impact Ionization Mass Spectra of Common Solvents ............................................................... 371 7.13.2 Spectra of Common FAB MS Matrix and Calibration Compounds ........................................................... 374 7.13.3 Spectra of Common MALDI MS Matrix Compounds ... 380 7.1 3.4 References ............................................................. 383
  • 12. Table of Contents xv 8 UV/Vis Spectroscopy . .......................................... 385 8.1 Correlation Between Wavelength of Absorbed Radiation and Observed Color ..... . .............................. 385 8.2 UV/Vis Absorption o mophores ....................... 385 8.3 UV/Vis Absorption of Conjugated Alkenes .............. 387 8.3.1 UV Absorption of Dienes and Polyenes .................. 387 8.3.2 UV Absorption of a$-Unsaturated Carbonyl Com- 388 8.4 pounds UVNis Absorption of Aromatic Compounds ............. 390 8.4.1 UV Absorption of Monosubstituted Benzenes ............. 390 8.4.2 UV Absorption of Substituted Benzenes 39 1 8.4.3 UV Absorption of Aromatic Carbonyl Compounds ....... 392 8.5 UV/Vis Reference Spectra ............................................. 393 8.5.1 UVNis Spectra of Alkenes and Alkynes ................. 393 8.5.2 UVNis Spectra of Aromatic Compounds . .............. 394 8.5.3 UVNis Spectra of Heteroaromatic Compounds . .......... 399 8.5.4 UVNis Spectra of Miscellaneous Compounds . .......... 401 8.5.5 UVNis Spectra of Nucleotides . ............................ 403 8.6 UVNis Absorption of Common Solvents . ......................... 404 Subject index ........................................................................ 406 Cortesía deCatalino De la Rosa Torres Marzo 9 del 2011
  • 13. SUBJECT INDEXIndex Terms LinksAAcenaphthene C96 H181Acenaphthylene C96 H181Acetaldehyde C133 H218 I287Acetaldoxime H211 I274N/N-Acetals 11O/O-Acetals 4 9 C120 H206 I245 I246 I264 I265– methyl 41O/S-Acetals 8 9Acetamides 37 C140 H224Acetanilides M365Acetate ion C137Acetates 37 39 I291 I293Acetic acid C137 H220 I291 M371 U403– esters C138– anhydride C142 H226 I299Acetoisonitrile C126Acetone C81 C134 C160 H219 H243 M371 U405– dimethylhydrazone C125Acetone-d6 C157 H240Acetonitrile C126 C160 H212 H243 M371 U405Acetonitrile-d3 C157 H240 This page has been reformatted by Knovel to provide easier navigation.
  • 14. Index Terms LinksAcetophenone C135 H219 I289 M360 M390 M397Acetyl bromide C142 H226N-Acetyl-γ-butyrolactam H227Acetyl chloride C142 H226– iodide C142N-Acetyl pyrrolidine H225N-Acetyl-γ-valerolactam H227Acetylacetone C118 C135 H220 I289Acetylene C88 C89 H175Acetylenes 3 10 32 33 35 45 51 C88 H175 I246 I252 M317 M385– aliphatic M317Acetylenic ethers M334Acid– bromides I300– chlorides 4 6 32 40 46 I300– fluorides I300– halides C142 H226 I300– iodides I300Acids 3 4 6 7 9 10 11 12 14 15 32 33 34 38 40 45 65 C136 C137 H220 I290 U386– aliphatic M360– aromatic M361 This page has been reformatted by Knovel to provide easier navigation.
  • 15. Index Terms LinksAcids (Cont.)– α-methyl 41– α,β-unsaturated U388Acridine C110 H197 U401Acrylaldehyde C133 H218Acrylate ion C137Acrylic acid C137 H221 I251Acryloisonitrile C126Acrylonitrile C126 H212 I251Acryloyl– chloride C142 H226– fluoride H226N-Acyl-piperidine H225Adamantane C94 H177Adenine C154 H238 U404Adenosine C155 H238Alanine C148 H233 I292β-Alanine C148Alcohols 4 7 10 32 33 34 40 42 45 56 C117 H202 I263 M330 U386– alicyclic 32 37 M331– aliphatic C117 H202 M330– primary 36 38 M330– tertiary 34– unsaturated M331Aldehydes 4 6 9 12 14 32 34 35 40 42 45 63 C133 H218 I245 I286 This page has been reformatted by Knovel to provide easier navigation.
  • 16. Index Terms LinksAldehydes (Cont.) M358– aliphatic 37– allyl 35– aromatic M358– α-methyl 39– α,β-unsaturated U388Aldimines C124 H211 I273Aldoximes 4 C125 H211Alicyclic– alcohols M331– ketones 32 35 C135 C136 H219 H220 M359Alicyclics 32 37 40 42 C90 H176 I247 I253 M318– condensed C94– polycyclic 32 33 37 41 C94 M319Aliphatic– alcohols C117 H202 M330– dienes C85 H174– phosphorus compounds C145 H229Alkanes 3 7 10 32 39 40 42 43 49 C71 H161 I245 M313 U385– aromatically substituted H165– branched M313– cyclic 32 37 40 42 50 C90 H176 I247 I253 M318 This page has been reformatted by Knovel to provide easier navigation.
  • 17. Index Terms Links– halogen-substituted M328– monosubstituted C74 H162 H163– polycyclic 32 33 37 41 M319– unbranched M313Alkenes 4 7 8 10 32 37 40 41 42 45 50 C82 H168 I246 I248 M315 U385– branched M315– conjugated U387– cyclic 32 33 I253– unbranched M315Alkynes 3 10 32 33 35 45 51 C88 H175 I246 I252 M317 U385– aliphatic M317Allenes C85 C86 H174 I251 U385Allophanates M303Allyl– alcohols C118 M331– aldehydes 35– cyanide M318– ethers M334– methyl ether C119Allylamine C122Allylic couplings H169Amide protons H223 This page has been reformatted by Knovel to provide easier navigation.
  • 18. Index Terms LinksAmides 3 4 7 8 9 14 15 32 39 45 68 C140 H223 I295– aliphatic M364– of aromatic carboxylic acids M365– primary I295– secondary I295– tertiary I295Amine protons H207Amines 3 7 8 9 10 32 34 37 38 39 45 59 C121 H207 I245 I268 I312 M386– aliphatic 40 42 I269 M339– alkenylsubstituted I251– aromatic M341– benzylic M341– cyclic C123 H209 M340– cycloalkyl M339– methyl 36– primary I268 I269– protonation induced shifts C121– secondary I268Amino acids 15 C148 H233 I3093-Aminoquinoline M380 M382Ammonium– compounds 10 C121 H208 I268– ion H208– protons H207 This page has been reformatted by Knovel to provide easier navigation.
  • 19. Index Terms Links5α-Androstane C1565β-Androstane C156Anhydrides 6 11 14 C142 H226 I298 M361– cyclic 11 12Anilides M365Anilines 8 33 37 42 43 C122 H209 U390 U395– alkylsubstituted 43Anisole C119 H180 H206 I266 U395Anthracene C96 H180 U398Anthraquinone I290Antimony compounds C99 C147Arenes 4 7 8 9 33 35 37 41 42 43 46 52 C96 H180 I255 M321– condensed 46 52 M321Arginine C151 H234Aromatic– ethers C119 H206 M337– hydrocarbons 4 7 8 9 33 35 37 41 42 43 46 52 C96 H180 I255 M321– – condensed 46 52 M321– phosphorus compounds C146Arsenic compounds C99 C147Aspartic acid C150 H234 This page has been reformatted by Knovel to provide easier navigation.
  • 20. Index Terms Links7-Azaindole C109Azepane C123Azetidine C123 H209Azides– aliphatic M342– aromatic M343Azines H211Aziridines 7 C123 H209Azo compounds H210 I274Azobenzenes H211 M342 U396Azomethane H211Azoxy compounds H210 I274Azulene C96BBenzaldehydes C133 H218 I287 U390 U392 U397Benzanthracene U398Benzene C96 C102 C160 H180 H243 I257 M372 U390 U394 U405Benzene-1,3-diol C118Benzene-d6 C157 H240 M372Benzenes 4 7 8 9 33 37 42 43 46– halogen-substituted I261– monosubstituted C97 H182 U390– mulitiply substituted U391– perhalogenated 40Benzenesulfonamide C131 H217 M356 This page has been reformatted by Knovel to provide easier navigation.
  • 21. Index Terms LinksBenzenesulfonic acid C131 H217– methyl ester H217Benzenesulfonyl chloride C131 H217Benzenethiol C128 H214Benzimidazole C109 H193Benzoate– ion C137– methyl I294Benzoates I2911,3-Benzodioxolane C120 H206Benzoic acid C137 H221 I292 U390 U397– esters U392– substituted U392Benzoic anhydride C142 I299Benzoisonitrile C126Benzonitrile C126 H212 I275 U390 U396Benzophenone C135 H219 I289 U397γ-Benzopyrones 431,2-Benzoquinone C136 I290 U3971,4-Benzoquinone C136 H220 I290 U397Benzoquinones 14 35 C136 I288 I2892,1,3-Benzothiadiazole C109 H194Benzothiazole C109 H194Benzotriazole H1942,1,3-Benzoxadiazole C109 H194Benzoxazole C109 H193Benzoxazoles C109 This page has been reformatted by Knovel to provide easier navigation.
  • 22. Index Terms LinksBenzoyl– chloride C142 H226– derivatives 43Benzo[l,4]dioxin H195Benzo[l,4]dithiin H195Benzo[b]furan C109 H193Benzo[b]thiophene C109 H193Benzyl– alcohols C118 H203 I264 M332– bromide C115– chloride C114– fluoride C113– groups 9– iodide C116– mercaptan I280– vinyl sulfide C129Benzylamine C123Benzylic amines M341N-Benzylideneaniline C124 H211N-Benzylidenemethylamine C124 H211Benzylthiol C128Bicyclo[2,2,2]octane C94Bicyclo[3,l,0]hexane C94Bicyclo[3,3,0]octane C94Bicyclo[4,l,0]heptane C94Bicyclo[4,2,0]octane C94Bicyclo[4,3,0]nonane C94Biphenyls M321 U3942,2-Bis(ethylthio)propane C129Bis(isopropyloxy)methylphosphine H230Bis(tert-butylthio)methane C129 This page has been reformatted by Knovel to provide easier navigation.
  • 23. Index Terms LinksBoranes 10 I308Borates 10 I308Boric acid esters I308Boron compounds 10 C147 H178 H232 I308Bromides 26 28 30 41 42 45 54 C115 H200 I262 U385– aliphatic 44 M328– aromatic I262 M329Bromo compounds 26 28 30 41 42 45 54 C115 H200 I262 U385– aliphatic 44 M328– aromatic I262 M329Bromoacetic acid C115Bromoacetone C135Bromoacetylene H200Bromoalkanes M328Bromobenzenes C115 H200 I261Bromocyclohexane C115 H200Bromocyclopropane C90 H200Bromoethane C115 H200Bromoethylene C115 H200Bromoform C115 H200 U401Bromoform-d C157 H240Bromomethane C115 H200Bromopropanes C115 H200Bromopyridines C115N-Bromosuccinimide H227 I2981,3-Butadiene C85 C87 H174 This page has been reformatted by Knovel to provide easier navigation.
  • 24. Index Terms LinksButadiyne C89Butane C71 H1612,3-Butanedione C1351-Butanethiol C128 H214tert-Butanol C117 H2031-Butanol C81 C117 I2642-Butanone C134Butenes H168N-Butylacetamide H225N-tert-Butylacetamide C141 H225Butyl– acetate H221 I294– group H163– isocyanate C127– isothiocyanate C127 I279– methyl ethers C119– methyl ketones C134– methyl sulfides C129 H215tert-Butyl– acetate C138 H221– cyanide C126 H212– dimethylamine C122– disulfides H216– fluoride H198– group C75 H163– methyl sulfone C130S-Butyl thioacetate C132Butylamine H208Butyldichlorophosphine C145Butyldimethylphosphine C145Butyldimethylphosphine sulfide C146 This page has been reformatted by Knovel to provide easier navigation.
  • 25. Index Terms Linkstert-Butylamine C121tert-Butylbenzene H181tert-Butylbromide C115 H200tert-Butylchloride C114 H199tert-Butylfluoride C112tert-Butyliodide C116 H201Butynes C89 H175Butyraldehydes C133 H218Butyric acid C137 H221– anhydride C142 I299γ-Butyrolactam C141 H225γ-Butyrolactone C139 H223 I293Butyronitrile C126C12 C NMR Spectroscopy C71Calibration compounds for MS M374ε-Caprolactone C139Carbaldehydes 4 6 12 14 32 34 35 40 42 45 63 C133 H218 I245 I286 M358Carbamates 12 14 C143 H227 I301 I302– phenyl 43Carbazole C110 H197Carbodiimides C92 C125 U386Carbohydrates C152 H236Carbon– dioxide C143 I312 This page has been reformatted by Knovel to provide easier navigation.
  • 26. Index Terms LinksCarbon (Cont.)– disulfide C143 C160 I311 M372 U405– monoxide C143– tetrabromide C115– tetrachloride C114 C160 I310 I312 M373 U405– tetrafluoride C112– tetraiodide C116Carbonate ion C143Carbonic acid derivatives 11 12 14 15 C143 H227 I285 I301 I302Carbonyl compounds 63 C133 H218 I286 M358 M386– α,β-unsaturated U388Carbonyl groups 6 10 11Carboxamides 3 4 6 7 8 9 14 15 32 39 45 68 C140 H223 I295– aliphatic M364– of aromatic carboxylic acids M365– primary I295– secondary I295– tertiary I295Carboxyl protons H220Carboxylate anions 15 C136 C137 H220 I290 U386Carboxylic acid anhydrides 6 11 14 C142 H226 I298 M361 This page has been reformatted by Knovel to provide easier navigation.
  • 27. Index Terms LinksCarboxylic acid anhydrides (Cont.)– cyclic 11 12Carboxylic acid esters 3 4 6 7 8 9 12 14 15 32 33 40 42 43 66 C138 H221 I292 U386– of aromatic acids 65 M363– ethyl 35 38 42– methyl 36 39 41 C138 I293– phenyl 42 I293– propyl 37 39– saturated M361– unsaturated M362– α,β-unsaturated 65 U388– vinyl I293Carboxylic acids 3 4 6 7 9 10 11 12 14 15 32 33 34 38 40 45 65 C136 C137 H220 I290 U386– aliphatic M360– aromatic M361– α-methyl 41– α,β-unsaturated U388Catechol I257 I264Chlorides 3 4 8 9 26 28 29 33 36 38 40 41 This page has been reformatted by Knovel to provide easier navigation.
  • 28. Index Terms LinksChlorides (Cont.) 45 54 C114 H199 I261 M373 U385– aliphatic 3 4 8 9 32 42 54 M328– aromatic I261 M329Chloro compounds 3 4 8 9 26 28 29 33 36 38 40 41 45 54 C114 H199 I261 M373 U385– aliphatic 3 4 8 9 32 42 54 M328– aromatic I261 M329Chloroacetate ion C137Chloroacetic acid C114 C137Chloroacetone C135Chloroacetylene H199Chloroalkanes 3 4 8 9 32 42 M328Chlorobenzenes C114 H199 I257 I261 U390 U3951-Chlorobutane H199Chlorocyclohexane C114Chlorocyclopropane C90 H199Chloroethane C114 H199Chloroethylene C114 H199Chloroform C114 C160 H199 H243 I310 I312 M373 U401 U405Chloroform-d C157 H240 M373 This page has been reformatted by Knovel to provide easier navigation.
  • 29. Index Terms LinksChloromethane C114 H199Chloropropanes C114 H199Chloropyridines C114Chlorotrimethylsilane H228Chlorotriphenylsilane H228Cholesterol C156Chromone H195Chrysene U398Cinnoline C110 H196 M327Citric acid U403Condensed– alicyclics C94– aromatics 46 52 M321– heteroaromatic rings C109 H193Conjugated alkenes U387– dienes C85 H174Contaminants– common C160 H243Coronene U399Coumarin H195Coupling– H–C–N–H H223– with hydroxy protons H202– with SH protons H214Crotonaldehyde I287 U393Crotonic acid I292 U394– esters I29418-Crown-6 M376 M379Cubane C94Cyanates H213 I277– aliphatic M345 This page has been reformatted by Knovel to provide easier navigation.
  • 30. Index Terms LinksCyanates (Cont.)– aromatic M345Cyanides 4 35 37 39 C126 H212 I246 I275 I276 M318 U386– aliphatic M343– aromatic M344α-Cyano-4-hydroxycinnamic acid M381 M382Cyclic– alkanes 32 37 40 42 49 C90 H176 I247 I253 M318– alkenes 32 33 50 I253– amines C123 H209 M340– ethers 34 36 C119 H204 M335– ketones 32 35 C135 C136 H219 H220 M359– sulfides C129 H215 M351Cycloalkanes 32 37 40 42 49 C90 H176 I247 I253 M318Cycloalkanols 32 37 M331Cycloalkanones 32 35 41 42 C135 C136 H219 H220 M359Cycloalkenes 32 33 50 I253Cyclobutanes C90 C95 H176 I2541,2-Cyclobutanedione H220Cyclobutanol H203Cyclobutanone C136 H219 I288 This page has been reformatted by Knovel to provide easier navigation.
  • 31. Index Terms LinksCyclobutenes C93 H176 I248 I254Cycloheptane C90Cycloheptanone C136 I288Cycloheptatriene C93 H177Cycloheptene C93 H177Cyclohexadienes C93 H177 M319Cyclohexane C95 C160 H176 H243 M372 U405Cyclohexanecarboxaldehyde C133Cyclohexane-d12 C158 H241Cyclohexanecarbonyl chloride C142Cyclohexanecarboxylate ion C137Cyclohexanecarboxylic acid C1371,3-Cyclohexanedione H220Cyclohexanes 41 C92 H179 I245 I254Cyclohexanethiol C128 H214Cyclohexanol C118 H203 I264Cyclohexanone C136 H219 I288Cyclohexanones M360Cyclohexanonitrile C126Cyclohexene C93 H1762-Cyclohexene-l-one C136 I289Cyclohexenes 35 39 40 50 I248 I254 M319N-Cyclohexyl acetamide C141Cyclohexyl– acetate C138– methyl ether C119– methyl ketone C135Cyclohexylamine C122 H208 This page has been reformatted by Knovel to provide easier navigation.
  • 32. Index Terms LinksCyclohexyldimethylamine C122Cyclohexyldimethylphosphine C145Cyclohexylmethylamine H2091,3-Cyclooctadiene C1771,5-Cyclooctadiene C93Cyclooctatetraene C93Cyclooctene C93 H177Cyclopentadiene C93 H176Cyclopentane C95 H176Cyclopentanes C91 I254Cyclopentanone C136 H219 I288Cyclopentenes 40 C93 H1762-Cyclopenten-l-one C136Cyclopropanes 7 49 C90 C95 H176 H178 I245 I250 I251 I254 M318Cyclopropanol C90 H203Cyclopropanone H219Cyclopropenes C93 H176 I248 I254Cyclopropenone C136Cyclopropyl methyl ketone C90 C135Cyclopropylamine C90 H208Cylohexylmethylamine C122Cysteine C149 H234Cystine C149Cytidine C154 H238Cytosine C154 H237 U404DDecalins C942-Deoxyadenosine C155 H239 This page has been reformatted by Knovel to provide easier navigation.
  • 33. Index Terms Links2-Deoxyguanosine C155 H239Diacetamide C143Diacetyl C135 H220N,N-Diacetylmethylamine C143Diazen-N-oxides H210 I274Diazen-N-sulfides I274Diazo compounds 35 I276 M342 U386Diazophenyl derivatives 43Dibenz[a,h]anthracene U399Dibenzo-l,4-dioxin C110Dibenzofuran C110 H197Dibenzothiophene C110Dibenzoylamine M367Dibromoacetic acid C1151,1-Dibromoacetone C135Dibromoethanes C115 H2001,1-Dibromoethylene C115cis-1,2-Dibromoethylene C115trans-l,2-Dibromoethylene C115Dibutyl– carbonate C143 H227– phthalate M373– sulfide C128– sulfone M354Di-tert-butyl– ketone C134– hydrazone C125– sulfide C128– sulfone H216– thioketone C132Di-tert-butyldiazene-1 -oxide H211 This page has been reformatted by Knovel to provide easier navigation.
  • 34. Index Terms LinksDichloroacetate ion C137Dichloroacetic acid C114 C1371,1-Dichloroacetone C135Dichlorodimethylsilane H228Dichloroethanes C114 H1991,1 -Dichloroethylene C114cis-1,2-Dichloroethylene C114Dichloromethane C114 H199 U405α,α-Dichlorotoluene C114Dicyclohexyl carbodiimide C125Dienes 32 33 41 45 H174 U387 U393– aliphatic C85 H174– conjugated C85 H174Diesters 43– unsaturated 43Diethanolamine C122Diethyl– disulfide C130– ether C160 H204 H243 I266 M372 U405– ethylphosphonate C145– ketone C134– sulfate C131– sulfide C128– sulfite C131 H217N,N-Diethyl– acetamide C141– butyramide C141– formamide C140Diethylamine C121 H208 This page has been reformatted by Knovel to provide easier navigation.
  • 35. Index Terms Links1,3-Diethylurea H227Diethylnitrosamine C124Difluoroacetic acid C1121,1-Difluoroethane H198Difluoromethane C112Diglyme C160 H243Dihydrazides I2969,10-Dihydroanthracene C96 H181Dihydrofurans C119 H2059,10-Dihydrophenanthrene C96 H1813,4-Dihydro-2H-pyran C1192,3-Dihydrothiophene H2152,5-Dihydrothiophene C129 H2152,6-Dihydroxyacetophenone M381 M3822,5-Dihydroxybenzoic acid M381 M3821,1-Diiodoethane H2011,2-Diiodoethane C116 H201cis-l,2-Diiodoethylene C116trans-1,2-Diiodoethylene C116Diiodomethane C116 H201Diisopropyl– carbodiimide C125– ketone C134 I287– sulfide C128Diisopropylamine H208Diisopropylnitrosamine C124 H210Diketones 12 14 15 C135 I288Dimedone C118Dimethoxymethane C120 H2062,2-Dimethoxypropane C120 This page has been reformatted by Knovel to provide easier navigation.
  • 36. Index Terms LinksN,N-Dimethyl acetamide C141 H225Dimethyl– acetylenedicarboxylate C139– butylphosphonite C145– carbonate C143 H227– ether C81 C119 H204– ethylphosphonate H231– fumarate C139– glycol M372– maleate C139– malonate C139– methylphosphonate H231– oxalate C139– phenylphosphonate H231– succinate C139– sulfate C131 H217– sulfide C128 H215– sulfite H217– sulfone C130 H216– sulfoxide C130 C160 H216 H243– sulfoxide-d6 C158 H241– trithiocarbonate C143N,N-Dimethyl– formamide C81 C140 C160 H224 H243– sulfinamide H217– thioacetamide C132Dimethylamine C121 H208N,N-Dimethylaniline C122Dimethylazine H2123,3-Dimethyl-2-butanone C134 This page has been reformatted by Knovel to provide easier navigation.
  • 37. Index Terms Links4,4-Dimethyl-2,5-cyclohexadien-1-one C1365,5-Dimethyl-1,3-cyclohexanedione C118N,N’-Dimethylethylenediamine C122NN-Dimethylformamide I297 M3711,3-Dimethyl-2-imidazolidinone C143Dimethylnitrosamine C124 H2102,4-Dimethyl-3-pentanone C134Dimethylphosphine H229Dimethylphosphine sulfide H2302,2-Dimethyl-l-propanethiol C1282,2-Dimethyl-1 -propanol C117Dimethylsilane H228Dimethylsilanol H2291,3-Dimethylurea H227Dimethylvinylphosphine sulfide H230Dineopentyl sulfide C128N,N-Dinitromethylamine C124Dioctyl phthalate M373Diols 421,3-Dioxane H206 I2651,4-Dioxane C119 C160 H205 H243 I265 M372 U4051,3,2-Dioxathiane oxide C1311,3,2-Dioxathiolane dioxide H2171,3-Dioxolane C120 H206Diphenyl– disulfide C130 H216– ether C119 H206 U395– methylphosphonate C146– sulfide C129 H215– sulfone COO This page has been reformatted by Knovel to provide easier navigation.
  • 38. Index Terms LinksDiphenyl (Cont.)– sulfoxide M353Diphenylamine C123 U396Diphenylsilanol H229Diphenylvinylphosphine oxide H229Diphenylvinylphosphine sulfide H230N,N-Dipropyl acetamide C141Dipropyl sulfide C128Dipropylamine C121 H208Dipropylnitrosamine C124Disulfide– dimethyl U403Disulfides 40 45 C74 C75 C98 C130 H161 H162 H183 H216 I280 M351 U3861,2-Dithiane H2161,3-Dithiane C1291,4-Dithiane C1291,3-Dithietane C129Dithioacids I283Dithiocarbonates I285 M302Dithiocarboxylic acid esters C132 M357Dithioerythritol M3761,3-Dithiolane C129Dithiophosphate– trimethyl C146Dithiothreitol M376Dithranol M381 M383Divinyl– ether I266 This page has been reformatted by Knovel to provide easier navigation.
  • 39. Index Terms LinksDivinyl (Cont.)– ketone H219 I289DMSO C130 H216DSS C159 H242EElements– isotope patterns 23Enamines I251End absorption U405Enol esters M363Enols C118 H204 I263Epoxides 7 34 45 C119 H204 I245 I250 I254 I265 I266– aliphatic M336Esters 3 4 6 7 8 9 12 14 15 32 33 40 42 43 66 C138 H221 I292 U386– of aromatic acids 65 M363– ethyl 35 38 42– methyl 36 41 C138 I293– phenol 42 I293– propyl 37 39– saturated M361– unsaturated M362– α,β-unsaturated 65 U388– vinyl I293Ethane C71 C81 H161 This page has been reformatted by Knovel to provide easier navigation.
  • 40. Index Terms Links1,2-Ethanedithiol C128Ethanesulfonyl chloride C131Ethanethiol C128 H214 U402Ethanol C117 C160 H202 H243 M371 U405Ethanolamine C122Ethers 3 4 8 9 32 33 40 41 42 45 57 C119 H204 I245 I263 I264 U386– acetylene M334– aliphatic 32 M333– alkenylsubstituted I251– alkyl aryl M337– alkyl cycloalkyl M335– allyl M334– aromatic C119 H206 M337– cyclic 34 36 C119 H204 M335– ethyl 38– methyl 36 I245– phenol 42– propyl 39– unsaturated M334– vinyl M334N-Ethyl acetamide C140 H224Ethyl– acetate C138 C160 H221 H243 M372 U405– acrylate H222 This page has been reformatted by Knovel to provide easier navigation.
  • 41. Index Terms LinksEthyl (Cont.)– benzoate H222– cyanate H213– disulfides H216– group C74 H162– isocyanate H213 I278– isocyanide C126 H213– isothiocyanate H213– methyl ether C119– methyl ketone C134 H219– methyl sulfide H215– methyl sulfone C130 H216– N-methylcarbamate C143 H227– nitrite H232– phenyl ketone H219– thiocyanate C127 H213– trifluoroacetate H222– vinyl ether H204– vinyl sulfide C129N-Ethyl formamide C140Ethylamine C121 H208Ethylbenzene H181Ethylene C86 C87 H168– carbonate C143 H227– glycol C117 M371– – dimethyl ether C119– oxide I266– sulfide C129 H215– trithiocarbonate H227Ethylenes, monosubstituted H170N-Ethylidene-tert-butylamine C124 This page has been reformatted by Knovel to provide easier navigation.
  • 42. Index Terms LinksEthylidene triphenyl phosphorane C147Ethylmethylamine C122Ethylthioethyne C129Ethyltriacetylsilane C144Ethylurea H227Ethynyl methyl ketone C135FFast atom bombardment (FAB) mass spectra M374Fatty acid derivatives 42Fermi resonance I245 I252 I279 I286Ferulic acid M381 M383Fluorene C96 H181 M321Fluorides 10 29 35 36 38 43 54 C112 H198 I260 M373– aliphatic M328– aromatic M329Fluoro compounds 10 29 35 36 38 43 54 C112 H198 I260 M373– aliphatic M328– aromatic M329Fluoroacetic acid C112Fluoroacetone C134Fluoroacetylene H198Fluoroalkanes M328Fluorobenzene C113 H198Fluorocyclohexane C113Fluorocyclopropane H198 This page has been reformatted by Knovel to provide easier navigation.
  • 43. Index Terms LinksFluoroethane C112 H198Fluoroethylene C112 H198Fluoromethane C112 H1981-Fluorooctane C112Fluoropropanes C112Fluoropyridines C113Formaldehyde C133 H218Formamides C140 H224 I297Formanilides M365Formate ion C137Formates I291 I293 M362Formic acid C137 H220 I291– esters 9Formic anhydride C142Fructose C153 H237Fullerene C96Fulvene C93 H176 I254Furan C104 C111 H186 M371 U4005H-Furan-2-one H223Furans 35 41 H188 I258 I259 M323Furazan H186Furyl ketones 40 42GGeminal Coupling H166 H168Germanium compounds C99 C106 C107 C144 H232Glucose C152 H236Glutamic acid C150 H234 This page has been reformatted by Knovel to provide easier navigation.
  • 44. Index Terms LinksGlycerol C117 M379Glycine C148 H233Glycol ethers 32 33 42Glycols 32 33 39 41 C117– ethylene 39– vicinal M331Group IV elements C144Guanidines M303Guanidinium ion U386Guanine C154 U404Guanosine C155 H238H1H NMR Spectroscopy H161Halides 3 4 8 9 26 54 C112 H198 I260 M328– aliphatic M328– aromatic M329Haloboroxines I308Halogen compounds 3 4 8 9 26 54 C112 H198 I260 M328– aliphatic M328– aromatic M329Halogenides 3 4 8 9 26 54 C112 H198 I260 M328– aliphatic M328– aromatic M329 This page has been reformatted by Knovel to provide easier navigation.
  • 45. Index Terms LinksHeptane C71 U405Heteroaromatic compounds 9 53 C104 H186 I258 M323Heteroatom indicators 29Hexabromoethane C115Hexachloroacetone C135 I289Hexachloroethane C114Hexadecylpyridinium bromide M377 M380Hexafluoroethane C112Hexane C71 C160 H243 M372 U4051-Hexanethiol C1282,5-Hexanedione C135Hexanols C1172-Hexanone C134Histidine C151 H235Homoallylic couplings H169Homologous mass series 32Hydrazides 36 I296Hydrazines H182Hydrazones C125 H211Hydrochlorides I309Hydrogen bonds H202Hydroperoxides I267– aliphatic M332Hydroxylamines 344-Hydroxyproline C151 H235N-Hydroxypyridinium chloride C104Hyrdrogen bonds 9 This page has been reformatted by Knovel to provide easier navigation.
  • 46. Index Terms LinksIImidazole 41 C104 C111 H186Imidazolium– anion C104– cation C104 H186Imidazolo[l,2-a]pyridine H195Imides 11 12 C143 H227 I296 M367 U386– cyclic 12 M367Imines 4 C124 H211 I272Indane C94 C96 H1811-Indanone H220Indazole C109 H194Indene C94 C96 H181Indium, trimethyl C146Indoles 43 C109 H193 M326 U401Indolizine C109 H194Iodides 30 43 46 54 C116 H201 I262 U385– aliphatic M328– aromatic M329lodo compounds 30 43 46 54 C116 H201 I262 U385– aliphatic M328– aromatic M329Iodoacetylene H201Iodoalkanes M328Iodobenzene C116 H201 U395Iodobenzenes I261 This page has been reformatted by Knovel to provide easier navigation.
  • 47. Index Terms Links1-Iodobutane H201Iodocyclohexane C116 H201Iodocyclopropane C90 H201Iodoethane C116 H201Iodoethylene C116 H201Iodomethane C116 H201Iodopropanes C116 H201Iodopyridines C116IR Spectroscopy I245Isobutane H161Isobutenes H173Isobutyraldehyde C133 H218 I287Isobutyric acid C137Isobutyronitrile C126 H212 I276Isocyanates C127 H213 I277– aliphatic M345– aromatic M346Isocyanides C126 H212 I275– aliphatic M344– aromatic M344Isocyanurates I296Isoleucine C149 H233Isonitriles C126 H212 I275– aliphatic M344– aromatic M344Isopropanol C117 H203Isopropyl– acetate C138 H221– benzoate H222– group C75 H163– isocyanate H213 This page has been reformatted by Knovel to provide easier navigation.
  • 48. Index Terms LinksIsopropyl (Cont.)– methyl ketone C134 H219– methyl sulfone C130– phenyl ketone H219N-Isopropyl– acetamide C141 H225– formamide H224Isopropylamine C121 H208Isopropylbenzene H181Isopropyldimethylamine C122Isoquinoline C110 H196 U401Isoquinoline N-oxide H196Isoquinolines M326Isothiazole C104 H186Isothiocyanates C127 H213 I278 M347 U386Isotope patterns– for combinations of C1, Br, S, and Si 26 28– calculation of 24Isotopes– abundance of 16 22– patterns for elements 23Isoxazole C104 H186KKarplus equation H167Ketals 4 37 C120 H206 I264 I265– ethylene 39 43– thioethylene 44Ketenes I289 U386 This page has been reformatted by Knovel to provide easier navigation.
  • 49. Index Terms LinksKetimines C124 I273 I274Ketoesters I293Keto-enol tautomerism M359Ketones 3 4 7 8 12 14 15 32 33 34 35 37 40 42 43 45 64 C134 H219 I287– α,(β-unsaturated U388– aliphatic H220 M359– alkyl phenyl U392– aromatic M360– cyclic 32 35 41 42 C135 C136 H219 H220 M359– ethyl 39– halogeneted C134– long-range couplings H220– methyl I246– unsaturated M359Ketoximes 4 9 C125 H211 I274LLactams 12 14 35 68 C140 C141 H223 H225 I295 I296 M365Lactic acid I292Lactones 11 12 32 33 34 35 36 38 40 66 C139 H223 This page has been reformatted by Knovel to provide easier navigation.
  • 50. Index Terms LinksLactones (Cont.) I292 M364Lead compounds C99 C105 C106 C107 C144 H171 H183 H232Leucine C148 H233Lithium tetramethylborate C147Long-range couplings H167 H169 H178 H180 H220Lysine C150 H234MMagic bullet M376Maleic anhydride C142 H226 I299Maleinimide C143Malonic acid C137 H221 I292Malonitrile C126Mass spectrometry M313Matrix-assisted laser desorptionionization (MALDI) mass spectra M380McLafferty rearrangement M315 M317 M323 M325 M331 M332 M338 M339 M343 M344 M353 M355 M358 M359 M360 M361 M362 M364Mercaptans 3 7 8 10 32 33 41 45 62 C128 H214 I280 U386– aliphatic M349– aromatic M3492-Mercaptoethanol C128 This page has been reformatted by Knovel to provide easier navigation.
  • 51. Index Terms LinksMercury compounds C99 C146 H171 H178 H183 M323Methacrylonitrile M318Methane C71 H161Methanesulfonic acid C131– ester H217Methanesulfonyl chloride C131 H217Methanethiol C128 H214Methanol C117 C160 H202 H243 M371 U405Methanol-d1 C158 H241Methanol-d4 C158 H241Methionine C149N-Methyl acetamide C140 H224Methyl– acetate C138 H221– acrylate C139 H222– benzenesulfonate C131– benzoate C139 H222– butyrate C138 H222– chloroacetate C139– cyclohexanecarboxylate C138– dichloroacetate C139– disulfides H216– dithioacetate C132– esters C138– formate C138 H221– group C72 C74 H162– isobutyrate C138 H222– isocyanate C127 H213 I278– isocyanide H213 This page has been reformatted by Knovel to provide easier navigation.
  • 52. Index Terms LinksMethyl (Cont.)– isopropyl ether C119– isothiocyanate C127 H213 I279– methanethiolsulfinate C131– methanethiolsulfonate C131– nitrate H232– perchlorate H232– phenyl sulfone H216– phenyl sulfoxide C130 H216 M352– pivalate C138 H222– propiolate C139– propionate C138 H222– propyl ether C119– propyl ketone C134 H219– dimethylhydrazone C125– propyl sulfone COO– thiocyanate H213– trichloroacetate C139– valerate C138 H222– vinyl ether C119 H204– vinyl ketone C135 H219– vinyl sulfide H215– vinyl sulfone H216– vinyl sulfoxide H216N-Methyl– γ-butyrolactam H225– formamide C140 H224 I297– phthalimide C143– β-propiolactam H225– succinimide C143– δ-valerolactam H225 This page has been reformatted by Knovel to provide easier navigation.
  • 53. Index Terms LinksS-Methyl thioacetate C132Methyl-tert-butylamine C122Methylamine C121 H208 I270N-Methylaniline C122 H209N-Methylazetidine C123Methylazine H212N-Methylaziridine C1231-Methylbenzotriazole C1092-Methylbutane C713-Methyl-2-butanone C1343-Methyl-l-butyne H175Methylcyclopropane C95Methylene– chloride M372– fluoride H198Methylenecyclopentadiene C93Methylenedioxy group I245Methylisopropylamine C122Methyllithium C147 H2324-Methylmorpholine H2092-Methyl-2-nitropropane C123 H210Methyloxirane H204Methylphenyldiazene H211Methylphosphine H2291-Methylpiperazine H2091-Methylpiperidine C123 H2092-Methylpropane C712-Methyl-2-propanesulfonic acid C131– chloride C1312-Methyl-2-propanethiol C1282-Methyl-2-propyl isocyanide H213 This page has been reformatted by Knovel to provide easier navigation.
  • 54. Index Terms LinksMethylpropylamine C122N-Methylpyridinium iodide C104N-Methylpyrrolidine C123Methylsilane H228N-Methyl-N-silylaminosilane H228Mineral oil I311Molecular weight, determination of 31Monosaccharides C152 H236Monosubstituted naphthalenes H184 H185Morpholine C119 C123 H205 H209NNaphthacene U398Naphthalenes 43 44 C96 H180 U398– monosubstituted C100 C1011,4-Naphthoquinone C136 I290Naphthoquinones 43Neopentane C7114 1 N- H coupling H212 H223Nitramines C124 I271Nitrates C78 I271 U386Nitric acid esters C78 I271 U386Nitriles 4 35 37 39 C126 H212 I246 I275 M318 U386– aliphatic M343– aromatic M344Nitro compounds 3 4 8 10 34 36 38 60 C123 H210 I270 U386 This page has been reformatted by Knovel to provide easier navigation.
  • 55. Index Terms LinksNitro compounds (Cont.)– aliphatic M341– aromatic M342Nitrobenzene C124 H210 I272 U3903-Nitrobenzyl alcohol M375 M3791-Nitrobutane C123 H2102-Nitrobutane C123Nitrocyclohexane C124 H210Nitrocyclopentane H210N-Nitrodimethylamine C124Nitroethane C123 H210Nitroethylene H210Nitrogen compounds 29 59 C121 H207 I268 M339Nitromethane 3 C123 H210 U402N-Nitromethylamine C1241-Nitrooctane C1232-Nitrophenol H2032-Nitrophenyl octyl ether M376 M380Nitropropanes C123 H210Nitrosamines C124 H210Nitroso compounds 10 36 46 C123 H210 U386Nitrosobenzene C124 H210 I272 U396Norbornadiene C94Norbornane C94Norbornene C94Norcamphor H177Nucleotides U403– and nucleosides C154 H237Nujol I311 This page has been reformatted by Knovel to provide easier navigation.
  • 56. Index Terms LinksOOctane C71n-Octanes C76Olefins 4 7 8 10 32 37 40 41 42 45 50 C82 H168 I246 I248 M315 U385– branched M315– cyclic 32 33 50 I253– unbranched M315Organometallics C147 H232Ornithine C150Ortho esters 9 C120 H206Ovalene U399Oxalic acid C137 I2921,3-Oxathiane C1291,4-Oxathiane C129 H215Oxazole C104 H186Oxetane C119 H205N-Oxides 34Oximes 4 9 C125 H211 I272 U386– aliphatic I273– aromatic I273Oxiranes 7 34 45 C119 H204 I245 I250 I254 I265 I266Ozonides I267 This page has been reformatted by Knovel to provide easier navigation.
  • 57. Index Terms LinksP1,3-Pentadiene H174Penta(isopropyloxy) phosphorane C147Pentaerythritol C117Pentane C71 M371 U4052,4-Pentanedione C118 C135 H2201-Pentanethiol C1281-Pentanol C117Pentanones C1343-Penten-l-yne H1752-Pentyne H175Peracids I267Perchlorate– methyl H232Perfluoralkanes C113Perfluoroalkyl derivatives 44Peroxides I267– aliphatic M337– cyclic 36Perylene U399Phenanthrene C96 H180 U398Phenazine C110Phenol C118 H203 I264 U390 U395– derivatives 42– esters 42– ethers 42Phenolate U390 U395Phenols 9 33 42 56 I263 M332 This page has been reformatted by Knovel to provide easier navigation.
  • 58. Index Terms LinksPhenothiazine C110Phenoxathiin C110Phenoxazine C110 H197Phenyl– acetate C138 H222 I294– isothiocyanate H213 I279– propyl ketone H219N-Phenyl– acetamide C141 H225 I297– formamides H224– methanesulfonamide H217Phenylacetylene H175Phenylalanine C150 H234Phenylphosphonic acid C146Phosphanes 10Phosphates 10 I306– alkyl 43– alkyl esters M369– ethyl 35Phosphine H229Phosphine oxides H229 M369Phosphine sulfides H229Phosphines C145 H229 I305 M369Phosphinic acid– anhydrides I307– esters I306Phosphonic acid– derivatives C145 H231 I306– esters I306Phosphonium compounds C145 H229Phosphonous acid derivatives H230 This page has been reformatted by Knovel to provide easier navigation.
  • 59. Index Terms LinksPhosphoranes C147Phosphoric acid– anhydrides I307– derivatives C145 H231– esters I306Phosphorus compounds 10 30 35 38 43 C145 H229 I246 I283 I305 M369 M370– aliphatic C145 H229– aromatic C146Phosphorus ylids H231Phthalate– esters 44 I312 M363 M373– diethyl I294Phthalazine C110 H197 M327Phthalic acid I292– anhydride C142 H226 I299 M361Phthalimide I298Piperazines C123 M341Piperidines 41 C123 H209– N-alkylsubstituted 422-Piperidone M365 M366Pivalaldehyde C133 H218Pivalate ion C137Pivalic acid C137 H221 I291Polycyclic alkanes 32 33 37 41 C94 M319Polyenes 45 M316 U387Polyethylene glycol M374 M375 M377Polyethers 58Polyhaloalkanes M329 This page has been reformatted by Knovel to provide easier navigation.
  • 60. Index Terms LinksPolyols C117Polypeptides I291 I296Polyynes M316Potassium bromide I311Progesterone C156Proline C151 H235Propane C71 C81 H1611,3-Propane sultone H217Propanediols C1171,3-Propanedithiol H214Propanesulfonic acids C131Propanesulfonyl chlorides C131Propanethiols C128 H2141-Propanol C117 H2022-Propanol C117 U405Propargyl alcohol C118Propioisonitrile C126 H213β-Propiolactone C139 H223 I293Propiolaldehyde C133Propiolic acid C137Propionaldehyde C133 H218Propionate ion C137Propionates I293Propionic acid C137 H220– anhydride C142Propionitrile C126 H212Propionyl chloride C142Propyl– acetate H221– group C74 H162– isocyanate H213 This page has been reformatted by Knovel to provide easier navigation.
  • 61. Index Terms LinksN-Propyl acetamide C141 H2242-Propyl– isocyanide H213– isothiocyanate H213– thiocyanate H213Propylamine C121 H208Propylene C87 H168Propylene carbonate C143N-Propylidene isopropylamine C124Propyne C89 H175Protonation of amines C121Purine C109 H1944H-Pyran C119 H2052H-Pyran-2-one C139 H223Pyrans 412H-Pyran-2-thione H217Pyrazine C104 H187 M323 M326– N-oxide H187Pyrazoles 41 C104 C111 H186Pyrazolium– anion C104– cation C104Pyrazolo[l,5-a]pyridine H194Pyrene C96 U399Pyridazine C104 H187 U400– N-oxides H187 M325Pyridazines M325Pyridine C104 C111 C160 H187 H243 M372 U400 U405– N-oxide C104 H187 M325Pyridine-d5 C158 H241 This page has been reformatted by Knovel to provide easier navigation.
  • 62. Index Terms LinksPyridines 4 41 43 C105 C108 H191 M324– alkylsubstituted 42Pyridinium ion C104 H1872-Pyridone M365Pyridone derivatives 42Pyrimidine C104 H187 M325 U400Pyrones H205Pyrrole C104 C111 H186 M318 U400Pyrroles 41 H189 I258 I259 M324Pyrrolidine C123 H209Pyrrolidines 402-Pyrrolidone M366Pyrryl ketones 42Pyruvic acid I292QQuadrupole relaxation H207Quinazoline C110 H196 M327Quinoline C110 H195 U401– N-oxide H196 M325Quinolines 43 44 M326Quinones 14 35 C136 I288 I289 I290 U397Quinone oximes I273Quinoxaline C110 H196 M327RRetro-Diels–Alder reaction M319 M360Ribose C152 This page has been reformatted by Knovel to provide easier navigation.
  • 63. Index Terms LinksSSalicylaldehyde I287Salicylic acid I292– derivatives 43Selenium compounds C99Selenacyclopentadiene C104 H186Serine C149 H233SH chemical shifts H214Silane H228Silanes 10 40 H228 I246 I304Silanols H228Silicon compounds 10 26 37 40 41 C73 C83 C99 C100 C101 C105 C106 C107 H171 H183 H228 I304 M369Siloxanes I304Silyl ethers M369Sinapinic acid M382 M383Sodium– propionate H220– tetraphenylborate H232Solvents C157 H240 H243 I310 M371 U405D-Sorbitol C117Spin quantum number 2Spiro[4,5]decane C94Spiro[5,5]undecane C94 This page has been reformatted by Knovel to provide easier navigation.
  • 64. Index Terms LinksSteroids C156trans-Stilbene U394Styrene I251 I257 U390 U394Succinic acid C137 H221 I292– anhydride C142 H226 I299Succinimide C143 H227 I297 U403Succinonitrile C126Sulfates C131Sulfides 3 7 8 9 32 33 36 41 45 62 C128 H215 I280 U386– aliphatic M350– aromatic M351– cyclic C129 H215 M351– ethyl 39– methyl 38 I246– vinyl M350Sulfinates I281Sulfinic acid esters I281Sulfinic acids C131 H217 I281Sulfolane C130 M3773-Sulfolene H216Sulfonamides I282– aromatic M356Sulfonates 38 40 I282– ethyl 38Sulfones 34 38 40 C130 H216 I281 I282– aliphatic M353– aryl M354 M355 This page has been reformatted by Knovel to provide easier navigation.
  • 65. Index Terms LinksSulfones (Cont.)– cyclic M354– ethyl 38Sulfonic acid esters I282 M355 M356Sulfonic acids C131 H217 M355Sulfonium salts C130 H216Sulfoxides 34 38 C130 H216 I281– aliphatic M352– aryl M352Sulfur compounds 26 29 36 38 39 41 I273 I274 I278 I302 M323 M346 M347 U386Sulfuric acid derivatives C131 H217Sulfurous acid derivatives C131 H217Suspension media IR I311TTelluracyclopentadiene C104Terephthalic acid I292Tertiary alkylamides H224Testosterone C156Tetrabromoethylene C115Tetrabutylammonium ion H208Tetrabutylphosphonium iodide C145Tetrachloroethylene C114Tetraethylammonium ion C121 H208Tetraethylphosphonium iodide C145 H229Tetrahydrofuran-d8 C158 H241 This page has been reformatted by Knovel to provide easier navigation.
  • 66. Index Terms LinksTetrahydrofurans 40 C119 C160 H205 H243 I265 M371 U4051,2,3,4-Tetrahydronaphthalene C94 C96 H181Tetrahydropyran 42 C119 H205Tetrahydrothiapyrane M351Tetrahydrothiophene M3511,1,2,3-Tetrahydroxypropane C117Tetralins 40 43 44α-Tetralone H220Tetramethyl orthocarbonate C120 H206Tetramethylammonium ion C121 H208N,N,N,N′-Tetramethylethylenediamine C122Tetramethylgermane C144 H232Tetramethyllead C1442,2,4,4-Tetramethyl-3-pentanone C134Tetramethylphosphonium iodide C145Tetramethylsilane C144 H228 M372N,N,N,N′-Tetramethylthiourea C143Tetramethyltin C144N,N,N,N-Tetramethylurea C143Tetraphenylarsonium chloride C147Tetraphenylgermane C144Tetraphenyllead C144Tetraphenylsilane C144Tetraphenyltin C144Tetrapropylammonium ion C121Tetravinylsilane C1441,2,4,5-Tetrazine C104Tetrazole C1041,2,3-Thiadiazole C1041,2,5-Thiadiazole H186 This page has been reformatted by Knovel to provide easier navigation.
  • 67. Index Terms LinksThiairane C129 H215Thiane C129 H215Thiazole C104 H186Thiethane C129 H215Thioacetals 8Thioacetamide C132 U403Thioacetic acid C132 H217Thioacid– chlorides I283– fluorides I283Thioamides 4 C78 C132 I283Thioanisole C129 H215Thiobenzamide C132Thiocarbamides 4 C132 I283Thiocarbonates I284 I285 I302Thiocarbonic acid derivatives I283Thiocarbonyl– compounds U386– derivatives I283– groups C132Thiocarboxylate derivatives H217Thiocarboxylic acid O-esters 4Thiocarboxylic acid S-esters C132 H217 M357Thiocarboxylic acids 4 C132 H217Thiocyanate I279Thiocyanate– anion C127– inorganic U402Thiocyanates C127 H213 I278– aliphatic M346– aromatic M347 This page has been reformatted by Knovel to provide easier navigation.
  • 68. Index Terms LinksThioesters C132 H217 I283 M357Thioethers 3 7 8 9 32 33 36 41 45 62 C128 H215 I280 U386– aliphatic M350– aromatic M351– cyclic C129 H215 M351– ethyl 39– methyl 38 I246– vinyl M350Thioethylene ketals 44Thioglycerol M376 M379Thioketones 4 C132 I283Thiolactams I283Thiolane C129 H215– oxide C130 H216Thiols 3 7 8 10 32 33 41 45 62 C128 H214 I280 U386– aliphatic M349– aromatic M349Thiophenes C104 C111 H186 H190 I259 M323 U400– alkylsubstituted 42Thiophenol U3965H-Thiophen-2-one H217Thiophenoyl derivatives 432H-Thiopyran H2154H-Thiopyran H215 This page has been reformatted by Knovel to provide easier navigation.
  • 69. Index Terms LinksThiosulfonic acid ester I282Thioureas C142 I284 I285 I3031,4-Thioxane C119 H205Threonine C149 H233Thymidine C154 H238Thymine C154 H237Tin compounds C78 C99 C105 C106 C107 C144 H171Toluene C103 C160 H180 H243 I257 M372 U390 U394 U405p-Toluenesulfonates M3561,2,4-Triazine H1871,3,5-Triazine C104 H187 U4001,2,3-Triazole C104 C1111,2,4-Triazole C104 C1111,2,5-Triazole H1861,3,4-Triazole C104 H1861,1,1-Tribromoacetone C1351,1,1-Tribromoethane C115Tribromoethylene C115Tributyl– phosphate C145– phosphite C145Tributylphosphine C145– oxide C145– sulfide C146Trichloroacetaldehyde C133 I287Trichloroacetate ion C137Trichloroacetic acid C114 C1371,1,1-Trichloroacetone C135 This page has been reformatted by Knovel to provide easier navigation.
  • 70. Index Terms Links1,1,1-Trichloroethane C1142,2,2-Trichloroethanol C118 H203Trichloroethylene C114Trichloromethylsilane H228Trichloropropylsilane C144α,α,α-Trichlorotoluene C114 H199Triethanolamine C122 M377Triethoxyphosphine sulfide H231Triethyl– orthoformate C120 H206– phosphate C145– phosphite H230Triethylamine C121 H208 U402Triethylphosphine H229– oxide H229– sulfide H230Trifluoroacetates I296Trifluoroacetic acid C112 C1371,1,1-Trifluoroacetone C134Trifluoromethane C112 H1982,2,2-Trifluoroethanol C118Trifluoromethyl group 38 40 M329α,α,α-Trifluorotoluene C113 H198Trihydroxymethane C117Triiodomethane C116 H201Trimethyl– borate H232– orthoformate C120 H206– phosphate H231– phosphite C145 H230Trimethylacetonitrile C126 H212 This page has been reformatted by Knovel to provide easier navigation.
  • 71. Index Terms LinksTrimethylamine C121 H208Trimethylborane C1472,2,4-Trimethylpentane U405Trimethylphenylammonium ion H209Trimethylphosphine H229– sulfide H230Trimethylsilane H228Trimethylsilyl compounds 40Trimethylsilyloxyl compounds 413-(Trimethylsilyl)-1-propanesulfonate C159 H2422,2,3,3-D4-3-(Trimethylsilyl)–propionate C159 H242Trimethylsulfonium iodide C130 H216Trimethylvinylsilane C144 H2281,3,5-Trioxane C120Triphenybismuth C147Triphenyl– phosphate C146– phosphite C146Triphenylamine C123Triphenylantimony C147Triphenylarsane C147Triphenylmethanol H203Triphenylphosphine C146– oxide C146Tripropylamine C121Tris(dimethylamino) phosphite H230Tris(dimethylamino) phosphine C1451,3,5-Trithiane H215Trithiocarbonates C142 H227 I283 I284 I285 I302Tropylium ion M322 M332 This page has been reformatted by Knovel to provide easier navigation.
  • 72. Index Terms LinksTryptophan C151 H235Twistane C94Tyrosine C150 H234UUltramark M374 M378Unsaturated ketones C135Uracil C154 H237 U404Ureas 15 C143 H227 I301 I302Urethanes 12 14 C143 H227 I301 I302– phenyl 43Uridine C154UV/Vis spectroscopy U385VValeraldehyde C133Valeric acid C137 H221δ-Valerolactam C141 H225δ-Valerolactone C139 H223Valeronitrile C126 H212 I276Valine C148 H233Vicinal– coupling H166 H168– glycols M331Vinyl– acetate H222– alcohol C118– bromide H200– chloride H199– compounds 35 C83 This page has been reformatted by Knovel to provide easier navigation.
  • 73. Index Terms LinksVinyl (Cont.)– ethers I249 I250 M334– fluoride C112 H198– formate H221– iodide H201– isocyanate C127 H213 I278– isocyanide H213Vinylphosphine C145WWater I312 M371Water-d2 H242XXanthates I284 I285Xanthone H197Xylene U405Xylose H236ZZwitterions I309Zinc compounds H183 This page has been reformatted by Knovel to provide easier navigation.
  • 74. 1.1 Scope and Organization 11 Introduction1.1Scope and OrganizationThe present data collection is intended to serve as an aid in the interpretation ofmolecular spectra for the elucidation and confirmation of the structure of organiccompounds. It consists of reference data, spectra, and empirical correlations from13C and l H nuclear magnetic resonance (NMR), infrared (IR), mass, andultraviolet-visible (UV/vis) spectroscopy. It is to be viewed as a supplement totextbooks and specific reference works dealing with these spectroscopic techniques.The use of this book to interpret spectra only requires the knowledge of basicprinciples of the techniques, but its content is structured in a way that it will serveas a reference book also to specialists. Chapters 2 and 3 contain Summary Tables and Combined Tables of the mostrelevant spectral characteristics of structural elements. While Chapter 2 isorganized according to the different spectroscopic techniques, Chapter 3 providesfor each class of structural elements spectroscopic information obtained withvarious techniques. These two chapters should assist users that are less familiarwith spectra interpretation to identify the classes of structural elements present insamples of their interest. The following four chapters cover data from 13C NMR,H NMR, IR, and mass spectroscopy, and are ordered exactly in the same mannerby compound types. These cover the various skeletons (alkyl, alkenyl, alkynyl,alicyclic, aromatic, and heteroaromatic), the most important substituents (halogen,single-bonded oxygen, nitrogen, sulfur, and carbonyl), and some specificcompound classes (miscellaneous compounds and natural products). Finally, aspectra collection of common solvents, auxiliary compounds (such as matrixmaterials and references) and commonly found impurities is provided for eachmethod. Not only the strictly analogous order of the data but also the opticalmarks on the edge of the pages help fast cross-referencing between the variousspectroscopic techniques. Although currently, UV/vis spectroscopy is onlymarginally relevant to structure elucidation, its importance might increase by theadvent of high throughput analyses. Also, the reference data presented in Chapter 8are useful in connection with optical sensors and the widely applied UV/visdetectors in chromatography and electrophoresis. Since a large part of the tabulated data either comes from our ownmeasurements or is based on a large body of literature data, comprehensivereferences to published sources are generally not included. Whenever possible, the
  • 75. 2 1 Introductiondata refers to conventional modes and conditions of measurement. For example,unless the solvent is indicated, the NMR chemical shifts were determined usuallywith deuterochloroform or carbon tetrachloride as solvent. Likewise, the IR spectrawere measured using solvents of low polarity, such as chloroform or carbondisulfide. Mass spectral data were recorded with electron impact ionization at 70eV. While retaining the basic structure of the previous editions, numerous newentries have been added. Altogether, the amount of data has been more thandoubled. The section on mass spectrometry (MS) is entirely new and contains aunique collection of fragmentation rules for the various compound classes. As anew feature, prototype IR spectra for each class of compounds schematically showthe analytically relevant absorption bands. The Combination Tables of the earliereditions have been extended and arranged in two chapters, the first organizedaccording to band positions and the second according to compound classes. The enclosed compact disc contains programs for estimating 13C and lHchemical shifts of organic compounds containing up to 15 non-hydrogen atoms.Both programs are available for Windows and Macintosh systems and require aJava environment for the graphical structure input. Technical details about therequirements and installation procedures are given in the corresponding ReadMefiles. Extensive help files are available as part of the programs. In addition, thestructure generator Assemble 2.0 (also limited to 15 non-hydrogen atoms) isavailable for Windows systems. Based on the molecular formula and availablestructural information, it is capable of generating all possible structural isomers.An extensive hypertext based tutorial describes its main features. It is especiallyrecommended as a quality control tool to check if alternative solutions that alsoagree with the experimental data have gone unnoticed.
  • 76. 1.2 Abbreviations and Symbols 31.2Abbreviations and Symbolsal aliphaticalk alkylalkenalkenylar aromaticas asymmetricax axialcomb combination frequencyd doublet6 IR: deformation vibration NMR: chemical shiftDMSO dimethyl sulfoxideeq equatorialE molar absorptivityFrag fragmentY skeletal vibrationgem geminalhal halogeniP in plane vibrationJ coupling constantM+ molecular radical ionm/Z mass to charge ratioV fkquencyOOP out of plane vibrationsh shoulderst stretching vibrationSY symmetricTMS tetramethylsilanevic vicinal
  • 77. 2.1 General Tables 52 Summary Tables2.1General Tables2.1. ICalculation of the Number of Double Bond Equivalents fromthe Molecular FormulaGeneral Equation: 2 + Z n i( v i - 2) i double bond equivalents = 2 ni: number of atoms of element i in molecular formula vi: formal valence of element iShort Cut:For compounds containing only C, H, 0, N, S , and halogens, the following stepspermit a quick and simple calculation of the number of double bond equivalents: 1. 0 and divalent S are deleted from the molecular formula 2 . Halogens are replaced by hydrogen 3. Trivalent N is replaced by CH 4. The resulting hydrocarbon, C,H,, is compared with the saturated hydrocarbon, CnHzn+2. Each double bond equivalent reduces the number of hydrogen atoms by 2: 2n+2-x double bond equivalents = 2
  • 78. 6 2 Summary Tables2.1.2Properties of Selected NucleiIsotope Natural Spin Frequency Relative Relative Electric abundane quantum [MHZ] at sensitivity sensitivity quadrupole [%I number, I 2.35 Tesla of nucleus at natural moment abundance [e x 10-24 cm211H 99.985 112 100.0 1 12H 0.015 1 15.4 9 . 6 ~ 1 0 - ~1 . 5 ~ 1 0 - ~ . 8 ~ 1 0 - ~ 23H 0.000 112 106.7 1.2 01OB 19.58 3 10.7 2 . 0 ~ 1 0 - ~3 . 9 ~ 1 0 - ~7 . 4 ~ 1 0 ~1lB 80.42 312 32.1 1 . 6 ~ 1 0 ~ 1.3~10-1 3 . 6 ~ 1 0 - ~1c 3 1.108 112 25.1 1 . 6 ~ 1 0 - ~1 . 8 ~ 1 0 - ~I4N 99.635 1 7.3 1.0~10-3 1.0~10-3 1.9~10-2I5N 0.365 112 10.1 1.0~10-3 3.8~10-6170 0.037 512 13.6 2 . 9 ~ 1 0 - ~l . l ~ l O - - 2 . 6 ~ 1 0 ~ ~I9F 100.000 112 94.1 8.3~10-1 8.3~10-131P 100.000 112 40.5 6 . 6 ~ 1 0 - ~6 . 6 ~ 1 0 - ~3s 3 0.76 312 7.6 2 . 3 ~ 1 0 - ~1 . 7 ~ 1 0 - - 6 . 4 ~ 1 0 - ~ ~1 17sn 7.61 112 35.6 4 . 5 ~ 1 0 - ~3 . 4 ~ 1 0 - ~119sn 8.58 112 37.3 5.2x10-* 4 . 4 ~ 1 0 - ~195Pt 33.8 112 21.5 9 . 9 ~ 1 0 - ~3 . 4 ~ 1 0 - ~199Hg 16.84 112 17.8 5 . 7 ~ 1 0 - ~9 . 5 ~ 1 0 - ~207Pb 22.6 112 20.9 9 . 2 ~ 1 0 - ~2 . l ~ l O - ~
  • 79. 2.2 13C NMR Spectroscopy 72.213C NMR SpectroscopySummary of the Regions of Chemical Shifts, 6 for Carbon Atoms ,in Various Chemical Environments (6 in ppm relative to TMS. Carbonatoms are specified as follows: Q for CH3, T for CH2, D for CH, and S for C).
  • 80. 8 2 Summary Tables
  • 81. 2.2 13C NMR Spectroscopy 9I3C Chemical Shifts for Carbonyl Groups ( 6 i n ppm relative to TMS)R R-CHO R-COCH3 R-COOH R-COO--H 197.0 200.5 166.3 171.3-CH3 200.5 206.7 176.9 182.6-CH2CH3 202.7 207.6 180.4 185.1-CH(CH3)2 204.6 21 1.8 184.1-C(CH3)3 205.6 213.5 185.9 188.6-n-CgH17 202.6 207.9 180.7 183.1-CH2Cl 193.3 200.1 173.7 175.9-CHC12 193.6 170.4 171.8-CCl3 176.9 186.3 167.1 167.6-cyclohexyl 204.7 209.4 182.1 185.4-CH=CH2 194.4 197.5 171.7 174.5-CSH 176.8 156.5-phenyl 192.0 196.9 172.6 177.6R R-COOCH3 R-CONH, R-COOCO-R R-COCl-H 161.6 167.6 158.5-CH3 171.3 173.4 167.4 170.4-CH2CH3 173.3 177.2 170.3 174.7-CH(CH3 )2 177.4 172.8 178.0-C(CH3)3 178.8 180.9 173.9 180.3-n-CgH17 174.4 176.3 169.4 173.8-CH2C1 167.8 168.3 162.1 167.7-CHC12 165.1 157.6 165.5-CCl3 162.5 154.1-cyclohexyl 175.3 177.3 176.3-CH=CH2 166.5 168.3 165.6-C<H 153.4-ohend 166.8 169.7 162.8 168.O
  • 82. 10 2 Summary Tables2.31H NMR SpectroscopySummary of the Regions of Chemical Shifts f o r Hydrogen Atomsin Various Chemical Environments ( S i n ppm relative to TMS)
  • 83. 2.3 H NMR Spectroscopy 11
  • 84. 12 2 Summary Tables
  • 85. 2.4 IR Spectroscopy 132.4IR SpectroscopySummary of the Most Important IR Absorption Bands
  • 86. 14 2 Summary TablesSummary of IR Absorption Bands of Carbonyl Groups (in cm-1)
  • 87. 2.4 IR Spectroscopy 15
  • 88. 16 2 Summary Tables
  • 89. 2.4 IR Spectroscopy 17
  • 90. 18 2 Summary Tables2. 5Mass Spectrometry2.5.1Average Masses of Naturally Occurring Elements with ExactMasses and Representative Relative Abundances ofIsotopes [ 1-31Element ElementIsotope Mass Abundance Isotope Mass AbundanceH 1.00795a Ne 20.179ga 1H 1.007825 100b 20Ne 19.992402 loob 2H 2.014101 0.01 15 21Ne 20.993847 0.30 (in water) 22Ne 21.991386 10.22 (in air)He 4.002602a 3He 3.016029 0.000137 Na 22.989769 4He 4.002603 100 23Na 22.989769 100 (in air) M 24.3051Li 6.941a 2fMg 23.985042 100 6Li 6.015122 8.2lC 25Mg 24.985837 12.66 7 ~ i 7.016004 100 26Mg 25.982593 13.94Be 9.012182 AI 26.981538 9Be 9.012182 100 27~1 26.981538 100B 10.812a Si 28.08W 1OB 10.012937 24.gb 28Si 27.976927 100 1lB 11.009306 100 29si 28.976495 5.0778 3Osi 29.973770 3.3473C 12.0108a 12C 12.000000 100 P 30.973762 13c 13.003355 1.08 31P 30.973762 100N 14.0067Y S 32.067a 4N 14.003070 100 32s 31.972071 100 15N 15.000109 0.369 33s 32.971459 0.80 34s 33.967867 4.520 15.9994a 36s 35.967081 0.02 160 15.994915 100 170 16.999132 0.038 c1 35.4528 180 17.999116 0.205 35~1 34.968853 100b 37~1 36.965903 3 1.96F 18.998403 9F 18.998403 100
  • 91. 2.5 Mass Spectrometry 19Element ElementIsotope Mass Abundance Isotope Mass AbundanceAr 39.948a 57Fe 56.935399 2.309 36Ar 35.967546 0.3379 58Fe 57.933280 0.307 38Ar 37.962776 0.0635 40Ar 39.962383 100 c o 58.93320Oa (in air) 59c 58.933200 100K 39.0983 Ni 58.6934 39K 38.963706 100 58Ni 57.935348 100 40K 39.963999 0.0125 6oNi 59.930791 38.5198 41K 40.961826 7.2167 61Ni 60.931060 1.6744 62Ni 61.928349 5.3388Ca 40.078 64Ni 63.927970 1.3596 4 0a ~ 39.962591 100 4% a 41.958618 0.667 cu 63.546 43~a 42.958769 0.139 63cu 62.929601 100 44~a 43.955481 2.152 65cu 64.927794 44.57 4 6a ~ 45.953693 0.004 48~a 47.952534 0.193 Zn 65.39 64~n 63.929147 100sc 44.9559 10 66Zn 65.926037 57.37 45sc 44.955910 100 67~n 66.927131 8.43 68Zn 67.924848 38.56Ti 47.867 70~n 69.925325 1.27 46Ti 45.952629 11.19 47Ti 46.95 1764 10.09 Ga 69.723 48Ti 47.947947 100 69Ga 68.925581 100b 49Ti 48.947871 7.34 71Ga 70.924705 66.367 50Ti 49.944792 7.03 Ge 72.61V 50.9415 70Ge 69.924250 56.44 5% 49.947 163 0.250 72Ge 71.922076 75.91 51v 50.943964 100 73Ge 72.923459 21.31 74Ge 73.921178 100Cr 5 1.9962 76Ge 75.921403 20.98 50cr 49.946050 5.187 52cr 5 1.940512 100 AS 74.921596 53cr 52.940654 11.339 75As 74.921596 100 54~r 53.938885 2.823 Se 78.96Mn 54.938050 74se 73.922477 1.7955Mn 54.938050 100 76s e 75.919214 18.89 77se 76.919915 15.38Fe 55.845 78se 77.917310 47.91 54Fe 53.939615 6.370 80s e 79.916522 100 56Fe 55.934942 100 82Se 81.916700 17.60
  • 92. 20 2 Summary TablesElement ElementIsotope Mass Abundance Isotope Mass AbundanceBr 79.904 Ru 101.07 79Br 78.918338 100 96Ru 95.907599 17.56 81Br 80.916291 97.28 98Ru 97.905288 5.93 99Ru 98.905939 40.44Kr 83.80 lo0Ru 99.904229 39.94 78Kr 77.920387 0.61b lolRu 100.905582 54.07 8oKr 79.916378 4.00 lo2Ru 101.904350 100 82Kr 81.913485 20.32 lo4Ru 103.905430 59.02 83Kr 82.914136 20.16 84Kr 83.911507 100 Rh 102.905504 86Kr 85.910610 30.35 lo3Rh 102.905504 100 (in air) Pd 106.42Rb 85.4678 lo2Pd 101.905608 3.73 85Rb 84.911789 100 04Pd 103.904036 40.76 87Rb 86.909183 38.56 *05Pd 104.905084 81.71 06Pd 105.903484 100Sr 87.62a 08Pd 107.903894 96.82 84sr 83.913425 0.68 l0Pd 109.905151 42.88 8% r 85.909262 11.94 87~r 86.908879 8.48 107.8682 88Sr 87.905614 100 ASAg lo 106.905094 100 lo9Ag 108.904756 92.90Y 88.905848 89Y 88.905848 100 Cd 112.412 lo6Cd 105.906459 4.35Zr 91.224 lo8Cd 107.904184 3.10 90~r 89.904704 100 l0Cd 109.903006 43.47 91~r 90.905645 21.81 ll1Cd 110.904182 44.55 92~r 91.905040 33.33 12Cd 111.902757 83.99 94~r 93.906316 33.78 13Cd 112.904401 42.53 96~r 95.908276 5.44 14Cd 113.903358 100 16Cd 115.904755 26.07Nb 92.906378 93Nb 92.906378 100 In 114.818 11 3 1 ~ 112.904061 4.48Mo 95.94 11% 114.903879 1009 2 ~ 0 91.906810 61.5094Mo 93.905088 38.33 Sn 118.7119 5 ~ 94.905841 ~ 65.98 1123, 111.904822 2.989 6 ~ 0 95.904679 69.13 114~5, 113.902782 2.039 7 ~96.906021 ~ 39.58 115~11 114.903346 1.049 8 ~ 0 97.905408 100 116sn 115.901744 44.63O0M o 99.907478 39.91 117sn 116.902954 23.57 11*Sn 117.901606 74.34 (contd.)
  • 93. 2.5 Mass Spectrometry 21Element ElementIsotope Mass Abundance Isotope Mass Abundance119sn 118.903309 26.37 La 138.905512OSn 119.902197 100 1 3 8 ~ a 137.907107 0.0901218, 121.903440 14.21 1 3 9 ~ a 138.906348 1001248, 123.905275 17.77 Ce 140.116Sb 121.760 136ce 135.907145 0.209121Sb 120.903818 100 138ce 137.905991 0.284123Sb 122.904216 74.79 140ce 139.905434 100 142ce 141.909240 12.565Te 127.60 20Te 119.904021 0.26 Pr 140.907648 22Te 121.903047 7.48 141Pr 140.907648 100 23Te 122.904273 2.61 24Te 123.902819 13.91 Nd 144.24 25Te 124.904425 20.75 142Nd 141.907719 100 26Te 125.903306 55.28 143Nd 142.909810 44.9 128Te 127.904461 93.13 44Nd 143.910083 87.5 30Te 129.906223 100 145Nd 144.912569 30.5 146Nd 145.913112 63.2I 126.904468 148Nd 147.916889 21.0 1271 126.904468 100 150Nd 149.920887 20.6Xe 131.29 Sm 150.36124xe 123.905896 0.33b 144srn 143.911995 11.48126Xe 125.904270 0.33 147srn 146.914893 56.04128Xe 127.903530 7.14 1488, 147.914818 42.02129xe 128.904779 98.33 149srn 148.917180 5 1.66130x2, 129.903508 15.17 150sm 149.917271 27.59131xe 130.905082 78.77 152srn 151.919728 100132xe 13 1.904154 100 1 5 4 ~ m 153.922205 85.05134xe 133.905395 38.82136xe 135.907221 32.99 Eu 151.964 151Eu 150.919846 91.61cs 132.905447 153Eu 152.921226 100133cs 132.905447 100 Gd 157.25Ba 137.328 152Gd 151.919788 0.81 130Ba 129.906311 0.148 154Gd 153.920862 8.78 132Ba 131.905056 0.141 155Gd 154.922619 59.58 134Ba 133.904503 3.371 156Gd 155.922120 82.41 135Ba 134.905683 9.194 157Gd 156.923957 63.00 136Ba 135.904570 10.954 ls8Gd 157.924101 100 137Ba 136.905821 15.666 60Gd 159.927051 88.00 138Ba 137.905241 100 Tb 158.925343 159Tb 158.925343 100
  • 94. 22 2 Summary TablesElement ElementIsotope Mass Abundance Isotope Mass Abundance 162.50 181Ta 180.947996 100D 6Dy ? 155.924279 0.21158Dy 157.924405 0.35 W 183.84160Dy 159.925194 8.30 180w 179.946707 0.40161Dy 160.926930 67.10 182w 181.948206 86.49162Dy 161.926795 90.53 1 8 3 ~ 182.950224 46.70163Dy 162.928728 88.36 184w 183.950933 100164Dy 163.929171 100 186w 185.954362 93.79Ho 164.930319 Re 186.207165130 164.930319 100 185Re 184.952956 59.74 187Re 186.955751 100Er 167.26 162Er 161.928775 0.42 os 190.23 164Er 163.929197 4.79 1840, 183.952491 0.05 166Er 165.930290 100 1860, 185.953838 3.90 167Er 166.932045 68.22 1870, 186.955748 4.81 168Er 167.932368 79.69 1880s 187.955836 32.47 70Er 169.935460 44.42 1890, 188.958145 39.60 1900, 189.958445 64.39Tm 168.934211 1920, 191.961479 100l69Trn 168.934211 100 Ir 192.217Yb 173.04 1911, 190.960591 59.49168Yb 167.933894 0.41 1931, 192.962924 100 7oY b 169.934759 9.55171Yb 170.936322 44.86 Pt 195.078 72Yb 171.936378 68.58 190Pt 189.959931 0.041173Yb 172.938207 50.68 192Pt 191.961035 2.311174Yb 173.938858 100 194Pt 193.962664 97.443176Yb 175.942568 40.09 195Pt 194.964774 100 196Pt 195.964935 74.6 10Lu 174.967 198Pt 197.967876 21.172175Lu 174.940768 100176Lu 175.942682 2.66 Au 196.966552 197Au 196.966552 100Hf 178.49174Hf 173.940040 0.46 200.59176Hf 175.94 1402 14.99 H%Hg l9 195.965815 0.50 177Hf 176.943220 53.02 198Hg 197.966752 33.39 17*Hf 177.943698 77.77 199Hg 198.968262 56.50 79Hf 178.944815 38.83 2ooHg 199.968309 77.36 l8OHf 179.946549 100 201Hg 200.970285 44.14 202Hg 201.970626 100Ta 180.9479 204Hg 203.973476 23.00 80Ta 179.947466 0.012
  • 95. 2.5 Mass Spectrometry 23Element ElementIsotope Mass Abundance Isotope Mass AbundanceT1 204.3833 Bi 208.980383 203Tl 202.972329 41.892 209Bi 208.980383 100 205Tl 204.974412 100 Th 232.038050Pb 207.2a 232Th 232.038050 100204Pb 203.973029 2.7206Pb 205.974449 46.0 U 238.0289207Pb 206.975881 42.2 234U 234.040946 0.0055d208Pb 207.976636 100 235U 235.043923 0.73 238U 238.050783 100a Natural variations in the isotopic composition of terrestrial material does not allow to give a more precise value. Commercially available materials may have substantially different isotopic compositions if they were subjected to undisclosed or inadvertent isotopic fractionation. Materials depleted in 6Li are commercial sources of laboratory shelf reagents and are known to have 6Li abundances in the range of 2.0007-7.672 atom percent, with natural materials at the higher end of this range. Average atomic masses vary between 6.939 and 6.996; if a more accurate value is required, it must be determined for the specific material. Materials depleted in 235U are commercial sources of laboratory shelf reagents.
  • 96. 24 2 Summary Tables2.5.2Ranges of Natural Isotope Abundances of Selected ElementsEl em ent Range E 1em en t Range Element RangeIsotope (atom %) Isotope (atom %) Isotope (atom %)H Si Ce1H 99.9816-99.9975 28Si 92.21-92.25 13ke 0.186-0.1852H 0.0184-0.0025 29s i 4.694.67 138Ce 0.254-0.251 3Osi 3.10-3.08 40Ce 88.449-88.446He 142Ce 11.114-1 1.1143He 4 . 6 10-8-0.0041 ~ S4He 100-99.9959 32s 94.537-95.261 Nd 33s 0.787-0.73 1 42Nd 27.30-26.80Li 34s 4.655-3.993 143Nd 12.32-12.126Li 7.21-7.71 36s 0.02 1-0.015 144Nd 23.97-23.7957 ~ i 92.79-92.29 145Nd 8.35-8.23 c1 46Nd 17.3 5- 17.06B 35c 1 75.64-75.86 148Nd 5.78-5.661OB 18.927-20.337 37c 1 24.36-24.14 150Nd 5.69-5.531lB 8 1.073- 79.663 Ca HfC 4 0a ~ 96.982-96.880 174Hf 0.1621-0.161912C 98.85-99.02 4 2a ~ 0.656-0.640 176Hf 5.271-5.20613c 1.15-0.98 43ca 0.146-0.13 1 177Hf 18.606-18.593 4 4 ~ a 2.130-2.057 78Hf 27.297-27.278N 4 6 a ~ 0.0046-0.003 1 179Hf 13.630-1 3.619 4N 99.890-99.652 4 8a ~ 0.200-0.179 80Hf 35.100-35.07615N 0.41 1-0.348 V Pb0 5ov 0.2502-0.2487 204Pb 1.65-1.04160 99.7384-99.7756 l 99.75 13-99.7498 V 206Pb 27.48-20.84170 0.0399-0.0367 207Pb 23.65- 17.6280 0.2217-0.1877 cu 208Pb 56.21-51.28 63Cu 69.24-68.98Ne 65Cu 3 1.02-30.76 U2oNe 90.514-88.47 234U 0.0059-0.005021Ne 1.71-0.266 Sr 235U 0.7202-0.719822Ne 9.96-9.20 84~r 0.58-0.55 238U 99.2752-99.2739 8% r 9.99-9.75 87sr 7.14-6.94 88Sr 82.75-82.29
  • 97. Next Page 2.5 Mass Spectrometry 252.5.3Isotope Patterns of Naturally Occurring ElementsThe mass of the most abundant isotope is given under the symbol of the element.The lightest isotope is shown at the left end of the x axis.
  • 98. Previous Page 26 2 Summary Tables 2.5.4 Calculation of Isotope Distributions The characteristic abundance patterns resulting from the combination of more than one polyisotopic element can be calculated from the relative abundances of the different isotopes. The following polynomial expression gives the isotope distribution of a polyisotopic molecule: where pix is the relative abundance of the xth isotope of element i, the mass of the xth isotope of the element i is given by mix, and the exponent ni stands for the number of atoms of the element i in the molecule. The expansion of this polynomial expression after inserting the pix and mix values for all the isotopes 1, 2, 3, ... of the elements i, j, ... of a given molecule yields an expression that represents the isotope distribution: wo Ao + w rA + w s AS + w tA t + ... w wt,... are the relative abundances of M+, where the values of W O , w r , s , [M+rl+, [M+sl+, [M+t]+, ..., respectively. The use of A(mix mil) allows to determine the values of r, s, t,. .. simply by expanding the general polynomial. A numerical value for A, which has no intristic meaning, is never needed. For example, for CBr2C12, the above equation gives rise to the following expression: For sufficient resolution, (mix - mil) and (mjx - mjl) differ from one another. This results in very complex isotope patterns even for very small molecules. Thus, owing to the occurrence of 12C, 13C, 79Br, 81Br, 35Cl, and 37Cl, there are 18 signals for CBr2Clz. However, the limited resolution of most real life experiments makes many pairs of (mix - mil) and (mj, - m j l ) indistinguishable within experimental error, significantly reducing the number of separate peaks. For example, at unit resolution, one obtains ( " 8 1 ~-~m79Br) = (~7237~1- m35~1) 2. = Consequently, the expression for BrCl becomes:
  • 99. 2.5 Mass Spectrometry 27 0 2 (P79Br A +P81Br A 1 b35C1 +p37C1 A 2 ) = 0 2 4 P79BrP35C1 A + b79Br P37C1 +P81Br P35C1) A +P37C1 P81Br AThis shows that at unit resolution, BrCl gives rise to only 3 peaks (M+,[M+2]+, [M+4]+) rather than to 4 peaks, as they are expected for very highresolution. Often, the contribution of isotopes of low abundance can be neglected withoutsacrificing much precision. For example, the effect of 2H on isotope patterns isusually insignificant. Also, 13C is often negligible when focussing on peaks ofthe series [M+2n]+, which then results in patterns that are characteristic forhalogens, sulfur, and silicon. In large molecules, however, isotopes of lowabundance cannot be neglected. For example, in the case of buckminster fullerene( C ~ O )not only M+ (relative intensity, 100%) and [M+l]+ (66.72%) but also ,[M+2]+ (21.89%), [M+3]+ (4.71%), and even [M+4]+ (0.75%) are quitesignificant ions. As shown above, typical isotope patterns can be readily calculated manually byapplying the general equation and neglecting isotopes of low abundance. Theoutlined procedure can also be easily implemented and evaluated with genericcomputer software that allows simple calculations. Dedicated and user-friendlyprograms that already contain the necessary isotope abundances and masses areavailable. Incidentally, because the use of the above equation for systems with1000 or more polyisotopic atoms results in excessive calculation times, moreefficient but somewhat more complicated algorithms have been developed forimplementation in dedicated programs [4]. Typical isotope patterns are given onthe following pages.
  • 100. 28 2 Summary Tables2.5.5Isotopic Abundances of Various Combinations of Chlorine,Bromine, Sulfur, and SiliconEle- Mass Relative Ele- Mass Relative Ele- Mass Relativements abun- ments abun- ments abun- dance dance dance 35 100 79 100 S1 32 100 37 3 1.98 81 97.88 33 0.79 34 4.43 70 100 158 5 1.09 s2 64 100 72 63.96 160 100 65 1.58 74 10.23 162 48.93 66 8.87 68 0.24 105 100 237 34.05 s3 96 100 107 95.93 239 100 97 2.37 109 30.67 24 1 97.89 98 13.31 111 3.27 243 3 1.94 99 0.21 100 0.66 140 77.96 316 17.40 s4 128 100 142 100 318 68.09 129 3.16 144 47.82 320 100 130 17.76 146 10.19 322 65.26 131 0.42 148 0.82 324 15.96 132 1.27 175 62.53 395 10.43 s5 160 100 177 100 397 5 1.09 161 3-94 179 63.94 399 100 162 22.22 181 20.45 40 1 97.94 163 0.70 183 3.28 403 47.89 164 2.08 185 0.21 405 9.38 166 0.1 1 210 52.12 474 5.32 s6 192 100 212 100 476 3 1.26 193 4.73 214 79.95 478 76.62 194 26.68 216 34.08 480 100 195 1.05 218 8.21 482 73.38 196 3.09 220 1.05 484 28.73 198 0.20 222 0.06 486 4.68 28 100 56 100 Si3 84 100 29 5.06 57 10.13 85 15.19 30 3.36 58 6.98 86 10.85 59 0.34 87 1.03 60 0.11 88 0.36
  • 101. 2.5 Mass Spectrometry 29Ele- Mass Relative Ele- Mass Relative Ele- Mass Relativements abun- ments abun- ments abun- dance dance danceCllBrl 114 76.70 CllBr2 193 43.83 C11Br3272 26.15 116 100 195 100 274 85.22 118 24.46 197 69.83 276 100 199 13.66 278 48.90 280 7.86CllBr4 351 14.26 C12Brl 149 61.35 C12Br2 228 38.35 353 60.41 151 100 230 100 355 100 153 45.67 232 89.63 357 79.93 155 6.38 234 31.89 359 30.39 236 3.90 36 1 4.25C13Brl 184 51.12 C13Br2 263 3 1.35 C14Brl 219 43.79 186 100 265 92.01 22 1 100 188 65.22 267 100 223 83.86 190 17.73 269 50.01 225 33.42 192 1.74 27 1 11.70 227 6.93 273 1.03 229 0.48C14Br2 298 24.14 C14Br3 377 13.63 C14Br4 456 7.43 300 78.63 379 57.78 458 38.40 302 100 381 100 460 83.70 304 63.54 383 91.19 462 100 306 21.54 385 47.13 464 7 1.37 308 3.73 387 14.03 466 31.11 310 0.26 389 2.22 468 8.10 391 0.13 470 1.16Cl l S l 67 100 CllS2 99 100 c 21 1s 102 100 68 0.79 100 1.58 103 0.79 69 36.41 101 40.85 104 68.39 70 0.25 102 0.57 105 0.50 71 1.44 103 3.08 106 13.08 108 0.47C12S2 134 100 c13s 1 137 99.64 Cl3S2 169 95.42 135 1.58 138 0.79 170 1.51 136 72.82 139 100 171 100 137 1.08 140 0.75 172 1.51 138 16.14 141 34.82 173 37.62 139 0.21 142 0.24 174 0.53 140 1.06 143 4.63 175 5.94 145 0.15 177 0.35
  • 102. 30 2 Summary TablesEle- Mass Relative Ele- Mass Relative Ele- Mass Relativements abun- ments abun- ments abun- dance dance danceCllSil 63 100 C12Sil 98 100 C13Sil 133 100 64 5.06 99 5.06 134 5.06 65 35.34 100 67.32 135 99.30 66 1.62 101 3.24 136 4.86 67 1.07 102 12.38 137 33.90 103 0.52 138 1.55 104 0.34 139 4.302.5.6Isotope Patterns of Combinations of CI and Br Signals - separated by 2 units 160 239 320 399The signals are separated by 2 mass units, and the combination of the lightestisotopes is given on the left side of the x axis. The mass for the most abundantsignal is shown under the symbol of the element. See Chapter 2.5.5 for exactabundances of many of these combinations.
  • 103. 2.5 Mass Spectrometry 312.5.7Indicators of the Presence of HeteroatomsIn low-resolution mass spectra, one often observes characteristic isotope patterns,specific masses of fragment ions, and characteristic mass differences (Am) betweenthe molecular ion (M+) and fragment ions (Frag+), or between fragment ions.High resolution mass spectra can be used to confirm the elemental compositionprovided that the resolution is sufficient to discriminate alternative compositions.Moreover, tandem mass spectrometry (also called MS/MS) may be used to identifyheteroatom-characteristiclosses from parent or fragment ions.Indication of 0: Am 17 from M+, in N-free compounds Am 18 from M+ Am 18 from Frag+, particularly in aliphatic compounds Am 28, 29 from M+ for aromatic compounds Am 28 from Frag+ for aromatic compounds mtz 15, relatively abundant mtz 19 mtz 31, 45, 59, 73 ,... + (14), mtz 32, 46, 60, 74 ,... + (14), mtz 33, 47, 61, 75 ,... + (14), for 2 x 0, in absence of S mtz 69 for aromatic compounds meta-disubstituted by oxygenIndication of N: M+ odd-numbered (indicates odd number of N in M+) Large number of even-numbered fragment ions Am 17 from M+ or Frag+, in O-free compounds Am 27 from M+ or Frag+, for aromatic compounds or nitriles Am 30,46 for nitro compounds mtz 30, 44, 58, 72,. , . + (14), for aliphatic compoundsIndication of S : Isotope peak [M+2]+ 2 5% M+ Am 33, 34, 47, 48, 64, 65 from M+ Am 34, 48, 64 from Frag+ mtz 33,34,35 mtz 45 in O-free compounds m/z 47, 61, 75, 89,... + (14), unless compound with 2 x 0 mtz 48, 64 for S-oxidesIndication of F: Am 19, 20, 50 from M+ Am 20 from Frag+ mtz 20 mtz 57 without mtz 55 in aromaticsIndication of C1: Isotope peak [M+2]+ 2 33% M+ Am 35, 36 from M+ Am 36 from Frag+ d z 35/37, 36/38, 49/51
  • 104. 32 2 Summary TablesIndication of Br: Isotope peak [M+2]+ 2 98% M+ Am 79, 80 from M+ Am 80 from Frag+ m/z 79/81, 80182Indication of I: Isotope peak [M+l]+ of very low abundance at relatively high mass Am 127 from M+ Am 127, 128 from Frag+ mlz 127, 128, 254Indication of P: m/z 47 in compounds free of S or 2 x 0 m/z 99 without isotope peak at m/z 1 0 0 in alkyl phosphates
  • 105. 2.5 Mass Spectrometry 332.5.8Rules for Determining the Relative Molecular Weight (Mr)The molecular ion (M+) is defined as the ion that comprises the most abundantisotopes of the elements in the molecule. Interestingly, the lightest isotopes ofmost elements that frequently occur in organic compounds and their common salts(H, C, N, 0, F, Si, P, S, C1, As, Br, I, Na, Mg, Al, K, Ca, Rb, Cs) are also themost abundant ones. Notable exceptions are B, Li, Se, Sr, and Ba. M+ is always accompanied by isotope peaks. Their relative abundance dependson the number and kind of the elements present and their natural isotopicdistribution. The abundance of [M++l] indicates the maximum number of carbonatoms ( ) C, according to the following relationship: Cmax = 100 [M++l] / (1.1 [M"])[Mf+2] and higher masses indicate the number and kind of elements that have arelatively abundant isotope two mass units heavier (such as S, Si, C1, Br). M+ is always an even number if the molecule contains only elements forwhich the atomic mass and valence are both even-numbered or both odd-numbered(such as H, C, 0, S, Si, P, F, Cl, Br, I). In the presence of other elements, M+becomes an odd number unless the elements are present in an even number (thisholds for N, 13C, 2H). M+ can only form fragment ions of masses that differ from that of themolecular ion by chemically logical values (Am). In this context, chemicallyillogical differences are Am = 3 (in the absence of Am = 1) to Am = 14, Am = 21(in the absence of Am = 1) to Am = 24, Am = 37, 38 and all Am less than themass of an element of characteristic isotope pattern in cases where the sameisotope pattern is not retained in the fragment ion. M+ of a compound must contain all elements (and the maximum number ofeach) that are shown to be present in the fragment ions. If ionization is performed by electron impact, M+ is the ion with the lowestappearance potential. If a pure sample flows into the ion source through a molecular leak, M+exhibits the same effusion rate as can be determined from the fragment ions. Theabundance of M+ is proportional to the sample pressure in the ion source. For polar compounds, [M+H]+ is often observed in mass spectra obtained notonly with fast atom bombardment and atmospheric pressure chemical ionizatonbut also with electron impact ionization. In this latter case, the abundance of[M+H]+ changes in proportion to the square of the sample pressure in the ionsource. In the absence of a signal for M+, the molecular weight must have a value thatshows a logical and reasonable mass difference, Am, to all the observed fragmentions.
  • 106. 34 2 Summary Tables2.5.9Homologous Mass Series as Indications of Structural TypeCertain sequences of intensity maxima in the lower mass range and the masses ofunique signals are often characteristic of a particular compound type. The intensitydistribution of such ion series is in general smooth. Therefore, abrupt changes(maxima and minima) are of structural significance. The ion or ion series that ismost indicative of a particular compound type is set in italics.Mass Elemental Compound typesvalues m/z composition12 + 14m CnH2n-2 alkenes, monocycloalkanes,alkynes, dienes, cycloalkenes, polycyclic alicyclks, cyclic alcohols13 + 14m CnH2n-1 alkanes, alkenes, monocycloalkanes, alkynes, dienes, cycloalkenes, polycyclic alicyclics, alco- hols, alkyl ethers, cyclic alcohols, cycloalkanones, aliphatic acids, esters, lactones, thiols, sulfides, glycols, glycol ethers, alkyl chlorides CnH2n-30 cycloalkanones1 4 + 14m CnH2, alkanes, alkenes, monocycloalkanes,polycyclic alicyclics, alcohols, alkyl ethers, thiols, sulfides, alkyl chlorides CnH2n-20 cycloalkanones15 + 14m CnH2n+l alkanes, alkenes, monocycloalkanes, alkynes, dienes, cycloalkenes, polycyclic alicyclics, alkanones, alkanals, glycols, glycol ethers, alkyl chlorides, acid chlorides alkanones, alkanals, cyclic alcohols, acid chlorides alkanones, alkanuls alkyl amines, aliphatic amides aliphatic amides alcohols, alkyl ethers, aliphatic acids, esters, lactones, glycols, glycol ethers aliphatic acids, esters, lactones aliphatic acids, esters, lactones
  • 107. 2.5 Mass Spectrometry 35Mass Elemental Compound typesvalues d z composition19 + 14m alcohols, alkyl ethers aliphatic acids, esters, lactones glycols, glycol ethers thiols, sulfides20 + 14m alkylbenzenes glycols, glycol ethers thiols, sulfides21 + 14m alkylbenzenes aryl ketones alkyl chlorides acid chlorides22 + 14m alkylanilines polycyclic alicyclics23 + 14m polycyclic alicyclics24 + 14m polycyclic alicyclics25 + 14m alkynes, dienes, cycloalkenes, polycyclic alicyclics39, 52+1, alkylbenzenes,aromatic hydrocarbons, phenols, 64+ 1, aryl ethers, aryl ketones 76+2, 91+1
  • 108. 36 2 Summary Tables2.5.10Mass Correlation TableNote: As long as it makes sense chemically, CH2, CH4, CH30, and 0 2 in theformulae of the second column may be replaced by N, 0, P, and S , respectively(M: molecular mass).Mass Ion Product ion and Substructure or composition of the compound type neutral particle lost 1 [M+l]+, [M-11- particularly in FAB spectra, in which M-cl occurs even for moderately basic and acidic compounds, but intensive M+ without M-cl is unusual7 Li+ [M+7]+ in FAB spectra in the presence of Li+ 134-71- in FAB spectra of organic Li+ salts12131415 [M- nonspecific; abundant: methyl, N-ethylamines16 O", NH2+, [M- methyl (rare) 02++ nitro compounds, sulfones, epoxides, N-oxides primary amines17 OH, "3 acids (especially aromatic acids), hydroxylamines,N- oxides, nitro compounds, sulfoxides, tertiary alcohols ("3) primary amines18 [M-181 (H2O) nonspecific; abundant: alcohols, some acids, aldehydes, ketones, lactones, cyclic ethers 0 indicator
  • 109. 2.5 Mass Spectrometry 37Mass Ion Product ion and Substructure or composition of the compound type neutral particle lost19 H3O+,F+ [M-19]+ (F) fluorides F indicator20 HF+, Ar++, [M-20]+ (HF) fluorides F indicator CH2CN"22 c02++23 Na+ [M+23]+ in FAB spectra in the presence of Na; sometimes strong even if Na is only an impurity [M-23]- in FAB spectra of organic Na salts terminal acetylenyl aromatics nitriles terminal vinyl, some ethyl esters and N-ethylamides, ethyl phosphates aromatic N, nitriles nonspecific; abundant: cyclo- hexenes, ethyl esters, propyl ketones, propyl-substituted aromatics aromatic 0, quinones, lactones, lactams, unsaturated cyclic ketones, allyl aldehydes diazo compounds; air (inten- sity 3.7 times larger than for 02+, m/z 32) nonspecific; abundant: ethyl phenols, furans, aldehydes
  • 110. 38 2 Summary TablesMass Ion Product ion and Substructure or composition of the compound type neutral particle lost30 ethylalkanes, polymethyl compounds cyclic ethers, lactones, primary alcohols nitro and nitroso compounds31 methyl esters, methyl ethers, primary alcohols N-methylamines hydrazides32 cyclic peroxides; air (intensity 3.7 times smaller than for N2+, m/z 28) methyl esters, methyl ethers sulfides (together with isotope signal for 34s)33 CH30H2+, SH, [M-33]+ (SH) nonspecific (together with CH2F isotope signal for 34s) S indicator nonspecific; 0 indicator fluoromethyl34 SH2" nonspecific (together with isotope signal for 348) S indicator (OH + OH) nitro compounds35 SH3+, C1+ [M-35]+ (Cl) chloro compounds (together with isotope signal for 37C1) (OH + H20) nitro compounds 2 x 0 indicator36 HCl", C3 [M-361 (HC1) chloro compounds (H20 + H20) 2 x 0 indicator37 C3H chloro compounds (together 37c1+ with isotope signal for 3%1)
  • 111. 2.5 Mass Spectrometry 39Mass Ion Product ion and Substructure or composition of the compound type neutral particle lost38 C3H2+39 C3H3+ [M-39]+ (C3H3) aromatics K+ [M+39]+ in FAB spectra in the presence of K+; sometimes strong even if K+ is only an impurity [M-39]- in FAB spectra of organic Kf salts40 cyanomethyl41 alicyclics (especially poly- alicyclics), alkenes 2-methyl-N-aromatics, N-methylanilines42 nonspecific; abundant: propyl esters, butyl ketones, butylaromatics, methylcyclohexenes acetates (especially enol acetates), acetamides, cyclo- hexenones, a$-unsaturated ketones43 [M-43]+ (C3H7) nonspecific; abundant: propyl, alicyclics, cycloalkanones, cycloalkylamines, cyclo- alkanols, butylaromatics methyl ketones, acetates, aromatic methyl ethers44 propylalkanes N,N-dimethylamines, N-ethylamines cycloalkanols, cyclic ethers, ethylene ketals, aliphatic aldehydes (McLaffem (contd.) rearrangement)
  • 112. 40 2 Summary TablesMass Ion Product ion and Substructure or composition of the compound type neutral particle lost44 anhydrides, lactones, carboxylic acids45 C2H50+, ethyl esters, ethyl ethers, C2H7N+, CHS lactones, ethyl sulfonates, (together with ethyl sulfones isotope signal for carboxylic acids 34s) N,N-dimethylamines, 0 indicator N-ethylamines S indicator46 C~HSOH", ethyl esters, ethyl ethers, N02+ ethyl sulfonates primary alcohols carboxylic acids nitro compounds47 CH3S+, C C P , methyl sulfides (together with C~HSOH~, isotope signal for 3%) CH(OH)2+, PO+ 2 x 0 indicator S indicator P indicator48 CH3SH+, methyl sulfides CHCl+, SO+ sulfoxides, sulfones, sulfonates (together with isotope signal for 34s)49 [M-49]+ (CH2C1) chloromethyl (with corre- sponding signal for 37Cl)50 [M-50]+ (CF2) trifluoromethylaromatics, perfluoroalicyclics515253
  • 113. 2.5 Mass Spectrometry 41Mass Ion Product ion and Substructure or composition of the compound type neutral particle lost54 cyclohexenes cyanoethyl55 nonspecific; abundant: alicyclics, butyl esters, N-butylamides56 butyl esters, N-butylamides, pentyl ketones, cyclohexenes, tetralins, pentylaromatics methylcyclohexenones, p-tetralones57 nonspecific ethyl ketones58 alkanes a-methylalkanals, methyl ketones, isopropylidene glycols59 propyl esters, propyl ethers methyl esters amines, amides60 propyl esters, propyl ethers acetates methyl esters61 glycols, ethylene ketals ethyl sulfides (together with isotope signal for 343)62 methoxymethyl ethers, ethylene glycols, ethylene ketals ethyl sulfides (together with isotope signal for 3%)
  • 114. 42 2 Summary TablesMass Ion Product ion and Substructure or composition of the compound type neutral particle lost63 [M-63]+ (C2H4C1) chloroethyl (CO + Cl) acid chlorides64 CgH4+, SO,", [M-64]+ (SO2) sulfones, sulfonates S2+ (S2) disulfides (together with isotope signal for 34s)65 [M-65]+ (S2H) disulfides (together with ( S O ~ H ) isotope signal for 34s)66 [M-66]+ (C5Hg) cyclopntenes disulfides (together with isotope signal for 34s)67 [M-67]+ (C4H30) fury1 ketones68 [M-68]+ (C5H8) cyclohexenes, tetralins (C4H40) cyclohexenones, P-tetralones69 M-69]+ (CgHg) alicyclics, alkenes ( C F ~ ) trifluoromethyl70 alkanes, alkenes, alicyclics cycloalkanones pyrrolidinesMass Ion Compound type alkanes, larger alkyl groups alkanones, alkanals, tetrahydrofurans alkanones, alkanals 0 indicator aliphatic amines N indicator perhalogenated benzenes alcohols, ethers, esters 0 indicator acids, esters, lactones trimethylsilyl compounds
  • 115. 2.5 Mass Spectrometry 43Mass Ion Compound type74 ethers methyl esters of carboxylic acids, a-methyl carboxylic acids75 methyl acetals, glycols 2 x 0 indicator sulfides, thiols (together with isotope signal for 34s) S indicator trimethylsilyloxyl compounds76 aromatics77 aromatics chloro compounds78 aromatics pyridines chloro compounds79 aromatics with H-containing substituents pyridines, pyrroles bromo compounds (together with isotope signal for 81Br)80 cyclohexenes, polycyclic alicyclics cyclopentenones bromo compounds pyrroles, pyridines81 cyclohexanes, cyclohexenyls, dienes furans, pyrans bromo compounds (together with isotope signal for 79Br)82 cyclohexanes cyclopentenones, dihydropyrans tetrahydropyridines pyrazoles, imidazoles chloro compounds (together with isotope signals at m/z 84 and 86)83 alkenes, alicyclics, monosubstituted alkanes cycloalkanones84 piperidines, N-methylpyrrolidines
  • 116. 44 2 Summary TablesMass Ion Compound type85 alkanes alkanones, alkanals, tetrahydropyrans,fatty acid derivatives chlorofluoroalkanes (with isotope signal at d z 87)86 alkanones, alkanals aliphatic amines N indicator87 alcohols, ethers, esters 0 indicator esters, acids88 ethyl esters of carboxylic acids, a-methyl-methyl esters, a-C2-carboxylic acids89 diols, glycol ethers 2 x 0 indicator sulfides (together with isotope signal for 34S)90 disubstituted aromatics91 aromatics alkyl chlorides92 allcylbenzenes alkylpyridines93 phenols, phenol derivatives anilines bromo compounds94 phenol esters, phenol ethers pynyl ketones, pyridone derivatives95 fury1 ketones96 alicyclics97 alicyclics, alkenes cycloalkanones alkylthiophenes (together with isotope signal for 34s)98 N-alkylpiperidines
  • 117. 2.5 Mass Spectrometry 45Mass Ion Compound type ~~99 alkanes alkanones ethylene ketals alkyl phosphates104 tetralin derivatives, phenylethyl derivatives disubstituted a-ketobenzenes105 alkylaromatics benzoyl derivatives diazophenyl derivatives106 alkylanilines111 thiophenoyl derivatives (together with isotope signal for 34s)115 aromatics esters diesters119 alkylaromatics tolyl ketones peffluoroethyl derivatives phenyl carbamates120 y-benzopyrones, salicylic acid derivatives pyridines, anilines121 hydroxybenzene derivatives127 naphthalenes unsaturated diesters chlorinated N-aromatics iodo compounds128 naphthalenes chlorinated hydroxybenzene derivatives iodo compounds130 quinolines, indoles naphthoquinones
  • 118. 46 2 Summary TablesMass Ion Compound type131 tetralins thioethylene ketals (together with isotope signal for 34s) perfluoroalkyl derivatives135 CqHgBr+ alkyl bromides141 CllH9+ naphthalenes142 CIOH8N+ quinolines149 C8H503+ phthalates152 12H8+ diphenyl aromatics165 13H9+ diphenylmethane derivatives (fluorenyl cation)167 C8H704+ phthalates205 12H1303+ phthalates223 C12H 15O4 phthalates2.5.1 1References G.P. Moss, Atomic weights of the elements, Pure Appl. Chem. 1999, 71, 1593. G. Audi, A.H. Wapstra, The 1995 update to the atomic mass evaluation, Nucl. Phys. 1995, A595, 409. Atomic Mass Data Center, world wide web site, <http://csnwww.in2p3.fr>. K.J.R. Rosman, P.D.P. Taylor, Isotopic compositions of the elements 1997, Pure Appl. Chem. 1998, 70, 217. H. Kubinyi, Calculation of isotope distributions in mass spectrometry. A trivial solution for a non-trivial problem, Anal. Chim. Acta 1991, 247, 107.
  • 119. 2.6 UV/Vls Spectroscopy 472.6UV/Vis SpectroscopyUV/Vis Absorption Bands of Various Compound Types ( A : alkyl orH; R: alkyl; sh: shoulder)
  • 120. 48 2 Summary Tablesa longest wavelength absorption maximum
  • 121. 3.1 Alkanes, Cycloalkanes 493 Combination Tables3.1Alkanes, CycloalkanesAssignment Range CommentsCH3 5-35 ppm CH3, CH2, CH, and C can be differentiated by 13C NMRCH2 5-45 ppm multipulse experiments (DEPT, APT), off-CH 25-60 ppm resonance decoupling, 2D CH correlationC 30-60 ppm spectra, or based on relaxation times Lower shift values in three-membered ringsCH3 0.8-1.2 ppm 1H NMRCH2 1.1-1.8 ppm Lower shift values in three-membered ringsCH 1.1-1.8 ppmCH st 3000-2840 cm-l Higher frequency in three-membered rings IRCH3 S a s ~ 1 4 6 cm-l 0CH2 6 ~ 1 4 6 cm-l 0CH3 6 SY ~ 1 3 8 cm-l 0 Doublet for geminal methyl groupsCH2 Y 770-720 cm-l In C-(CH*),-C with n 2 4 at ca. 720 cm-lMolecular ion m/z 14n + 2 Weak in n-alkanes Ms Very weak in isoalkanesFragments n-Alkanes: local maxima at 14n + 1, intensity variations: smooth, minimum at [M- 15]+ Isoalkanes: local maxima at 14n + 1, intensity distribution: irregular (relative maxima due to fragmentation at branching points with charge retention at the most substituted C)Rearrange- n-Alkanes: unspecificments m/z 14n Isoalkanes: elimination of alkanes m/z 14n - 2 Monocycloalkanes: elimination of alkanes No absorption above 200 nm uv
  • 122. 50 3 Combination Tables 3.2 Alkenes, Cycloalkenes Assignment Range Comments13cNMR c=c 100-150 ppm Considerable differences between Z and E: C-(C=C) 10-60 ppml"MR H-(C=C) 4.5-6.5 ppm Coupling constants, IJI: geminal 0-3 Hz, cis 5-12 Hz, truns 12-18 Hz CH3-(C=C) ~ 1 . ppm 7 Coupling constants, 3 J ~ ~ =7 2 ~ ~ Hz = ~ CH2-(C=C) ~ 2 . ppm 0 In rings, IJI smaller: 6 Long-range coupling constants n=2 ~ 0 . 5 n=3 ~ 1 . Hz Hz 5 n=4 = 4 . 0 H z 4JHC-C=CH0-2 HzIR H-C(=C) st 3100-3000 cm-l c=cst 1690-1635 cm-l H-C(=C) 6 oop 1000- 675 cm-l CH2-(C=C) 6 1440 cm-lMs Molecular ion m/z 14n Alkenes: moderate m/z 14n - 2 Monocycloalkenes: medium intensity Fragments 14n - 1 Local maxima for alkenes 14n - 3 Local maxima for monocyclic alkenes Usually, double bonds cannot be localized Rearrange- n-Alkenes: unspecific ments Specific for: 1 +* 1 +* Cyclohexenes: retro-Diels-Alder reaction: 0 1 -*+ (= + I]+*uv C=C n+n* e 210 nm Isolated double bonds; for highly substituted (log E 3-4) double bonds often absorption tail (C=C), n+n* 215-280 nm (loa E 3.54.5)
  • 123. 3.3 Alkynes 513.3AlkynesAssignment Range CommentsCEC 65-85 ppm Coupling constant 2 J H ~ E i=50 Hz; often 3~ 13C N M R leading to unexpected signs of signals in DEFT spectrac-(CEC) 0-30 ppmH-( C EC) 1.5-3.0 ppm Coupling constants IJI 4 J ~ ~ =3 Hz E - ~ ~ 1H N M R ~ 5 J ~ C-CH =3 Hz ~ - ~ ~CH3-(C=C) =1.8 ppmCH~-(CEC) =2.2 ppmCH-(CEC) =2.6 ppmH-C(EC) st 3340-3250 cm-l Sharp, intense IRCEC st 2260-2100 cm-l Sometimes very weakMolecular ion Weak, for 1 -alkynes up to C7 often absent MsFragments and Vary in extent between alkanes and aromaticsrearrangementsC r C n+n* e 210 nm absorption tail, often a few weak bands W (log E 3.7-4.0) e 240 nm
  • 124. 52 3 Combination Tables 3.4 Aromatic Hydrocarbons - ~~~~~~~~ ~~ ~ ~ Assignment Range Comments13cNMR a r c 120-150 ppm Same ranges for polycyclic aromatic ar CH 110-130 ppm hYh&ns a1 C-(C ar) 10-60 ppml"MR H-(Car) 6.5-7.5 ppm In polycyclic aromatic hydrocarbons up to =9 PPm Coupling constants: 3J0,h0 -7 Hz, 4J,,ta =2 Hz, 5Jpara <1 HZ CH3-(C ar) -2.3 ppm Often line broadening due to long-range CH2-(C ZU) ~ 2 . ppm 6 coupling with aromatic protons CH-(C ar) ~ 2 . ppm 9IR ar C-H st 3080-3030 cm-l Often multiple bands, weak comb 2000-1650 cm-l Very weak ar C-C st ~ 1 6 0 cm-l 0 Often split, ~ 1 5 0 cm-l 0 sometimes not all three ~ 1 4 5 cm-l 0 bands observable ar C-H 6 oop 900-650 cm-l Strong, frequently multiple bandsMs Molecular ion Strong, often base peak Fragments m/z 39, 50-53, Often doubly charged fragment ions 63-65,75-78 [M-26]+, [M-39]+ benzylic cleavage OCH,.~ - dZ90-92 m$ m/z 127 < - m/z 152, 153 ea k m/z 152, 165 Rearrange- ments 1 +. 1 f* -200-210 nm (log E -4) In benzeneuv -260 nm (log E ~ 2 . 4 ) and alkylbenzenes
  • 125. 3.5 Heteroaromatic Compounds 533.5Heteroaromatic CompoundsAssignment Range Commentsar c-x 120-160 ppm 1 cNMR 3ar C-C 100-150 ppmH i C ar) 6-9 ppm Coupling constants in 6-membered rings 1 NMR H similar to those in aromatic hydrocarbons; in 5-membered heteroaromatic rings smallerHiN ar) 7-1 4 ppm Strongly solvent dependent, generally broadar C-H st 3100-3000 cm-l Often multiple bands, weak IRar N-H star c-c st - 3500-2800 cm-l 1600 cm-l -1500 cm-l Often split, sometimes not all three ~ 1 4 5 cm-l 0 bands observablear C-H 6 oop 1000-650 cm-l Often strong, frequently multiple bandsMolecular ion Strong, often base peak mFragments m/z 39, 50-53, Often doubly charged fragment ions 63-65,75-78 [M-26]+, [M-39]+ benzyl-analogous cleavageRearrange- Loss of HCN (N-heteroaromatics)ments Loss of CO (0-heteroaromatics) Loss of CS (S-heteroaromatics) m/z 45 [CHS]+ S-Heteroaromatics l + +. -RCH=CH2 * Hcf. UVNis Reference Spectra, Chapter 8.5.3. uv
  • 126. 54 3 Combination Tables 3.6 Halogen Compounds Assignment Range Comments~ ~ C N M R a1 C-F 70-100 ppm CF3: ~ 1 1 ppm 5 (C)=C-F 125-175 ppm Coupling with 19F (isotope abundance, C=(C-F) 65-115 ppm 100%; I = 1/2): lJCF 100-300 Hz; ar C-F 135-165 ppm 2 J 10-40 ~ 3 J 5-10 Hz; 4 J 0-5 Hz ~ Hz; ~ ~ ~ ~ ar C-(C-F) 105-135 ppm a1 C-Cl 30-60 ppm (C)=C-cl 100-150 ppm C=(C-cl) 100-155 ppm ar c-Cl 120-1 50 ppm al C-Br 10-45 ppm (C)=C-Br 90-140 ppm C=(C-Br) 9O-140 ppm ax C-Br 110-140 ppm a1 C-I -20 to +30 ppm (C)=c-I 6O-110 ppm C=(C-I) 120-150 ppm ar c-I 85-1 15 ppml"MR -CHz-F 4 . 3 ppm Coupling with 19F (isotope abundance, 100%; I = 1/2): 2 J 40-80 ~ ~ Hz; 3 J 0-50 Hz; 4 J 0-5 Hz ~ ~ ~ ~ ~3.5 ppm ~ 3 . ppm 4 ~ 3 . ppm 1 Alkenes: geminal protons strongly deshielded by all halogens; vicinal protons are shielded by F and deshielded by the other halogens Aromatics: shielding by F in 0-and p- positions, small effects for C1 and Br; deshielding by I in 0-and shielding in m- positionIR C-F st 1400-1000 cm-l Strong C-cl st c 850 cm-l C-Br st c 700 cm-* c-I St e 600 cm-l
  • 127. 3.6 Halogen Compounds 55 Assignment Range Comments Molecular ion For saturated aliphatic halogen compounds MS often weak, for polyhalogenated compounds often absent Characteristic isotope patterns for C1 and Br Fragments d z 69 CF3 [M-50]+ or [Frag-50]+ CF2 Rearrange- [M-20]+ 1 1 - R-C- -ha1 > HF elimination R- -C-ha1 ments rM-361" HC1 elimination ha1 n+z* I280 nm For C-I; for C-Br and C-Cl in general only uv (log E ~ 2 . 5 ) absorption tail, for C-F no absorption Cortesía deCatalino De la Rosa Torres Marzo 9 del 2011
  • 128. 56 3 Combination Tables 3.7 Oxygen Compounds 3.7.1 Alcohols and Phenols Assignment Range Comments~ ~ C N M 1c-O~ aR 50-100 ppm Shift with respect to corresponding C-H: =+50 ppm a1 C-(C-OH) 10-60 ppm Hardly any shift with respect to C-(C-CH3) a1 C-(C-C-OH) 10-60 ppm Shift with respect to C-(C-C-CH3) -5 ppm ar C-OH 135-155 ppm Shift with respect to C-H =+25 ppm ar C-(C-OH) 100-130 ppm Shift with respect to C-(C-H): ortho -13 ppm, meta =+1 ppm, para -8 ppml"MR alC-OH 0.5-5 ppm Position and shape strongly depend on ar C-OH 5-8 ppm experimental conditions -CHz-OH 3 . 5 4 0 ppm -CH-OH 3.8-4.2 ppm ar CH-(C-OH) 6.5-7.0 ppm For C-aromatics, shift with respect to CH-(C-H): ortho -0.6 ppm, metu -0.1 ppm, pura = - O S ppmIR 0-H st 3650-3200 cm-l Position and shape depend on degree of association; often different bands for H- bonded and free OH C-O(H) st 1260-970 cm-I StrongMs Molecular ion Aliphatic: weak, often missing for primary and highly branched alcohols; in this case, peaks at highest mass are often due to [M-l8]+or [M-15]+ Aromatic: strong Fragments Aliphatic: Primary: m/z 31 > m/z 45 = m/z 59 m/z 31, 45, 59,. Secondary, tertiary: local maxima due to a- [M- 18]+ w3 1 -3 [M-46]+ cleavage: R +. R-CH-OH - -R* R-CH=OH + Aromatic: Generally accompanied by rearrangement peaks [ar-O]+ [M-281" (CO) [M-29]+ (CHO)
  • 129. 3.7 Oxygen Compounds 57Assignment Range CommentsRearrange- Aliphatic: elimination of H20 from M+ andments from products of a-cleavage; elimination of H 2 0 followed by alkene elimination Unsaturated: vinylcarbinols: spectra similar to those of ketones allyl alcohols: specific, aldehyde elimination: Aromatic: ortho effect with appropriate substituents: -Y-Z: -CO-OR, -C-hal, -0-R, and similar Aliphatic: no absorption above 200 nm uv Aromatic: in alkaline solution, shift to longer wavelength and intensity increase due to deprotonation3.7.2EthersAssignment Range Commentsa1 C-0 50-100 ppm Oxiranes: outside the normal range 1 3 c NMRa1 C-(C-0) 10-60 ppm Hardly any shift with respect to C-(C-CH3)a1 C-(C-C-O) 10-60 ppm Shift with respect to C-(C-C-CH,) -5 ppmo-c-0 85-1 10 ppm(C)=C-o 115-165 ppm Shift with respect to (C)=C-C =+15 ppmC=(C-o) 70-120 ppm Shift with respect to C=(C-C) -30 ppmar c-0 135-155 ppm Shift with respect to C-H =+25 ppmar c-(c-0) 100-130 ppm Shift with respect to C-(C-H): ortho -15 ppm, meta =+1 ppm, para = -8 ppm
  • 130. 58 3 Combination Tables Assignment Range Comments~"MR ~ 3 - 0 ~ 3.3-4.0 ppm Singlet CH2-0 3.4-4.2 ppm 0-CH2-0 4.5-6.0 ppm CH-0 3.5-4.3 ppm CH-03 4 - 6 ppm H-C(O)=C 5.7-7.5 ppm Shift with respect to H-C(H)=C =+1.2 ppm H-C(=C-O) 3.5-5.0 ppm Shift with respect to H-C(=C-H) -1 ppm ar CH4C-O) 6.6-7.6 ppmIR H-C(-0) st 2880-2815 cm-l For CH3-O and CH2-O; similar range for amines H-CH(-O):! st 2880-2750 cm-l Two bands C-O-C st as 1310-1000 cm-l Strong, sometimes two bandslcls Molecular ion Aliphatic: weak, tendency to protonate Aromatic: strong Fragments Aliphatic: Base peak of aliphatic ethers, generally due to m/z 31, 45, 59, ... fragmentation of the bond next to the ether [M- 18]+ bond: [M-33]+ [M-46]+ Ri-C-O-R2] +. - -R1 + C=O-R2 or due to heterolytic cleavage of the C-0 bond, especially for polyethers: Aryl alkyl ethers: preferential loss of the alkyl chain Diary1 ethers: preferential loss of CO (28) from M+ and/or [M-H]+ as well as: ar 1 D G r 2 - Rearrange- Aliphatic: elimination of alcohol ments Aromatic ethyl and higher alkyl ethers: alkene elimination to the phenol: Y 1+* 1+*W Aliphatic: no absorption above 200 nm Aromatic: shift to higher wavelength and more intense due to the ether group
  • 131. 3 8 Nitrogen Compounds . 593.0Nitrogen Compounds3.8.1AminesAssignment Range Commentsa1 C-N 25-80 ppm Shift with respect to C-H = +20 to +30 ppm 13C N M Ra1 C-(C-N) 10-60 ppm Shift with respect to C-(C-C) =+2 ppma1 C-(C-C-N) 10-60 ppm Shift with respect to C-(C-C-C) =-2 ppm(C)=C-N 120-170 ppm Shift with respect to (C)=C-C =+20 ppmC=(C-N) 75-125 ppm Shift with respect to C=(C-C) -25 ppmar C-N 130-150 ppm Shift with respect to C-H =+20 ppmar C-(C-N) 100-130 ppm Shift with respect to C-(C-H): ortho -15 ppm, meta =+1 ppm, para =-10 ppma1 C-NH 0.5-4.0 ppm 1H N M Rar C-NH 2.5-5.0 ppma1 or ar N+H 6.0-9.0 ppm Often broadCH3-N 2.3-3.1 ppm SingletCH2-N 2.5-3.5 ppmCH-N 3.0-3.7 ppmCH-N+ 3 . 2 4 . 0 ppmar CH-(C-N) 6.0-7.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho -0.8 ppm, meta -0.2 ppm, para -0.7 ppm For C-aromatics, shift with respect toa CH-(C-N+) r 7.5-8.0 ppm CH-(C-H): ortho =+0.7 ppm meta =+0.4 ppm, para =+0.3 ppmN-H st 3500-3200 cm-l Position depends on extent of association, IR often different bands for H-bonded and free NH; always at least two bands for NH2N+-H st 3000-2000 cm-l Broad, similar to COOH band but more structuredN-H 6 1650-1550 cm-l Weak or absentN+-H 6 1600-1460 cm-l Often weakH-C(-N) st 2850-2750 cm-l For CH3(-N) and CH2(-N); similar range for ethers
  • 132. 60 3 Combination Tables Assignment Range CommentsMs Molecular ion Odd mass number for odd number of nitrogens Aliphatic: weak, tendency to protonate Aromatic: strong, no tendency to protonate [M+H]+ is often important Fragments Aliphatic: Base peak of aliphatic amines generally due to dZ 44, 58,... fragmentation of the bond next to the amine 30, bond: Rearrange- Elimination of alkenes following amine ments cleavage:W Aliphatic: no absorption maximum above 200 nm Aromatic: in acidic solution, shift to lower wavelength and decrease in intensity 3.8.2 Nitro Compounds Assignment Range Comments13CNMR alC-N02 55-1 10 ppm Shift with respect to C-H =+50 ppm a1 C-(c-N02) 10-50 ppm Shift with respect to C-(C-C) -6 ppm a1 c-(ccN02) 10-60 ppm Shift with respect to C-(C-C-C) -2 ppm ar C-NO2 130-150 ppm Shift with respect to C-H =+20 ppm ar C-(C-N02) 120-140 ppm Shift with respect to C-(C-H): ortho =-5 ppm, meta -+1 ppm, para =+6 ppml NMR H a1 CH-NO2 4.2-4.6 ppm ar CH-(C-NOz) 7.5-8.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho =+1.O ppm, meta =+0.3ppm, para =+0.4 ppmIR NO2 st as 1660-1490 cm-l Strong to very strong NO2 st sy 1390-1260 cm-l Strong to very strong
  • 133. 3.8 Nitrogen Compounds 61Assignment Range CommentsMolecular ion Odd mass number for odd number of nitrogens Ms Aliphatic: weak or absent Aromatic: strongFragments [M-16]+, [M-46]+Rearrange- m/z 30, [M-17]+,ments [M-30]+, [M-471" =275 nm (log E <2) Aliphatic w -350 nm (log E =2) Aromatic
  • 134. 3.9 Thiols and Sulfides Assignment Range Comments~ ~ C N M a1 C-s R 5-60 ppm No significant shift with respect to C-C ar c-s 120-140 ppm~HNMR ~ ~ C - S H 1.O-2.0 ppm Vicinal coupling constant, J=5-9 Hz c C-SH u 2.0-4.0 ppm a1 CH-S 2.0-3.2 ppm ar CH-S 7.0-7.5 ppmIR S-H st 2600-2540 cm-l Frequently weakMs Molecular ion 34S-isotope peak at [M+2]+ =4.5% Aliphatic: intensity higher than for corresponding alcohols and ethers Fragments m/z 47, 61, 75, ... Sulfide cleavage: RlSCH2-R;!] 5R 1 S+€ H 2 Rearrange- m/z 34, 35,48 ments [M-33]+, [M-34]+ Alkene elimination after sulfide cleavageuv c225 nm (log E 3-4) In aliphatic 220-250 nm (log E 2-3) ComPunds
  • 135. 3.1 0 Carbonyl Compounds 633.1 0Carbonyl Compounds3.1 0.1AldehydesAssignment Range CommentsCHO 190-205 ppm Coupling constant lJCH 172 Hz 1 3 c NMRa1 C-(CHO) 30-70 ppm Coupling constant 2 J 20-50 ~Hz ~a1 C-(C-CHO) 5-50 ppm Shift with respect to C-(C-CH3) -10 ppm(C)=C-(CHO) 110-160 ppmC=(C-CHO) 110-160 ppmar C-(CHO) 120-150 ppmH-(C=O) 9.0-10.5 ppm 1H NMRa1 CH-(CHO) 2.0-2.5 ppm 3J" 0-3 HZCH=CH-(CHO) 5.5-7.0 ppm 3J" =8 Hzar CH-(C-CHO) 7.2-8.0 ppm For C-aromatics, shift with respect to CH-(C-H): ortho: =+0.6 ppm, meta: =+0.2 ppm, para: =+0.3 ppmcomb 2900-2700 cm-l Two weak bands IRc=ost 1765-1645 cm-l Aliphatic: -1730 cm-l Conjugated: =I690 cm-IMolecular ion Aliphatic: moderate Ms Aromatic: strongFragments [M-I]+ For aliphatic aldehydes, only significant up to c 7 [M-29]+Rearrange- m/z 44, Aliphatic aldehydesments [M-441" f. f.n+n* 270-310 nm (log E =1) Saturated aldehydes W 2 207 nm (log E "4) a$-Unsaturated aldehydes 2 250 nm (log E >3) Aromatic aldehydes
  • 136. 64 3 Combination Tables 3.1 0.2 Ketones Assignment Range Comments3cNMR c=o 195-220 ppm a1 C-(C=O) 25-70 ppm al C-(C-C=O) 5-50 ppm Shift with respect to C-(C-CH3) =-6 ppm (C)=C-(C=O) 105-160 ppm C=(C-C=O) 105-160 ppm ar C-(C=O) 120-150 ppml NMR H al CH-(C=O) 2.0-3.6 ppm CH-CO-al2.0-2.6 ppm CH-CO-ar 2.5-3.6 ppm CH=CH-(C=O) 5.5-7.0 ppm ar CH-(C-C=O) 7.2-8.0 ppm For C-aromatics, shift with respect to CH-(C-H): ortho =+0.6 ppm, meta =+O. 1 ppm, para =+0.2 ppmIR c=ost 1775-1650 cm-l Aliphatic: ~ 1 7 1 cm-l 5 Cyclic: ring size 26: ~ 1 7 1 cm-l 5 ring size <6: 21750 cm-l Conjugated: ~1690-1665 cm-lMS Molecular ion Aliphatic: moderate Aromatic: strong Fragments Ketone cleavages: Rearrange- dz44 Aliphatic ketones ments [M-44]+uv K+K* <200 nm (log E 3-4) Saturated n+n* 250-300 nm (log E 1-2) ketones 2 215 nm (log E =4) a,@-Unsaturatedketones 2 245 nm (log E >3) Aromatic ketones
  • 137. 3.10 Carbonyl Compounds 653.10.3Carboxylic AcidsAssignment Range CommentsCOOH 170-185 ppm In COO-, shift with respect to COOH: 0 to 13C NMR +8 PPma1 C-(COOH) 25-70 ppma1 C-(C-COOH) 5-50 ppm Shift with respect to C-(C-CH3) =-6 ppm(C)=C-(COOH) 105-160 ppmC=(C-COOH) 105-160 ppmar C-(COOH) 120-150 ppmCOOH 10.0-13.0 ppm Position and shape strongly depend on 1 NMR H experimental conditionsa1 CH-(COOH) 2.0-2.6 ppmCH=CH-(COOH) 5.2-7.5 ppmar CH-(C-COOH) 7.2-8.0 ppm For C-aromatics, shift with respect to CH-(C-H): ortho =+0.8 ppm, metu -+0.2 ppm, para =+0.3 ppmCOO-H st 3550-2500 cm-l Broad IRc=ost 1800-1650 cm-l Aliphatic: ~ 1 7 1 cm-l 5 Conjugated: ~ 1 6 9 cm-l 5 In COO- two bands: 1580 and 1420 cm-lCO-OH 6 OOP -920 cm-l For dimersMolecular ion Aliphatic: moderate, strong for long chains, Ms tendency to protonate Aromatic: strongFragments [M-17]+ Strong for aromatic acids [M-45]+Rearrange- m/z 60, 61 Aliphatic acidsments [M- 181" Aliphatic acids Ortho effect with aromatic acids:n+x* <220 nm (log E 1-2) Saturated acids w 2193 nm (log E -4) a$-Unsaturated acids 2230 nm (log E >3) Aromatic acids
  • 138. 66 3 Combination Tables 3.1 0.4 Carboxylic Esters and Lactones Assignment Range Comments13CNMR COOR 165-180 ppm Shift with respect to COOH: -5 to -10 ppm a1 C-(COOR) 20-70 ppm a1 C-(C-COOR) 5-50 ppm Shift with respect to C-(C-CH$ -6 ppm a1 C-(OCOR) 50-100 ppm Shift with respect to C-(OH) +2 to +10 ppm (C)=C-(COOR) 105-160 ppm C=(C-COOR) 105-160 ppm (C)=C-(OCOR) 100-150 ppm C=(C-OCOR) 80-130 ppm ar C-(COOR) 120-150 ppm ar C-(OCOR) 100-160 ppml NMR H a1 CH-(COOR) 2.0-2.5 ppm CH3COOR -2.0 ppm; CH2COOR ~ 2 . ppm 3 CHCOOR e2.5 ppm al CH-(OCOR) 3.5-5.3 ppm CH30COR -3.5-3.9 ppm CH20COR -4.0-4.5 ppm CHOCOR -4.8-5.3 ppm CH=CH-(COOR) 5.2-7.5 ppm Shift with respect to CH=CH-H: geminal =+0.8 ppm, cis =+1.1 ppm, trans: -+OS ppm C=CH-(OCOR) 6.0-8.0 ppm Shift with respect to CH=CH-H: CH=C-(OCOR) 4.5-6.0 ppm geminal =+2.1 ppm, cis -0.4 ppm, trans -0.6 ppm ar CH-(C-COOR) 7.5-8.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho -+0.7 ppm, meta =+O. 1 ppm, para -+0.2 ppm ar CH-(C-OCOR) 6.8-7.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho -0.2 ppm, meta -0 ppm, para -0.1 ppmIR c=ost 1745-1730 cm-l Strong; range for aliphatic esters Higher wavenumbers for ha1-C-COO, COO-C=C, COO-ar, and for small-ring lactones Lower wavenumbers for C=C-COOR and ar-COOR c-0 st 1330-1050 cm-l Mostly two bands, at least one of them strong
  • 139. 3.1 0 Carbonyl Compounds 67Assignment Range CommentsMolecular ion Aliphatic esters: weak, tendency to protonate Ms Aliphatic lactones: medium to weak, tendency to protonate Aromatic esters and lactones: strongFragments [M - RO]+ Esters [M - ROCO]+ Esters Lactones: loss of a-substituents (attached to ether carbon), decarbonylation, for aromatic lactones also double decarbonylationRearrange- Alkene elimination from the alcohol moiety:ments Elimination of the alcohol side chain with double hydrogen transfer (for > C2 alcohols) + Elimination of the alkyl chain of the acid moiety as an alkene RYc 0 1I *+ - R I-CH=CH~ D + 9H . u Alcohol elimination from ortho-substituted aromatic esters [M- 181" Lactonesn+n* c220 nm (log E 1-2) Aliphatic esters 2193 nm (log E =4) a$-Unsaturated esters 2230 nm (log E >3) Aromatic esters
  • 140. 68 3 Combination Tables 3.1 0.5 Carboxylic Amides and Lactams Assignment Range Commentsl3CNMR CONR2 165- 180 ppm a1 C-(CONR2) 20-70 PPm a1 C-(C<ONR~) 5-50 ppm Shift with respect to C-(C-CH3) --6 ppm a1 C-(NCOR) 25-80 ppm Shift with respect to C-(NH) -1 to -2 ppm C=C-(CONR2) 105-160 ppm ar C-(CONR2) 120-150 ppm ar C-(NCOR) 110-150 ppml"MR CONH 5-10 ppm Frequently broad to very broad; splitting due to H-N-C-H coupling often only recognizable in the CH signal alCH-(CONR2) 2.0-2.5 ppm al CH-(NCOR) 2.7-4.8 ppm CH3NCOR -2.7-3.0 ppm; CH2NCOR -3.1-3.5 ppm; CHNCOR ~3.8-4.8 pprn CH=CH-(CONR2) 5.2-7.5 ppm Shift with respect to CH=CH-H: geminal =+1.4 ppm, cis =+1.O ppm, trans =+OS ppm C=CH-(NCOR) 6.0-8.0 ppm Shift with respect to CH=CH-H: CH=C-(NCOR) 4.5-6.0 ppm geminal =+2.1 ppm, cis -0.6 ppm, tram -0.7 ppm ar CH-C(CONR2) 7.5-8.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho =+0.6 ppm, meru =+O. 1 ppm, para - 4 . 2 ppm ar CH-C(NCOR) 6.8-7.5 ppm For C-aromatics, shift with respect to CH-(C-H): orrho =O ppm, meta =O ppm, para: = 0 to -0.3 ppmIR N-H St 3500-3100 cm-I Position and shape depend on extent of association, often different bands for H- bonded and free NH,always at least two bands for NH2 c=ost 1700-1650 cm-l Strong, range given for amides as well as for (amideI) 6- and larger lactams, higher wavenumbers for p- and y-lactams N-H 6 and 1630-1510 cm-l Often strong, missing for tertiary amides and N-C=O st sy lactams (amide I ) I
  • 141. 3.10 Carbonyl Compounds 69Assignment Range CommentsMolecular ion Aliphatic amides: moderate, tendency to Ms protonate Aromatic amides: strongFragments Amides: cleavage on both sides of the carbonyl group followed by loss of CO; large number of fragments of even mass Lactams: loss of a-substituent, loss of CORearrange- Amides: elimination of the amine moiety,ments elimination of alkene from the amine or acid moiety in analogy to esters [M- 18]+ Lactamsn+x* e220 nm Aliphatic amides and lactams uv (log E 1-2)
  • 142. 4.1 Alkanes 71 04 13C NMR Spectroscopy C 0 4.1Alkanes4.1.1Chemical Shifts13C Chemical Shifts of Alkanes ( 6 in ppm relative to TMS) -2.3 7.3 15.9 13.0 24.1 - CH4 H,C-CH, n M 15.4 24.8 22.8 32.0 22.3 - -- 34.8 14.2 32.2 14.2 23.1 1 x - 30.1 29.5 23.1 32.4 14.1 32.1 14.1 29.5 22.8
  • 143. 72 4 13C NMR 13C Chemical Shifts of Methyl Groups (6 in p p m relative to TMS) A b Substituent X kH3-X Substituent X kH3-X -H -2.3 -3-indolvl 9.8 C -CH3 7.3 -4-indoGl 21.6 -CH2CH3 15.4 -5-indolyl 21.5 -CH(CH3)2 24.1 -6-indolyl 21.7 -C(CH3)3 31.3 -7-indolyl 16.6 -(CH2)&H3 14.1 H -F 71.6 -CH2-phenyl 15.7 a -C1 25.6 -CH2F 15.8 1 -Br 9.6 -CHZCl 18.7 -1 -24.0 -CH2Br 19.1 0 -OH 50.2 -CH21 20.4 -OCH3 60.9 -CHC12 31.6 -0CH2CH3 57.6 -CHBr2 31.8 -OCH(CH3)2 54.9 -CCl3 46.3 4C(CH3)3 49.4 -CBr3 49.4 -OCH2CH=CH2 57.4 -CH20H 18.2 -0-cyclohexyl 55.1 -CH20CH3 14.7 -OCH=CH2 52.5 -CH20CH2CH3 15.4 -0-phenyl 54.8 -CH20CH=CH2 14.6 -0COCH3 51.5 -CH20-phenyl 14.9 -OCO-cyclohexyl 51.2 -CH2OCOCH3 14.4 -OCOCH=CH2 51.5 -CH2NH2 19.0 -OCO-phenyl 51.8 -CH2NHCH3 14.3 -0COOCH3 54.9 -CH2N(CH3)2 12.8 -0S02-4-tolyl 56.3 -CH2NO2 12.3 -OS020CH3 59.1 -CH2SH 19.7 N -NH2 28.3 -CH2S02CH3 6.7 -NH~+ 26.5 -CH2S03H 8.0 -NHCH3 38.2 -CH2CHO 5.2 -NH-cyclohexyl 33.5 -CH2COCH3 7.0 -NH-pheny 1 30.2 -CH2COOH 9.6 -N(CH3)2 47.5 -c yclopenty1 20.5 -N-p yrrolidiny1 42.7 -cyclohexyl 23.1 -N-p yperidiny 1 47.7 -CH=CH2 18.7 -N(CH3)phenyl 39.9 -CZCH 3.7 -N-pyrrOlyl 35.9 -phenyl 21.4 -N-imidazolyl 32.2 -1-naphthyl 19.1 -N-p yrazoly 1 38.4 -2-naphthyl 21.5 -N-indol y 1 32.1 -2-pyridyl 24.2 -NHCOCH3 26.1 -3-pyridyl 18.0 -N(CH3)CHO 31.5; 36.5 4-pyridyl 20.6 -N(CH3)COCH3 35.0; 38.0 -2-fury1 13.7 -NO2 61.2 -2-thienyl 14.7 -CN 1.7 -2-pyrroly l 11.8 -NC 26.8 -2-indolyl 13.4 -NCS 29.1
  • 144. 4.1 Alkanes 73Substituent X kH3-X Substituent X 6CH,-X /S -SH 6.5 -coo- 24.4 / C -SCH3 19.3 -COOCH3 20.6 -S-fl-CsH 17 15.5 -COOCOCH3 21.8 -S-phenyl 15.6 -CONH2 22.3 -SSCH3 22.0 -CON(CH3)2 21.5 -SOCH3 40.1 -COSH 32.6 -S02CH3 42.6 -COSCH3 30.2 -S02CH2CH3 39.3 -COCOCH3 23.2 -SO2Cl 52.6 -coc1 33.6 -SO3H 39.6 -COBr 39.1 -S03Na 41.1 -COSi(CH3)3 35.70 -CHO 31.211 -COCH3 30.7C -COCH2CH3 27.5/ - c oc c 13 21.1 -COCH=CH2 25.7 -CO-c yclohexyl 27.6 -CO-phenyl 25.7 -COOH 21.7
  • 145. 74 4 13C NMR 13C Chemical Shifts of Monosubstituted Alkanesc ( 8 in ppm relative to TMS) Substituent Methyl Ethyl 1-Propyl -CH3 -CH2 -CH3 -CH2 -CH2 -CH3 -H -2.3 7.3 7.3 15.4 15.9 15.4 C -CH=CH2 18.7 27.4 13.4 36.2 22.4 13.6 -CZCH 3.7 12.3 13.8 20.6 22.2 13.4 -phenyl 21.4 29.1 15.8 38.3 24.8 13.8 H -F 71.6 80.1 15.8 85.2 23.6 9.2 a -C1 25.6 39.9 18.9 46.8 26.3 11.6 1 -Br 9.6 27.6 19.4 35.6 26.4 13.0 -I -24.0 -1.6 20.6 9.1 27.0 15.3 0 -OH 50.2 57.8 18.2 64.2 25.9 10.3 -OCH3 60.9 67.7 14.7 74.5 23.2 10.5 -0CH2CH3 57.6 66.0 15.4 72.5 23.2 10.7 -OCH(CH3)2 54.9 -OC(CH3)3 49.4 56.8 16.4 *phenyl 54.8 63.2 14.9 69.4 22.8 10.6 -0COCH3 51.5 60.4 14.4 66.2 22.4 10.5 -0CO-phenyl 51.8 60.8 14.4 66.4 22.2 10.5 -OSO~-4-tolyl 56.3 66.9 14.7 72.2 22.3 10.0 N -NH2 28.3 36.9 19.0 44.6 27.4 11.5 -NHCH3 38.2 45.9 14.3 54.0 23.2 12.5 -N(CH3)2 47.6 53.6 12.8 61.8 20.6 11.9 -NHCOCH3 26.1 34.4 14.6 40.7 22.5 11.1 -NO2 61.2 70.8 12.3 77.4 21.2 10.8 -CN 1.7 10.8 10.6 19.3 19.0 13.3 -NC 26.8 36.4 15.3 43.4 22.9 11.0 S -SH 6.5 19.1 19.7 26.4 27.6 12.6 -SCH3 19.3 -SSCH3 22.0 31.8 14.7 -SOCH3 40.1 -SO2CH3 42.6 48.2 6.7 56.3 16.3 13.0 -SO*Cl 52.6 60.2 9.1 67.1 18.4 12.1 -S02OH 39.6 46.7 8.0 53.7 18.8 13.7 0 -CHO 31.3 36.7 5.2 45.7 15.7 13.3 11 -COCH3 30.7 35.2 7.0 45.2 17.5 13.5 C -CO-phenyl 25.7 31.7 8.3 40.4 17.7 13.8 / -COOH 21.7 28.5 9.6 36.2 18.7 13.7 -COOCH3 20.6 27.2 9.2 35.6 18.9 13.8 -CONH, 22.3 29.0 9.7 -coc1 I 33.6 41.0 9.3 48.9 18.8 13.0
  • 146. 4.1 Alkanes 75I 3 C Chemical Shifts of Monosubstituted Alkanes (contd.)( 6 in ppm relative to TMS)Substituent Isopropyl tert-Butyl -CH -CH3 -C -CH3 -H 15.9 15.4 25.0 24.1 C -CH=CH2 32.3 22.1 33.8 29.4 -C_CH 20.3 22.8 27.4 31.1 -phenyl 34.3 24.0 34.6 31.4 H -F 87.3 22.6 93.5 28.3 a -C1 53.7 27.3 66.7 34.6 1 -Br 44.8 28.5 62.1 36.4 -I 20.9 31.2 43.0 40.4 -OH 64.0 25.3 68.9 31.2 -OCH3 72.6 21.4 72.7 27.0 -0CH2CH3 72.6 27.7 -OCH(CH3)2 68.5 23.0 73.0 28.5 -0C(CH3)3 63.5 25.2 76.3 33.8 -0-phenyl 69.3 22.0 -0COCH3 67.5 21.9 79.9 28.1 -0CO-phenyl 68.2 21.9 80.7 28.2 N -NH2 43.0 26.5 47.2 32.9 -NHCH3 50.5 22.5 50.4 28.2 -N(CH3)2 55.5 18.7 53.6 25.4 -NHCOCH3 40.5 22.3 49.9 28.6 -NO2 78.8 20.8 85.2 26.9 -CN 19.8 19.9 28.1 28.5 -NC 45.5 23.4 54.0 30.7 S -SH 29.9 27.4 41.1 35.0 -SCHZCH~ 34.4 23.4 -S02CH3 53.5 15.2 57.6 22.7 -s02c1 67.6 17.1 74.2 24.5 -S020H 52.9 16.8 55.9 25.0 0 -CHO 41.1 15.5 42.4 23.4 11 -COCH3 41.6 18.2 44.3 26.5 C -CO-phenyl 35.2 19.1 43.5 27.9/ -COOH 34.1 18.8 38.7 27.1 -COOCH3 34.1 19.1 38.7 27.3 -CONHq & 34.9 19.5 38.6 27.6 -coc1 46.5 19.0 49.4 27.1
  • 147. 76 4 13C NMR 13C Chemical Shifts of 1-Substituted n - O c t a n e sc/ ( 6 in ppm relative to TMS) Substituent 1 2 3 4 5 6 7 8 -CH2 -CH2 -CH2 -CH2 -CH2 -CH2 -CH2 -CH3 -H 14.1 22.8 32.1 29.5 29.5 32.1 22.8 14.1 C -CH=CH2 34.5 -29.6 -29.6 -29.6 -29.6 32.2 23.0 13.9 -phenyl 36.2 31.7 -29.6 -29.6 -29.6 32.1 22.8 14.1 H -F 84.2 30.6 25.3 29.3 29.3 31.9 22.7 14.1 a -C1 45.1 32.8 27.0 29.0 29.2 31.9 22.8 14.1 1 -Br 33.8 33.0 28.3 28.8 29.2 31.8 22.7 14.1 -I 6.9 33.7 30.6 28.6 29.1 31.8 22.6 14.1 04 H 63.1 32.9 25.9 29.5 29.4 31.9 22.8 14.1 -O-n-CgHI7 71.1 30.0 26.3 29.6 29.4 32.0 22.8 14.1 -ON0 68.3 29.2 26.0 29.3 29.3 31.9 22.7 14.0 N -NH2 42.4 34.1 27.0 29.6 29.4 31.9 22.7 14.1 -N(CH3)2 60.1 29.5* ~ 2 7 . 9 * e27.7" 29.7* 32.0 22.8 14.4 -NO2 75.8 26.2 27.9 -29.6 =29.6 31.4 22.6 14.0 -CN 17.2 25.5 -29.9 -29.9 -29.9 31.8 22.7 14.0 S -SH 24.7 34.2 28.5 29.2 29.1 31.9 22.7 14.1 -SCH3 34.5 29.0 29.4 29.4 29.4 31.9 22.8 14.1 -SO-L-CgH17 52.6 -29.1 -29.1 ~ 2 9 . 1 ~29.1 31.8 22.7 14.1 0 -CHO 44.0 22.2 -29.3 -29.3 -29.3 31.9 22.7 14.1 11 -COCH3 43.7 24.1 -29.5 -29.5 e29.5 32.0 22.8 14.1 C 40-phenyl 38.6 24.4 29.5 29.5 29.5 31.9 22.7 14.0 / 4OOH 34.2 24.8 -29.3 -29.3 -29.3 31.9 22.7 14.1 -COOCH3 34.2 25.1 29.3 29.3 29.3 31.9 22.8 14.1 -CONHqA 35.5 25.4 29.1 29.1 29.1 31.6 22.3 14.0 -COCl 47.2 25.1 28.5 29.1 29.1 31.8 22.7 14.1 * assignment uncertain
  • 148. 4.1 Alkanes 77Estimation of I3C Chemical Shifts of Aliphatic Compounds /(in pprn relative to TMS) C / The chemical shifts of sp3-hybridized carbon atoms can be estimated with the helpof an additivity rule using the shift value of methane (-2.3 ppm) and incrementsfor substituents in a-, p-, y-, and &position (see next pages). Some substituentsoccupy two positions. Thus, the quaternary carbon atom c in the example givenbelow is in &position relative to the carbon atom a since the sp3-hybridizedoxygen of the p-COO group occupies the y-position. This simple linear modelneeds corrections in case of strong branching of the observed C atom and/or itsneighbors (steric corrections, S ) . Substituents for which such corrections arenecessary are those with varying branching, Le., a varying number of directlybonded H atoms. They are marked with an asterisk (*) in the Table of Increments.Further correction terms are needed if y-substituents are in a sterically fixedposition (conformational corrections, K). The chemical shifts estimated with this additivity rule differ in general by lessthan about 4 ppm from the experimental values. Larger discrepancies may beexpected for highly branched systems (particularly for quaternary carbon atoms).For carbon atoms bearing several halogen, oxygen, and/or other stronglydeshielding substituents, additional correction terms are needed [ 11. Without suchcorrections, deviations can be so large as to render the rule useless.Example: Estimation of chemical shifts for N-terf-butoxycarbonylalanine H Oa base value -2.3 b base value -2.3 1 a-C 9.1 1 a-C 9.1 1 a-COOH 20.1 1 p-COOS 2.0 1 a-NH 28.3 1 p-NH 11.3 1 p-coo 2.0 1 r-coo -2.8 16-c 0.3 1 S(prim,3) -1.1 1 S(tert,2) -3.7 estimated 16.2 estimated 53.8 exP 17.3 exP 49.0c base value -2.3 d base value -2.3 3 a-C 27.3 1 a-C 9.1 1 a-OCO 56.5 2 p-c 18.8 1 y-NH -5.1 1 p-OCO 6.5 16-c 0.3 1 6-NH 0.0 3 S(quat,l) -4.5 1 S(prim,4) -3.4 estimated 72.2 estimated 28.7 exP 78.1 exP 28.1
  • 149. 78 4 13C NMR Estimation of I 3 C Chemical Shifts of Aliphatic Compounds‘c’‘ (6 in ppm relative to TMS) 6 = -2.3 + CZi + CSi + E:Kk i j “ k Substituent Increment Zi for substituents in position a B Y 6 -H 0.0 0.0 0.0 0.0 -CC$ 9.1 9.4 -2.5 0.3 -c*=C 19.5 6.9 -2.1 0.4 -c=c- 4.4 5.6 -3.4 -0.6 -phenyl 22.1 9.3 -2.6 0.3 H -F 70.1 7.8 -6.8 0.0 a -Ci 31.0 10.0 -5.1 -0.5 1 -Br 18.9 11.0 -3.8 -0.7 -1 -7.2 10.9 -1.5 -0.9 0 -0-* 49.0 10.1 -6.2 0.3 -0CO- 56.5 6.5 -6.0 0.0 *O NA 54.3 6.1 -6.5 -0.5 N -Nb 28.3 11.3 -5.1 0.0 -N+L; 1 30.7 5.4 -7.2 -1.4 -NH3+ 26.0 7.5 -4.6 0.0 -NO2 61.6 3.1 -4.6 -1.0 -CN 3.1 2.4 -3.3 -0.5 -NC 31.5 7.6 -3.0 0.0 s -s*- 10.6 11.4 -3.6 -0.4 -scO- 17.0 6.5 -3.1 0.0 -s*o- 31.1 7.0 -3.5 0.5 -s*o2- 30.3 7.0 -3.7 0.3 -s02c1 54.5 3.4 -3.0 0.0 -SCN 23.0 9.7 -3.0 0.0 0 -CHO 29.9 -0.6 -2.7 0.0 II -cO- 22.5 3.O -3.0 0.0 C -COOH 20.1 2.0 -2.8 0.0 / -coo- 24.5 3.5 -2.5 0.0 -COO- 22.6 2.0 -2.8 0.0 -CO-N< 22.0 2.6 -3.2 -0.4 -coc1 33.1 2.3 -3.6 0.0 -C=NOH syn 11.7 0.6 -1.8 0.0 -C=NOH anti 16.1 4.3 -1.5 0.0 -CS-N< 33.1 7.7 -2.5 0.6 -S n -5.2 4.0 -0.3 0.0
  • 150. 4.1 Alkanes 79Steric Corrections, S *L / Observed 3C-center S , for number of substituents at the &atomaprimary (CH3) 0.0 0.0 -1.1 -3.4secondary (CH2) 0.0 0.0 -2.5 -6.0tertiary (CH) 0.0 -3.7 -8.5 -10.0quaternaxy (C) -1.5 -8.0 -10.0 -12.5a To be applied to each of the neighboring atoms, which may have a variable number ofnon-hydrogen substituents (marked with an asterisk (*) in the Table of Increments).Conformational Corrections, K, f o r y-SubstituentsConformation Ksynperiplanar -4.0synclinalanticlinal $ix .1.0 0.0antiperiplanarnot fixed & X 2.0 0.0One can also use the chemical shifts of a reference compound as the base value ifits structure is closely related to that assumed for the unknown. The incrementscorresponding to the structural elements missing in the reference compound arethen added to the base value, while those of structural elements present in thereference but absent in the unknown are subtracted.
  • 151. 80 4 13C NMR Example: Estimation of the chemical shifts for the carbon atoms a and b in N- feu-butoxycarbonylalanineusing the chemical shifts of valine as base values (a’,’‘C’ b’): Target: Reference: a base value 61.6 b base value 30.2 1 p-coo 2.0 1 y-coo -2.8 1 6-c 0.3 1 S(prim,3) -1.1 1 S(tert3) -3.7 - 2 a-C -18.2 - 2 p-c -18.8 - 1 S(tert,3) 8.5 - 1 S(tert,3) 8.5 estimated 16.6 estimated 49.9 exP 17.3 eXP 49.0 4.1.2 Coupling Constants 1 3 C - I H Coupling Constants Coupling through one bond ( I J C H in Hz) The 13C-lH coupling constant of 125 Hz in methane increases in the presence of electronegative substituents and can be estimated by using the following additivity rule: Substituent Increments Z; Substituent Increments Z; -H 0.0 -Br 27.0 -CH3 1.o -1 26.0 -C(CH3)3 -3.0 -0H 18.0 -CH2C1 3 .O -0-phenyl 18.0 -CH2Br 3.0 -NH2 8.0 -CHzI 7.0 -NHCH3 7.0 -CHClZ 6.0 -N(CH3)2 6.0 -CCl3 9.0 -CN 11.0 -C=C 7.0 -SOCH3 13.0 -phenyl 1.o -CHO 2.0 -F 24.0 -COCH? -1.0 -c1 27.0 -COOHd 5.5 Example: Estimation of 13C-l H coupling constant of CHC13: J = 125.0 + 3 x 27.0 = 206.0 Hz (exp: 209.0 Hz).
  • 152. 4.1 Alkanes 81Coupling through more than one bond (IJCHI in H z ) C / The coupling constants can be estimated from the corresponding IH-lH couplingconstants [ 2 ] : JCH 0.62 J" 2JcH 1- 6 H-CH2-l 3CH3 4.5 3 J ~ 0-10 ~ H-CH2-CH2-l 3CH3 5.8The l3C-lH coupling constants for coupling across three bonds depend on thedihedral angle in the same way as the vicinal lH - lH coupling constants (seeChapter 5.1): H13c-13~Coupling Constants ( 1 ~ in~ HZ) ~ 1 b b d 2Ja, 4.6H3C-CH3 l J 34.6 a lJab 34.6 C -H c O a 3Jad4.6 2Jbd <1 CThe 13C-13C coupling constants for coupling over three bonds depend on thedihedral angle in the same way as the vicinal lH-lH (see Chapter 5.1) and 13C-lHcoupling constants. Maximum values of ca. 4-6 Hz are observed for dihedralangles of Oo and 180° and minimal values around 0 Hz at 90°.4.1.3References[l] A. Furst, E. Pretsch, W. Robien, A comprehensive parameter set for the prediction of the 13C NMR chemical shifts of sp3-hybridized carbon atoms in organic compounds, Anal. Chim. Acta 1990,233, 213.[2] J.L. Marshall, Carbon-carbon and carbon-proton NMR couplings, Verlag Chemie International, Deerfield Beach, FL,1983.
  • 153. 82 4 13C NMR 4.2 Alkenesc=c 4.2.1 Chemical Shifts 13C Chemical Shifts of Alkenes ( 6 in ppm relative to TMS) The I3C chemical shifts of the carbons of C=C double bonds typically range from ca. 80-160 ppm; a wider range of 40-210 ppm is observed with 0- and N- substituents. In unsaturated acyclic hydrocarbons, they can be predicted with high accuracy (see below). To estimate the I3C chemical shifts in all other substituted alkenes, one can use the substituent effects listed for chemical shifts in vinyl groups. However, since no configuration-dependent parameters are available, the values thus estimated are less accurate than those for unsaturated acyclic hydrocarbons. The 13C chemical shifts of sp3-hybridized carbon atoms in the vicinity of double bonds can be estimated using the additivity rule given on page 78. The conformational correction factors, K, for y-substituents of cis- vs. trans- disubstituted alkenes differ by 6 ppm because the relative position of these substituents is fixed by the double bond. Estimation of the 13C Chemical Shifts of sp2-Hybridized Carbon Atoms in Unsaturated Acyclic Hydrocarbons ( 6 in ppm relative to TMS) c- c-c - C= c-c -c - c Y P a t ap Y Base value: 123.3 Incrementsfor C-substituents: at C-atom under consideration (C) at neighboring C-atom (C) a 10.6 a -7.9 P 4.9 p -1.8 Y -1.5 Y 1.5 Steric corrections: for each pair of cis-a,a-substituents -1.1 for a pair of geminal a,a-substituents -4.8 for a pair of geminal a,a-substituents 2.5 if one or more P-substituents are present 2.3
  • 154. 4.2 Alkenes 83Example: Estimation of chemical shifts of cis-4-methyl-2-pentene a b c=c a base value 123.3 b base value 123.3 1 a-C 10.6 1 a-C 10.6 1 a-C -7.9 2 p-c 9.8 2 p-c -3.6 1 a-C -7.9 cis-a,a -1.1 cis-a,a -1.1 estimated 121.3 1 P-substituent 2.3 eXP 121.8 estimated 137.0 exP 138.8Effect of Substituents on the 13C Chemical Shifts of VinylCompounds (in ppm relative to TMS) CHXH, 6ci = 123.3 + Zi 1 2Substituent X Z1 Z2 Substituent X z1 z2 -H 0.0 0.0 0 -OH 25.7 -35.3 C -CH3 12.9 -7.4 -OCH3 29.4 -38.9 -CH2CH3 17.2 -9.8 -0CH2CH3 28.8 -37.1 -CH2CH2CH3 15.7 -8.8 -O(CH2)3CH3 28.1 -40.4 -CH(CH3)2 22.7 -12.0 -0COCH3 18.4 -26.7 -(CH2)3 14.6 -8.9 N -N(CH3)2 28.0* -32.0* -C(CH3)3 26.0 -14.8 -N+(CH3)3 19.8 -10.6 -CH2C1 10.2 -6.0 -N-pyrrolidonyl 6.5 -29.2 -CH2Br 10.9 -4.5 -NO2 22.3 -0.9 -CH2I 14.2 -4.0 -CN -15.1 14.2 -CH20H 14.2 -8.4 -NC -3.9 -2.7 -CH20CH2CH3 12.3 -8.8 S -SCH2CH3 9.0 -12.8 -CH=CH2 13.6 -7.0 -S02CH=CH2 14.3 7.9 -C=CH -6.0 5.9 0 -CHO 15.3 14.5 -phenyl 12.5 -11.0 11 -COCH3 13.8 4.7 H -F 24.9 -34.3 C -COOH 5.0 9.8 a -C1 2.8 -6.1 / -COOCH2CH3 6.3 7.0 1 -Br -8.6 -0.9 -COCl 8.1 14.0 -I -38.1 7.0 -Si(CH& 16.9 6.7 -Sic13 8.7 16.1* estimated values
  • 155. 04 4 13C NMRThe values listed on the preceding page can also be used to estimate the 13Cchemical shifts of sp2-hybridized carbon atoms in alkenes with more than onesubstituent (note that the cis/truns configuration is not taken into account): 6q = 123.3 + Z Z i 1Example: Estimation of chemical shifts of 1-bromo-1-propene a b Br- C= C- CH3 H Ha base value 123.3 b base value 123.3 Z1(Br) -8.6 -0.9 Z2(CH3) -7.4 Zi(CH3) 12.9 estimated 107.3 estimated 135.3 eXP 108.9 (cis) eXP 129.4 (cis) 104.7 (trans) 132.7 (trans)The following examples show some larger deviations between measured andestimated (in parentheses) chemical shifts. This is usually to be expected whenseveral substituents are present that strongly interact with the n-electrons of thedouble bond:NC a b,N(CH3)2 a 39.1 H b,N(CH3)2 a 69.2 ,c=c, (29.1) F- C a- (59.3) b 171.0 b 163.0NC N(CH3)2 (207.7) H N( CH3) 2 (179.3) ,,,NO2 a 151.0 a b,oCH3 a 54.7 c=c (150.4) ,c= c, (45.5) b 111.4 H OCH3 b 167.9(H3C)2& H (113.6) (182.1)13C Chemical Shifts of cis- and trans-l,2-Disubstituted Alkenes(6 in ppm relative to TMS) Substituent R R R R H H H H H H R -CH3 123.3 124.5 -CH2CH3 131.2 131.3 -c1 118.1 119.9 -Br 116.4 109.4 -I 96.5 79.4 -CN 120.8 120.2 -OCH3 130.3 135.2 -COOH 130.4 134.2 -COOCHq 130.1 133.5
  • 156. 13C Chemical Shifts of Enols (6 in ppm relative to TMS)The carbon atom bonded to the enolic OH group is strongly deshielded so that itsshift is close to that of a carbonyl carbon. The other carbon atom is stronglyshielded. c=cEnol: Ketone: a 22.5 a 28.5a C c 99.0 190a5 aJJ C b c 201.1 56.6 a a 28.3 a 28.3 b 32.8 b 31.0 c 46.2 c 54.2 0 d 191.1 d 203.6 e 103.3 e O e 57.313C Chemical Shifts of Aliphatic Dienes (6 in ppm relative to T M S )Conjugated Dienes 136.9 a 116.3Allenes 213.5 74.8 CH2= C= CH2Estimation of the chemical shifts of sp2-hybridized carbon atoms in substitutedallenes: see [l].
  • 157. 06 4 13C NMR13C Chemical Shifts of Substituted Allenes(6 in ppm relative to TMS) RI,~ , c=c.,,,R 3 c= C/ R2 HR1 R2 R3 a b C-H -H -H 74.8 213.5 74.8-CH3 -H -H 84.4 210.4 74.1-CH3 -CH3 -H 93.4 207.3 72.1-CH3 -H -CH3 85.4 207.1 85.4-CH2CH3 -H -H 91.7 208.9 75.3-C(CH3)3 -C(CH3)3 -H 119.6 207.0 75.8-CH=CH2 -H -H 93.9 211.4 75.1-C=CH -H -H 74.8 217.7 77.3-phenyl -H -H 94.4 210.0 78.8-F -H -H 129.8 200.2 93.9-c1 -H -H 88.8 207.9 84.5-Br -H -H 72.7 207.6 83.8-1 -H -H 35.3 208.0 78.3-OCH3 -H -H 123.1 202.0 90.3-N(CH3)2 -H -H 113.1 204.2 85.5-CN -H -H 67.4 218.7 80.7-SCH3 -H -H 90.0 206.1 81.3-COOH -H -H 88.1 217.7 80.04.2.2Coupling Constants13C-lH Coupling Constants ((J,-HI in Hz)Coupling through one bondCoupling through two bonds (typical range: 0-16)H H H H +l3C 2 J -2.4 ~ ~ /L13C 2 J 6.9 ~ ~H H c1 HAdditivity rule for the estimation of 2J,-~ of alkenes: see [2].
  • 158. 4.2 Alkenes 87Coupling through three bonds:The trans- lH-C=C-l 3C coupling constant of alkenes is always larger than thecorresponding cis coupling constant so that an assignment is possible if bothisomers are available: see [3].a C a C c=cH 13,CH3 3Jac 7.6 H, 3,CH3 3Jac 4.1 ,c=c 3Jbc 12.6 ,c=c, 3Jbc 8.1H H H c1b ba C a CH, 13/COOH 3Jac 7.6 H, 13/COOH 3Jac 7.6 c =c, 3Jbc 14.1 c=c, 3Jbc 14.1H H H CH3b b a C C H, 13/CooH 3Jab 7.7 CH? 13/COOH 3Jab 6.9 F =c 3Jac 7.4 F =c, 3Jac 13.2CH3 13CH3 H 13CH3 b a b13C-13C Coupling Constants (IJccl in H z ) C a b,CH3 lJab 70.0CH2= CH2 Jcc 67.6 CH2= C H Jbc 41.9CH2=C=CH2 Jcc 98.7 b Jab 68.8 a@d C Jbc 53.7 2Jac c 1 3Jad 9.04.2.3References[l] R.H.A.M. Janssen, R.J.J.Ch. Lousberg, M.J.A. de Bie, An additivity relation for carbon-13 chemical shifts in substituted allenes, J. R. Neth. Chem. SOC. 1981, 100, 85.[2] U. Vogeli, D. Herz, W. von Philipsborn, Geminal C,H spin coupling in substituted alkenes, Org. Magn. Reson. 1980, 13, 200.[3] U. Vogeli, W. von Philipsborn, Vicinal C,H spin coupling in substituted alkenes. Stereochemical significance and structural effects, Org. Magn. Reson. 1975, 7, 617.
  • 159. 88 4 13C NMR 4.3 AI kynes 4.3.1 Chemical Shiftsc=c 13C Chemical Shifts of Alkynes ( 6 in ppm relative to TMS) a b X-CE C- H Substituent X a b -H 71.9 71.9 C -CH3 80.4 68.3 -CH2CH3 85.5 67.1 -CH2CH2CH3 84.0 68.7 -CH2CH$H2CH3 83.0 66.0 -CH(CH3)2 89.2 67.6 -C(CH3)3 92.6 66.8 -cyclohexyl 88.7 68.3 -CH20H 83.0 73.8 -CH=CH2 82.8 80.0 -C EC-CH3 68.8 64.7 -phenyl 84.6 78.3 0 -0CH2CH3 90.9 26.5 S -SCH$H3 72.6 81.4 0 -CHO 81.8 83.1 11 -COCH3 81.9 78.1 C -COOH 74.0 78.6 / -COOCHq 74.8 75.6 Additivity rule for estimating the chemical shifts of sp-hybridized carbon atoms in alkynes: see El].
  • 160. 4.3 Alkynes 894.3.2Coupling Constants13C-lH Coupling Constants (IJcHI in H z ) [21a b C Jab 249H- 13C, C- H 2Jbc 49.3 (in substituted acetylenes: 40-60) a b c de 2Jac 50.1 3Jad 3.4 c=c H- CE C- CH3 2Jc, -10.4 3Jbe 4.7 a b cC H ~ - C= C- C H ~2Jat, -10.3 3Jac 4.3With acetylenes, the results of multipulse experiments (such as DEPT, INEPT,SEFT, or APT) to determine the number of protons attached to the carbon atomsmust be interpreted with care. As a consequence of the unusually large 13C-lHcoupling constants through one and two bonds, the sign of the signals may beopposite to the expected one.13c-13~ Coupling Constants ( 1 1 ~ in HZ) ~ ~ 1 a b c Jab 190.3H-CEC-H lJCc 171.5 H-CSC-C=C-H 153.44.3.3References[l] W. Hobold, R. Radeglia, D. Klose, Inkrementen-Berechnung von 13C- chemischen Verschiebungen in n-Alkinen, J. Prakt. Chem. 1976,318,519.[2] K. Hayamizu, 0. Yamamoto, 13C,lH Spin coupling constants of dimethylacetylene, Org. Magn. Reson. 1980, 13, 460.
  • 161. 90 4 NMR 4.4 Alicyclics 4.4.1 Chemical Shifts Saturated Monocyclic Alicyclics (6 in ppm relative to TMS)0 v -2.8 0 27.1 n 9 10 b 26.0 25.1 0 22.9 0 28.8 11 12 13 26.3 23.8 26.2 25.2 0 25.6 0 26.8 20 30 40 72 27.0 28.0 29.3 29.4 29.7 I3C Chemical Shifts of Monosubstituted Cyclopropanes (6 in ppm relative to TMS) [ 11 h Substituent X a b other -H -2.8 -2.8 C -CH3 4.9 5.6 CH3 19.4 -CH2CH3 12.8 4.1 CH2 27.8, CH3 13.6 -CH2CH2CH2CH3 10.9 4.4 1-CH2 34.7, 2-CH2 32.0 -C(CH3)3 22.7 0.3 C 29.3, CH3 28.2 -CH2C1 13.6 5.5 CH2 50.3 -CH20H 12.7 2.2 CH2 66.5 -CH=CH2 14.7 6.6 CH 142.4, CH2 111.5 -phenyl 15.3 9.2 C 143.9, CH 125.3-128.2 H -c1 27.3 8.9 a -Br 14.2 9.1 1 -I -20.1 10.4 0 -OH 45.7 6.8 N -NH2 24.0 7.4 -NO2 54.3 11.7 -CN -4.5 6.2 CN 121.5 0 -CHO 22.7 7.4 co 202.1 II -COCH3 20.1 9.6 CO 207.3, CH3 29.1 C -COOH 12.7 8.9 CO 181.6 / -COOCHg 12.2 7.7 CO 174.7, CH3 51.1
  • 162. 4.4 Alicyclics 9113C Chemical Shifts of Monosubstituted Cyclopentanes( 6 in ppm relative to TMS) [2] bSubstituent X a b c other -H 25.5 25.5 25.5 C -CH3 34.8 34.8 25.4 CH3 21.4 -CH2CH3 42.3 32.6 25.4 CH2 29.2, CH3 13.2 -CH(CH3)2 -C(CH3)3 -CH20H 47.4 50.3 41.2 30.0 26.5 28.3 24.7 25.1 24.5 CH 33.9, CH3 21.7 C 32.5, CH3 27.6 CH2 67.0 0 H -F 95.5 32.8 22.5 lJCF 173.5, 2JCF 22.1, 3JCF ~ 1 . 5 a -C1 61.8 37.5 23.3 1 -Br 53.1 38.4 23.7 -I 28.7 40.7 24.9 0 -OH 72.5 34.5 22.7 -0CH3 82.2 31.4 23.1 CH3 56.0 -0COCH3 77.7 33.8 24.9 CO 170.8, CH3 21.7 N -NH2 52.5 35.5 23.0 -NO2 87.0 32.6 24.8 -CN 27.0 30.5 24.2 CN 123.4 S -SH 38.3 37.7 24.6 -COOH 43.0 29.2 25.1 CO 183.8
  • 163. 92 4 13C NMR C Chemical Shifts of Equatorially and Axially Monosubstituted Cyclohexanes ( 6 in ppm relative to TMS) d W X d px Ja Substituent X a b c d a b c d -H 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 C -CH3 33.2 36.0 27.1 27.0 28.4 32.4 20.6 26.9 -CH2CH3 40.1 33.4 26.9 27.2 35.5 30.0 21.4 27.10 -CH2CH2CH3 -CH(CH3)2 -CHZCH~CH~CH~ 40.0 44.6 38.4 33.6 30.0 34.1 26.6 26.8 27.1 26.9 27.3 27.3 41.1 30.2 21.6 27.1 -C(CH3)3 48.8 28.1 27.7 27.1 -cyclohexyl 44.3 30.8 27.4 27.4 -CH=CH2 42.1 32.3 26.0 27.1 37.0 30.0 21.2 27.1 -C=CH 28.7 32.1 25.2 24.4 28.0 30.0 21.2 25.7 -phenyl 45.1 34.9 27.4 26.7 H -F 91.0 32.8 23.6 25.3 88.1 30.1 19.8 25.0 a -C1 59.8 37.4 26.1 25.4 60.1 33.9 20.4 26.0 1 -Br 52.4 38.3 27.3 25.6 55.4 34.9 21.5 26.4 -I 31.2 40.1 28.3 25.4 38.3 36.0 22.8 26.1 0 -OH 70.4 35.8 25.1 26.3 65.5 33.2 20.5 27.1 4CH3 79.2 32.2 24.5 26.4 74.9 30.0 21.1 26.6 -0COCH3 72.3 32.2 24.4 26.1 -OCO-phenyl 72.8 31.5 24.1 24.7 69.0 29.3 20.3 24.7 -OSi(CH3)3 70.5 36.0 24.7 25.0 66.1 33.1 19.8 25.0 N -NH2 51.1 37.6 25.8 26.3 47.4 33.8 20.0 27.1 -NHCH3 58.7 32.7 25.7 26.8 -N(CH3)2 64.3 29.2 26.5 26.9 -NH3+C1- 51.8 32.2 24.8 25.2 -N=C=N-cyclohexyl 55.7 35.0 24.8 25.5 -NO2 84.6 31.4 24.7 25.5 -N3 59.5 31.5 24.5 24.5 56.8 29.0 20.1 25.2 -CN 28.0 29.6 24.6 25.1 26.4 27.4 21.9 25.0 -NC 51.9 33.7 24.4 25.2 50.3 30.5 20.1 25.2 -NCS 55.3 33.9 24.5 24.8 50.3 30.5 20.1 25.2 S -SH 38.3 38.1 26.6 25.3 35.9 33.1 19.4 25.7 0 -CHO 50.1 26.0 25.2 26.1 46.4 24.7 22.7 -27.1 11 -COCH3 51.5 29.0 26.6 26.3 C -COOH 43.7 29.6 26.2 26.6 / -coo- 47.2 30.9 26.9 26.9 -COOCHqL 43.4 29.6 26.0 26.4 39.1 27.7 24.1 26.7 -coc1 55.4 29.7 25.5 25.9
  • 164. 4.4 Alicyclics 93Estimation of 13C Chemical Shifts of Alicyclic Compounds(in pprn relative to TMS)The chemical shift of the parent compound (e.g., 22.9 for cyclobutane, 25.6 forcyclopentane, and 27.1 ppm for cyclohexane) and the same increments as foralkanes (see Chapter 4.1) can be used to estimate the chemical shifts of sp3-hybridized carbon atoms of alicyclic compounds. Appropriate use of theconformational correction terms, K (page 79), is especially important with axialand equatorial substituents in cyclohexanes. The additivity rule is, however, notsuitable for estimating chemical shifts of substituted cyclopropanes.l 3C Chemical Shifts of Unsaturated Alicyclics( 6 in ppm relative to TMS) 0 41.6 ,K1 0 0 124.9 134.3 152.6 123.4 23.0 127.4 25.4 26.0 124.5 022.3 126.1 124.60f.i0 134.1 129.8 123.3 e!::: 29.8 28.80 130.2 25.7 26.4 29.5 28.7 cis trans cis, cis
  • 165. 94 4 13C NMR13C Chemical Shifts of Condensed Alicyclics( 6 in ppm relative to TMS)2 027A 2 16.7 . 0 5.8 21.5 @ 22.9 B 3 3 .24.6 3 H 28.0Ff 39.9 32.4 47.3 2 3 . 8 m e22.69 27.1 @la7 22.1 - H H 43.3 a 2 936.8 . 429.7 5 44.0 f l 7 . 1 fI H H 42.6 32.7 37.6 22.0 27.5 9.9 48.8 75.2 & :43.2 b z 6 . 7 143.5 143.9 136.8 123*6 1 39.1 125.5 J 29.5 124‘5 133.8 1 2 9 , o m 23.6 126.1 120.9 132*1 144.7
  • 166. 4.4 Alicyclics 954.4.2Coupling Constants1 3 C - l H Coupling ConstantsCoupling through one bond (1 J C H ~in H z )A 160 0 134 0 128 0 125Coupling through two bonds (I2Jc~I in Hz) 0A 2.6 03.5 0 3.0 0 3.7Coupling through three bonds (l3Jc~1 H z ) in H 2.1 M H 8.1 b c A ~JCC12.4 [>-CH3 lJab 13.4 Jbc 44.0 0 J c c 32.74.4.3References[I] N.C. ~ 0 1 A.D.H. Clague, 13c NMR Spectroscopy of cyclopropane , derivatives, Org. Magn. Reson. 1981,16, 187.[2] H.-J. Schneider, N. Nguyen-Ba, F. Thomas, Force field and 13C NMR investigations of substituted cyclopentanes. A concept for the adaption of 3C NMR shifts to varying torsional arrangements in flexible conformers, Tetrahedron 1982,38, 2327.
  • 167. 96 4 13C NMR4.5Aromatic Hydrocarbons4.5.1Chemical Shiftsz3C Chemical Shifts in Aromatic Hydrocarbons(6 in ppm relative to TMS) [ 11 133.7 131.8 128.0 126.2 + 128.1 125.3 / 125.5 135.2 126.3 124.6 130.1 123.9 124.6 137.4 143.9 143.5 141.6 119.7 125.9 J 124.2@3 5 :. 1 2 4 . i 2 8 133.8 126.1 120.9 1 132.1 143.2 144.7 136.8 137.3 29.2 134.7 125.5 J 29.5 1 2 9 . 0 0 3 23*6 128.0 37.7 128.0 -/- 137.3 123.9 127.5 @i;9,5 / 128.2 132.1 122.7 & 128’7 129.7 128.4 1 7.4 127.9 i4.3
  • 168. 4.5 Aromatics 97Effect of Substituents on 13C Chemical Shifts ofMonosubstituted Benzenes (in ppm relative to TMS) Substituent X Zl z2 z3 z4 -H 0.0 0.0 0.0 0.0C -CH3 9.2 0.7 -0.1 -3.0 -CH2CH3 11.7 -0.6 -0.1 -2.8 -CH2CH2CH3 10.3 -0.2 0.1 -2.7 -CH(CH3)2 20.2 -2.2 -0.3 -2.8 - C H ~ C H ~ C H Z C H ~ 10.9 -0.2 -0.2 -2.8 -C(CH3)3 18.6 -3.3 -0.4 -cyclopropyl 15.1 -3.3 -0.6 -3.6 -cyclopentyl 17.8 -1.5 -0.4 -2.9 -cyclohexyl 16.3 -1.8 -0.3 -2.8 -1-adamantyl 22.2 -2.9 -0.5 -3.1 -CH2F 8.5 -0.7 0.4 0.5 -CF3 2.5 -3.2 0.3 3.3 -CH2C1 9.3 0.3 0.2 0.0 -CHCl2 11.9 -2.4 0.1 1.2 -CC13 16.3 -1.7 -0.1 1.8 -CH2Br 9.5 0.7 0.3 0.2 -CH2I 10.5 0.0 0.0 -0.9 -CH,OH 12.4 -1.2 0.2 -1.1 -CH20CH3 8.7 -0.9 -0.1 -0.9 -CH2NH2 14.9 -1.4 -0.2 -2.0 -CH2NHCH3 12.6 -0.3 -0.3 -1.8 -CH2N(CH3)2 7.8 0.5 -0.3 -1.5 -CH2N02 2.2 2.2 2.2 1.2 -CH2CN 1.6 0.5 -0.8 -0.7 -CH2SH 12.5 -0.6 0.0 -1.6 -CH2SCH3 9.8 0.4 -0.1 -1.6 -CH2S (O)CH3 0.8 1.5 0.4 -0.2 -CH2S02CH3 -0.1 2.1 0.6 0.6 -CH2CHO 7.4 1.3 0.5 -1.1 -CH2COCH3 5.8 0.8 0.1 -1.6 -CH$OOH 6.5 1.4 0.4 -1.2 -CH2Li 32.2 -22.0 -0.4 -24.3 -CH=CH2 8.9 -2.3 -0.1 -0.8 -C(CH+CH2 12.6 -3.1 -0.4 -1.2 -C=CH -6.2 3.6 -0.4 -0.3 -phenyl 8.1 -1.1 0.5 -1.1 -2-pyridyl 11.2 -1.4 0.5 -1.4 4pyridyl 9.6 -1.6 0.5 0.5
  • 169. 90 4 I3C NMR Substituent X Z1 z2 z3 z4 H -F 33.6 -13.0 1.6 -4.4 a -C1 5.3 0.4 1.4 -1.9 1 -Br -5.4 3.3 2.2 -1.0 -I -3 1.2 8.9 1.6 -1.1 0 -OH 28.8 -12.8 1.4 -7.4 -ONa 39.6 -8.2 1.9 -13.6 -OCH3 33.5 -14.4 1.o -7.7 -OCH=CH2 28.2 -11.5 0.7 -5.8 -0-phenyl 27.6 -11.2 -0.3 -6.9 -0COCH3 22.4 -7.1 0.4 -3.2 -OSi(CH3)3 26.8 -8.4 0.9 -7.1 -OPO(O-phenyl)2 21.9 -8.4 1.2 -3.0 -OCN 25.0 -12.7 2.6 -1.00 -NHCH3 " 2 - -N(CH3)2 -"-phenyl 18.2 15.0 16.0 14.7 -13.4 -16.2 -15.4 -10.6 0.8 0.8 0.9 0.9 -10.0 -11.6 -10.5 -10.5 -N(PhenYl)2 13.1 -7.0 0.9 -5.6 -NH3+ 0.1 -5.8 2.2 2.2 -NH2+CH(CH3)2 5.5 -4.1 1.1 0.7 -N+(CH3)3 19.5 -7.3 2.5 2.4 -N(O)(CH3)2 26.2 -8.4 0.8 0.6 -NHCOCH3 9.7 -8.1 0.2 -4.4 -O "H 21.5 -13.1 -2.2 -5.3 -NHNH2 22.8 -16.5 0.5 -9.6 -N(NO)CH3 13.7 -9.4 0.9 -1.3 -N=CH-pheny 1 24.7 -6.5 1.3 -1.5 -N=NCH3 22.2 -6.2 0.5 -3.0 -NO 37.4 -7.6 0.8 7.1 -NO2 19.9 -4.9 0.9 6.1 -CN -16.0 3.5 0.7 4.3 -NC -1.8 -2.2 1.4 0.9 -NCO 5.1 -3.7 1.1 -2.8 -NCS 3 .O -2.7 1.3 -1.0 -N+=N - 12.7 6.0 5.7 16.0 S -SH 4.0 0.7 0.3 -3.2 -SCH3 10.0 -1.9 0.2 -3.6 -SC(CH3)3 4.5 9.0 -0.3 0.0 -S(CH3)2+ -1.0 3.1 2.2 6.3 -SCH=CH2 5.8 2.0 0.2 -1.8 -S-phenyl 7.3 2.5 0.6 -1.5 -S-S-pheny 1 7.5 -1.3 0.8 -1.1 -S(O)CH3 17.6 -5.0 1.1 2.4 -S02CH3 12.3 -1.4 0.8 5.1 -S020H 15.0 -2.2 1.3 3.8 -S020CH3 6.4 -0.6 1.5 5.9 -S02F 4.6 0.0 1.5 7.5
  • 170. 4.5 Aromatics 99 Substituent X Z1 22 23 z4 -s02c1 15.6 -1.7 1.2 6.8 -S02NH2 10.8 -3.0 0.3 3.2 -SCN -3.7 2.5 2.2 2.20 -CHO 8.2 1.2 0.5 5.8II -COCH3 8.9 0.1 -0.1 4.4C -COCF3 -5.6 1.8 0.7 6.7/ -COC+CH 7.4 1.o 0.0 5.9 -CO-pheny 1 9.3 1.6 -0.3 3.7 -COOH 2.1 1.6 -0.1 5.2 -COONa 9.7 4.6 2.2 4.6 -COOCH3 2.0 1.2 -0.1 4.3 -CONH2 5 .O -1.2 0.1 3.4 -CON(CH& 6.0 -1.5 -0.2 1.o -COF -coc1 -COSH 4.2 4.7 6.2 1.6 2.7 -0.6 -0.7 0.3 0.2 i:: 5.4 0 -CH=NCH3 8.8 0.5 0.1 2.3 -CS-phenyl 18.7 1.o -0.6 2.4 -CS-( l-piperidyl) 15.0 -3.1 -0.2 -0.2 -Li -43.2 -12.7 2.4 3.1 -MgBr -35.8 -11.4 2.7 4.0Si -SiH3 -0.5 7.3 -0.4 1.3 -SiH2CH3 4.8 6.3 -0.5 1.o -Si(CH3)3 11.6 4.9 -0.7 0.4 -Si(phenyl)3 5.8 7.9 -0.6 1.1 -Sic13 3.O 4.6 0.1 4.2 -Ge(CH3)3 13.7 4.5 -0.5 -0.2 -Sn(CH3)3 13.2 7.2 -0.4 -0.4 -Pb(CH3)3 20.1 8 .O -0.1 -1.0P -P(CH3)2 13.6 1.6 -0.6 -1.0 -P(phenyl)2 8.9 5.2 0.0 0.1 -Pf(phenyl)2CH3 -9.7 5.2 2.0 6.7 -PO(CH3)2 2.5 1.1 0.1 3.O -PO(-phenyl)2 5.8 3.9 -0.1 3.O -PO(OH)2 -1.9 3.6 1.5 5.6 -PO(OCH$H3)2 1.6 3.6 -0.2 3.4 -PS(CH3)2 6.7 2.0 0.2 2.9 -PS(OCH2CH3)2 6.1 2.8 -0.4 3.4 ASH^ 1.7 7.9 0.8 0.0 -As(phenyl)2 11.1 5.0 0.1 -0.1 -AsO(OH)2 3.8 1.6 0.8 4.5 -SeCH=CH2 0.7 4.7 0.4 -1.4 -SeCN -5.3 5.1 2.9 2.1 -Sb(~henyl)~ 9.8 7.7 0.3 0.0 -Hg-phenyl 41.6 9.3 -0.9 -1.6 -HCCl 22.5 8.0 -0.6 -0.9
  • 171. 100 4 13C NMR Effect of Substituents in Position 1 on the 13C Chemical Shifts of Monosubstituted Naphthalenes (in ppm relative to TMS) for X: H 6c1= 128.0 6 c 2 = 125.9 6c9 = 133.6 Substituent X c-1 c-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C -CH3 6.0 0.5 0.6 -1.8 0.3 -0.7 -0.5 -4.1 -1.1 -0.2 -C(CH3)3 17.9 -2.8 -0.9 -0.6 1.6 -1.4 -1.4 -1.2 -1.6 2.2 -CHqBr 4.0 1.1 -0.9 1.3 0.5 -0.1 0.3 -4.6 -2.8 0.1 -CH;OH 8.2 -0.9 -0.6 0.1 0.5 -0.3 0.1 -4.5 -2.6 0.00 HF:3 ; a -c1 -1.3 -1.8 31.5 -16.1 0.1 3.9 0.2 -0.2 5.0 -3.8 -0.9 1.0 0.1 0.2 0.8 1.4 3.1 2.0 0.7 0.8 -3.4 1.0 -7.1 -9.3 -3.6 -2.8 -3.9 2.1 1.0 I -Br -5.4 3.6 -0.2 -0.5 -0.1 0.4 1.0 -1.3 -2.0 0.6 -I -28.4 12.3 1.7 1.7 1.4 1.6 2.6 4.4 1.3 1.3 0 -OH 23.5 -17.2 -0.1 -7.3 -0.4 0.5 0.3 -6.6 -9.3 1.0 -OCH3 27.3 -22.3 -0.2 -7.9 -0.7 0.3 -0.9 -6.1 -8.1 0.8 -0COCH3 18.6 -7.9 -0.6 -2.1 0.0 0.4 0.4 -6.9 -6.9 0.9 N -NH2 14.0 -16.5 0.3 -9.3 0.3 -0.3 -1.3 -7.3 -10.2 0.6 -N(CH3)2 23.7 -11.2 0.6 -4.6 1.0 0.4 -0.3 -3.2 -3.9 2.1 -NH3+ -3.8 -4.6 -0.9 3.4 1.4 2.1 2.8 -9.0 -7.4 1.2 -NO2 18.5 -2.1 -2.0 6.5 0.5 1.3 3.4 -5.1 -8.7 0.6 -CN -19.2 5.1 -2.4 3.8 -0.7 0.2 1.2 -4.5 -2.8 -2.2 0 -CHO 2.9 10.8 -1.4 6.7 0.2 0.6 2.7 -3.5 -3.6 -0.3 11 -COCH3 6.9 2.9 -1.7 4.9 0.3 0.4 2.0 -2.0 -3.5 0.2 C -COOH -1.5 3.6 -2.4 4.3 -0.6 -0.9 0.6 -3.2 -3.2 -0.8 / -COOCH3 -0.9 4.5 -1.2 5.4 0.7 0.5 1.9 -1.8 -1.9 0.5 -CON(CH,)2 6.8 -2.1 -0.8 0.9 0.4 0.4 1.0 0.1 -4.1 -0.2 -COCl 1.2 10.6 -0.5 9.3 1.9 2.1 4.5 -2.1 -2.1 1.0 -Si(CH?)? 9.8 5.1 -0.4 1.7 1.2 -0.8 -0.7 0.1 3.8 0.2
  • 172. 4.5 Aromatics 101Effect of Substituents in Position 2 on the 13C Chemical Shiftsof Monosubstituted Naphthalenes (in p p m relative to TMS) for X: H 6 c 1 = 128.0 6 c 2 = 125.9 6 c 9 = 133.6Substituent X C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10C -CH? -1.3 9.3 2.0 -0.8 -0.5 -1.1 -0.2 -0.6 -0.1 -2.0 -3.3 22.5 -3.0 -0.4 0.0 -0.7 -0.2 -0.6 0.4 -1.3 -1.7 9.0 1.9 -0.4 -0.5 0.7 0.3 0.6 -0.6 -0.7 -2.7 12.3 -4.4 -0.1 -0.4" -0.2* 0.1* -0.2" -0.3 -0.8H -Fa -C1 J -2.0 -17.0 -1.4 -4.2 1.1" 0.1" 2.4" 34.9 -9.6 2.4 0.0 -0.7 5.7 0.8 1.5 -0.2 0.2 1.5 1.1 1.1 1.1 -0.6 -1.1 -1.1 0.7 0.7 1.3 -3.0 -1.9 0 1 -Br 1.8 -6.2 3.1 1.5 -0.3 0.2 0.8 -1.1 -2.0 0.7 -I 9.2 -34.1 9.0 2.3 0.5 1.3 1.5 -0.6 2.1 -0.80 -OH -18.6 27.3 -8.3 1.8 -0.3 -2.4 0.5 -1.7 0.9 -4.7 -OCH3 -22.2 31.8 -7.1 1.5 -0.3 -2.2 0.5 -1.2 1.0 -4.3 -0COCH3 -9.5 22.5 -4.8 1.3 -0.4 -0.3 0.6 -0.4 0.1 -2.2N -NH2 -20.6 16.7 -8.9 -0.2 -1.6 -4.8 -0.9 -3.5 -0.1 -7.0 -N(CH3)2 -21.1 23.6 -8.8 1.2 0.0 -3.4 0.7 -1.1 2.4 -5.9 -NH3+ -5.9 -0.3 -6.5 3.2 0.2 2.3 2.0 0.2 0.1 -0.3 -NO2 -3.4 20.0 -6.7 1.7 0.1 4.0 2.2 2.1 -1.1 2.4 -CN 5.8 -16.7 0.1 1.0 -0.2 3.0 1.6 0.2 -1.6 0.70 -CHO 6.2 7.9 -3.6 0.8 -0.3 2.9 0.9 1.8 2.4 -1.4 11 -COCH3 1.9 8.3 -2.2 0.2 -0.4 2.3 0.7 1.4 1.8 -1.3C -COOH 2.7 2.4 -0.6 0.2 -0.3 2.4 0.9 1.3 -1.3 1.5/ -COOCH3 3.0 1.8 -0.5 0.2 -0.1 2.4 0.9 1.4 -1.0 1.9 -COCl 2.5 9.1 -0.7 0.2* -0.4 2.2* 0.8 1.2 -1.4 -Si(CH?)q 5.8 11.9 3.9 -1.0 0.1 0.3 -0.2 0.1 -0.5 0.2* assignment uncertain
  • 173. 102 4 13C NMREstimation of 13C Chemical Shifts of Multiply SubstitutedBenzenes and NaphthalenesThe 13Cchemical shifts of multiply substituted benzenes and naphthalenes can beestimated using the substituent effects in the corresponding monosubstitutedhydrocarbons.Example: Estimation of the chemical shifts for 3,5-dimethylnitrobenzene 128.5 4 P- " CH3 NO2 - C 2 base value 128.5 1. 99 Z2(N02) -4.9 2 Z3(CH3) -0.2 Z2(CH3) 07 . estimated 148.2 Z4(CH3) -3.0 exP 148.5 estimated 121.3 exP 121.7 -C 3 base value 128.5 - C 4 base value 128.5 Zi(CH3) 9.2 2 Z2(CH3) 14 . Z3(CH3) -0.1 Z4(N02) 6.1 Zg(NO2) 0.9 estimated 136.0 estimated 138.5 exP 136.2 exP 139.6Larger discrepancies between estimated and experimental values are to be expectedif the substituents are ortho to each other or if strongly electron-donating andelectron-accepting groups occur simultaneously.4.5.2Coupling Constants13C- H Coupling Constants (IJI in H z )
  • 174. 4.5 Aromatics 103 Jab 2Jac 3Jad 57.0 2.5 10.0 6;1 3 c . 1 3 ~Coupling Constants (IIJCCI in HZ) lJab 2Ja, 3Jad 44*2 3.1 3.8 d 4Ja, 0.9 e4.5.3References[l] P.E. Hansen, 13CNMR of polycyclic aromatic hydrocarbons. A review, Org. Magn. Reson. 1979,12, 109.
  • 175. 104 4 13C NMR4.6Heteroaromatic Compounds4.6.1Chemical Shifts13C Chemical Shifts of Hetetoaromatic Compounds(6 in ppm relative to TMS)150.60’?:841 0 H 136.2<q1?:233 N Te 133.37 104.7 157‘ P 7 1 2 3 . 4 133.3 N , 147.8 N S H N-N 147.4 n130.4 n143.3 4NJ147.9 1 4 7 . 4N N p K*.N I “,N H H H H 135.9 148.4 146.0 135.6 125.7 N H I- CH349.8 CTOH t. 0 in ethanol in DMSO
  • 176. 4.6 Heteroaromatics 105Effect of Substituents on the 13C Chemical Shifts of Mono-substituted Pyridines (in ppm relative to TMS) 6c-2 = 149.8 + Zi,2 6c-3 = 123.7 + Zi,3 6 ~ -= 4 135.9 + Zi,4 6c-5 = 123.7 + Zi,5 N 6C-6 = 149.8 + zi,6Substituent in ‘22 = ‘66 ‘23 = ‘65 ‘24 = ‘64 ‘ 5 = ‘63 2 ‘26 = ‘62Dosition 2 or 6 -H 0.0 0.0 0.0 0.0 0.0 C -CH3 8.6 -0.5 0.3 -3.0 -0.7 -CH2CH3 13.7 -1.7 0.4 -2.8 -0.6 -CH=CH2 5.9 -1.3 1.1 -2.5 -0.3 -phenyl - 7.7 -1.6 0.8 -3.2 0.2H -r 13.9a -C11 -Br 1.8 -7.5 -14.0 0.8 4.6 5.4 2.8 2.6 -2.5 -1.4 -1.1 -2 Q 0.5 -I -3 1.6 11.3 1.7 -0.8 1.o0 -OH 15.5 -3.6 -1.1 -17.0 -8.2 -OCH3 14.3 -12.7 2.6 -7.1 -2.9 -&phenyl 13.9 -12.2 3.5 -5.3 -2.0 -0COCH3 7.6 -7.3 3.4 -1.8 -1.6N -NH2 8.4 -15.1 1.8 -9.7 -1.6 -NHCH3 10.9 -16.2 1.5 -11.3 -1.3 -N(CH3)2 9.6 -17.9 1.2 -12.3 -1.9 -NHCOCH3 1.4 -9.8 2.6 -3.9 -2.1 -NO2 6.9 -5.7 3.9 5.4 -0.8 -CN -15.8 4.8 1.1 3.2 1.4 S -SH 30.4 10.7 2.1 -10.6 .12.1 -SCH3 10.2 -4.6 0.0 -2.2 -0.5 -S(=O)CH3 16.2 -4.4 2.2 0.9 -0.2 -S(=0)2CH3 8.5 -2.6 2.4 3.7 0.30 -CHO 3.0 -2.0 1.2 4.2 0.4 11 -COCH3 3.8 -2.1 0.9 3.4 -0.8C -COOH -3.7 0.0 2.5 4.2 -1.7/ -COOCH3 -1.7 1.5 1.1 3.3 0.0 -CONH2 -0.3 -1.2 1.4 2.8 -1.5 -Si(CH3)3 18.6 5 .O -2.0 -1.1 0.3 -Sn(CH3)3 23.3 7.6 -2.7 -1.7 0.6 -Pb(CH3)3 33.4 9.2 -2.6 -2.3 1.1
  • 177. 106 4 13C NMR Substituent in z32 = z56 33 = 5 5 34 = z54 35 = 53 36 = 52 position 3 or 5 -H 0.0 0.0 0.0 0.0 0.0 C -CH3 1.3 8.9 0.0 -0.9 -2.3 -CH2CH3 -0.4 15.4 -0.8 -0.5 -2.7 -phenyl -1.4 12.8 -1.8 -0.3 -1.3 H -F -11.5 36.1 -13.2 0.8 -3.9 a -C1 -0.3 8.1 -0.4 0.6 -1.4 1 -Br 2.1 -2.7 2.7 1.1 -0.9 -I 7.1 -28.5 8.9 2.3 0.3 0 -OH -10.7 31.3 -12.4 1.2 -8.6 -OCH3 -12.5 31.5 -15.9 0.1 -8.4 -0COCH3 -6.5 23.4 -7.0 -0.1 -3.2 N -NH2 -11.9 21.4 -14.4 0.8 -10.8 -NHCH3 -13.6 23.1 -18.2 0.6 -11.9 -N(CH3)2 -14.0 23.3 -17.1 0.1 -11.6 -CN 3.6 -13.8 4.2 0.5 4.2 S -SH -12.8 26.1 -11.3 7.3 -2.80 -SCH3 0 -CHO 11 -COCH3 C -COOH -13.6 2.4 3.5 -6.4 24.6 7.8 8.5 13.0 -11.7 -0.2 -0.7 11.1 10.6 0.5 -0.2 4.3 -3.0 5.4 0.0 -6.0 / -COOCH3 -0.6 1.o -0.5 -1.8 1.8 -CONH2 2.7 5.9 1.1 1.2 -1.5 -Si(CH3)3 2.7 9.1 3.0 -2.3 -1.2 -Ge(CH3)3 3.9 12.8 4.2 -0.4 -0.1 -Sn(CH3)3 5.9 13.0 7.1 0.1 -0.3 -Sr~(n-CqHg)~ 6.6 12.6 7.7 0.0 -0.4 -Pb(n-CqHg)3 7.1 21.7 8.5 0.9 -1.8
  • 178. 4.6 Heteraaromatics 107Substituent in z42 = z46 z43 = z45 z44position 4 -H 0.0 0.0 0.0 C -CH3 0.5 0.7 10.6 -CH2CH3 -0.1 -0.5 16.8 -CH(CH3)2 0.4 -1.9 21.2 -C(CH3)3 0.9 -2.6 23.9 -CH=CH2 0.3 -3.0 8.4 -phenyl 0.4 -2.2 12.2 H -F 2.7 -11.9 32.8 a -Br 3.0 3.3 -3.2 1 -I 0.2 9.1 -30.8 0 -OCH3 0.9 -13.9 29.0 -0COCH3 1.7 -6.7 23.9 N -NH2 0.7 -13.8 19.3 -NHCH3 0.5 -15.9 19.8 -N(CH3)2 0.6 -16.3 19.2 -CN 2.1 2.1 -15.9 S -SH -16.9 5.9 54.3 -SCH3 0.1 -3.3 14.6 0 -CHO 1.7 -0.7 5.3 11 -COCH3 1.6 -2.7 6.6 C -COOCH3 1.o -0.8 1.4 / -CONH2 0.4 -0.9 6.2 -Si(CH3)3 -2.8 2.4 11.9 -Ge(CH3)3 -1.1 4.4 16.8 -Sn(CH3)3 -1.1 7.3 16.2 -Pb(CH3)3 -0.5 9.1 24.6
  • 179. 108 4 13C NMR Estimation of 13C Chemical Shifts of Multiply Substituted Pyridines The 13C chemical shifts in multiply substituted pyridines can be estimated using the substituent effects in the monosubstituted parent compound. Example: Estimation of the chemical shifts for 2-amino-5-methylpyridine - C 2 base value 149.8 - C 3 base value 123.7 8.4 Z23("2) -15.1 -2.3 Z53(CH3) -0.9 estimated 155.9 estimated 107.7 156.9 exP 108.4:Y - C 4 base value 135.9 - C 5 base value 123.7 1.8 Z25WH2) -9.7 0.0 Z55KH3) 8.9 estimated 137.7 estimated 122.9 eXP 138.6 exP 122.5 - C 6 base value 149.8 Z26("2) -1.6 Z56(CH3) 13 . estimated 149.5 exP 147.6 Larger discrepancies between estimated and experimental values are to be expected if the substituents are ortho to each other and if strongly electron-donating and -accepting groups occur simultaneously. Also, tautomerization and zwitterion formation have large effects on 13C chemical shifts.
  • 180. 4.6 Heteroaromatics 10913C Chemical Shifts of Condensed Heteroaromatic Rings(6 in ppm relative to TMS) 120.5 177*6102.1 123.8 ;39*8124.0 .06.9 145.0 121.7 a i 2 4 . 1 1196 124.4 3 1 2 4 w 1 2 6 . 4 111e8 155.5 111.0 1 H 122.6 139.9 135.5 120.5 140.1254@5 122*9&5124.4 0 152.6 150.0 115.4 1379 122.9 115.4 t N €4 141.5 L 25.1 125.8" *qy> 122.1* 152.6 S 122.7* 133.2 155.5 137.9 124.3 y2*2147.1 122.8 130.6m 23 O , N 109.9 162.7 139.9 122.1 134.5 i24.1@,?~ 128.6 <N 114*7 l"k6.1 121A 161.5 111.2 144.4 121.6 155*2 129.0 1 2 7 . 2 s-3 2 0110.5 125.6 133.4 1 7 . i w 9 .114.1 5 ll3so 156w 142.1 133.1 120.7 129*0 { H 148.9 100.5 125.5 154.9* assignment uncertain
  • 181. 110 4 13C NMR 128.0 135.5 126.9 127.6 J. 135.7 126.2 J. 120.2 128.0 124.7 120.8 130.1 / 142.7 132.2 / 146.1 129.2 6 3 a i 5 ~ 1 ~ 7 . 0 a N 1 2 . 2 132.1 & N 129.5 t 129.2 t 127.3 t 152.2 148.1 128.5 151.0 a 125.2 127.4127.90::134.1 128.6 155.9 3160.7 t 129.4 142.8 129.6 J. N ] 144.8 133.1 126.7 126.7 J. 152.0 /N 150.103n aAn rn 124.2 120.6 f 111.6 156.2 122.6 / 127.0 122.6 120.0 H 1 118.4 / 125.4 110.8 139.6 134.9 121.9 f 122.9 138.5 124.6 / 127.0 142.7 126.6 116.8 120.0 0: & t 135.8 129.5 128.3 / 125.5 126.7* 121.3 / 125.6*a S 3 1 112.8 b . 0 t 130.3 149.1 113.8 131.8 141.7 142.2 144.0 119.9 130.9 127.4* 151.9* assignment uncertain
  • 182. 4.6 Heteroaromatics 1114.6.2Coupling Constants13C-lH Coupling Constants (IJI in H z )13C-13C Coupling Constants ((Jcclin Hz)
  • 183. 112 4 13C NMR 4.7 Halogen Compounds The additivity rules for estimating the 13C chemical shifts of various skeletons can be applied to those haloalkanes that do not have more than one halogen atom at a given carbon atom. In all other cases, the simple linear models fail but correction terms for non-additivity are available for halomethanes and derivatives (see [I, 21). 4.7.1 Fluoro Compounds Fluorine in nature occurs 100% as 19F, which exhibits a spin quantum number, I = 1/2. The signals of carbon atoms up to a distance of about four bonds are split by coupling to 19F. 13C Chemical Shifts and 19F-13C Coupling Constants of Fluoro Compounds (6 in ppm relative to TMS, IJI in H z ) 71.6 109.0 116.4 118.5 CH3F Jc, 161.9 CHzFz JCF 234.8 CHF3 JCF 274.3 CF4 JCF 259.2Hal 2 J 19.5 ~ ~ 2 J 22.4 ~ ~ 28.3 15.8 23.6 22.6 7;s /F A F 80.1 9.2 85.2 7 8 7 . 3 3 J c 6.7 JCF 163.3 ~ 4Jc~ 0 2J ~ ~ 1 8 . 3 = 116.2 2 J 24.8 ~ ~ CF3-CF, 14.1 31.9 29.3 30.6 88.5 F- JCF 271 k F 22.7 29.3 25.3 84.2 147.7 2 J 48.1 ~ ~ 3 J c 6.2 JCF 164.8 ~ JCF 267.2 JCF 177 JCF239 lJCF 283.2 78.9 108.1 115.0 CH2FYE.5 cHF2KE2 C F 3 ~ z . 0 O 2~cF22 Jc~28 2J,, 43.6
  • 184. 4.7 Halogen Compounds 1136 91.0; JCF 171 32.8; 2 J ~ 22 25.3; 4 J c ~ 0 p 23.6; 3 J c 5~ 8 163.3; JCF 245.1 115.5; 2 J c 21.0 ~ 130.1; 3 J c7.8 124.1; 4 J c ~ 3.2 ~ 6 C H 84.9; JcF 166 ~ ~ 1 3 7 . 02JcF 17 ; 127.8; 3 J ~6 129.0; 5 J c 3 ~ F 1 128.9; 4 J c ~ - 168.7; J,, 111.8; 2 J ~ F 261.8 16.1 152.5; 3 J c 6.4 ~ N 122.7; 2JcF 17.7 141.3; 3 J c 7.5 ~ 121.2; 4 J c 4 . 2 m . 7 ; 2 J 37.6 ~ ~ ~1245: 3JcF43 @ ; : 8 . JCF 255.1 147.8; 3 J c 14.9 N ~ 145.9: 4 ,, J __ 3.7 N 138.3; 2 J 22.5 ~ ~ t F 163.7; ,, J 236.3 HalEstimation of 13C Chemical Shifts of Linear Perfluoroalkanes( 6 in ppm relative to TMS) [3] 6 = 124.8 + CZi i Increments Zi for the CF2- or CF3-substituent in position: a P Y -8.6 1.8 0.5Example: Estimation of the chemical shifts in perfluorobutane ,CF2 ,CF3 F3C CF2CF3 base value 124.8 CF base value 124.8 1aCF2 -8.6 1aCF3 -8.6 1 P CF2 1.8 1a C F 2 -8.6 1 YCF3 0.5 1 P CF3 1.8 estimated 118.5 estimated 109.4 exP 118.5 eXP 109.3
  • 185. 114 4 13C NMR 4.7.2 Chloro Compounds I3C Chemical Shifts of Chloro Compounds ( 6 i n ppm relative to T M S ) 25.6 54.0 77.2 96.1 CH3C1 CHZClZ CHC13 cc14 18.9 26.3 27.3 34.6 V C l m C 1 39.9 11.6 46.8 7 2 7 31.6 51.7 46.3 105.3 c1 a-cl 96.2 Y1 c E 1 CCly-CC13 117.2 c1 c1 c1 119.9 +Cl 113.3 127.1 w118.1 c &Cl 1 126.1 c1Hal c1 c1 c1 c 1 =( 1 117.6 c 125.1 >=( 121.3 c1 c1 40.7 63.7 88.9 CC13 OH C 217 HC’. f E 0 cHc12YE.4 y167.0 0 0 F 59.8 L 0;;:; 25.4 126.6 128.5 129.7 135.5 __ 138.7 124.3 n : ! 8 122.3 m . 5 128.4 148.4 N 149.5 149.8 N t cl 130.3 151.6
  • 186. 4.7 Halogen Compounds 1154.7.3Bromo Compounds13C Chemical Shifts of Bromo Compounds ( 6 in ppm relative to TMS)9.6 21.4 12.1 -28.7CH3Br CH2Br2 CHBr3 CBr419.4 36.4 Br 27.6 13.0 35.6 Y E 131.8 32.4 49.4 53.4 CBr3--CBI~ Br-Br 31Y F r 5 X Br. 1 Br122.4 Br Br. Br 109.4 +Br 127.2 =( 97.0 w 114.7 Br 116.4 Hal 25.9 31.3 ". 50 "k"g;.7112.4 B~ Br Br 0 0 128.7 Br 138.5 122.6 m8 3 . 150.3 N t Br 142.3
  • 187. 116 4 13C NMR 4.7.4 lodo Compounds I3C Chemical Shifts of Zodo Compounds ( 6 in ppm relative to TMS) -24.0 -54.0 -139.9 -292.5 CH3I (33212 CHI3 CI4 20.6 27.0 31.2 40.4 -1 -1.6 -1 15.3 9.1 y i . 9 Xi.0 3.O 130.3 I I 79.4 I- 1 -1 85.2 u 96.5 1 1 -I. mi & J d31.2 40.1 28.3 I 130.1 @j 25.4 127.4 127.6 I 144.8 126*o0 / 6 5 . 2 150.1 N ‘ 156.9 - 122.9 150.8 mO . : 137.6 N t 118.2 4.7.5 References [l] G.R. Somayajulu, J.R. Kennedy, T.M. Vickrey, B.J. Zwolinski, Carbon-13 chemical shifts for 70 halomethanes, J. Magn. Reson. 1979,33, 559. [2] A. Furst, W. Robien, E. Pretsch, A comprehensive parameter set for the prediction of the 13C NMR chemical shifts of spjl-hybridized carbon atoms in organic compounds, Anal. Chim. Acta 1990,233, 213. [3] D.W. Ovenall, J.J. Chang, Carbon-13 NMR of fluorinated compounds using wide-band fluorine decoupling, J. Magn. Reson. 1977,25, 361.
  • 188. 4.8 Alcohols, Ethers, and Related Compounds 1174.8Alcohols, Ethers, and Related Compounds4.8.1Alcohols13C Chemical Shifts of Aliphatic Alcohols ( 6 in ppm relative to TMS)50.2 18.2 25.9 25.3CH30H /OH //OH 57.8 10.3 64.215.2 36.0 31.2 23.8 33.6 -H O 20.3 62.9 YE O -H 15.3 29.4 63.2 26.2 73.314.2 31.9 32.9 14.3 39.4 30.5 OH - 23.0 25.8 62.1 1 4 s 6 7 . 2 23.2 39.2 23.5 7 19.2 OH 72.2 10.113C Chemical Shifts of Aliphatic Glycols and Polyols 0(6 in ppm relative to TMS)HOWOH HO//OH 36.4 68.2 ‘3 7 2 OH 7 b . x ~ ~ ~ 63.4 60.2 18.7 ‘ 23.0 , 67.7 ’ 71.6 , a in CDCl,, in D,OH 73.7 ........... HO 48.3 64*3 76.1 72.9 74.3 74.5 66.0H O Y d ! ? H 91.2 H Y % . 3 OH OH
  • 189. 118 4 13C NMR 13C Chemical Shifts of Alcohols ( 6 in p p m relative to TMS) 125.1 99.1 63.4 OH CF3-0H CC13-0H _TOH 50.0 61.4 75.9 114.9 137.5 73.8 83.0 [Jlc~ HZ 278 *1J1,, 35 Hz OH QH 8ti.8 25.1 26.3 121.1 108.5 13C Chemical Shifts of Enols ( 6 in ppm relative to TMS) -pH 1 9 0 . a 9 0 . 5 J&Ol.l 88.0 149.0 56.6 28.5 22.5 99.0 22.50 32.8 31.0 46.2 1 28.3 46.2 A :::; 103.3 0UFa6 57.3
  • 190. 4.8 Alcohols, Ethers, and Related Compounds 1194.8.2Ethers13C Chemical Shifts of Ethers ( 6 i n p p m relative to TMS) 60.9 57.6 67.7 59.1 74.5 10.5 / 54.9 k . 6 0 0- - 0 23.2 ‘ 0 14.7 21.459.1 73.4 20.5 O W 9 ‘- 0 49<0# 27.0 72.3 58.4 32.9 15.0 72.752.5 152.7 57.4 73.1 116.4 14.2 - 0 ‘0- 84.4 134.4 / 55.1 1 5 9 6 114.1 54’8 129.5 26.4 120.8 128.2 0 121.613C Chemical Shifts of Cyclic Ethers ( 6 in p p m relative to TMS)145.6 98.4 0 68.6 28.5 1 4 4 . 1 0 6: 99.4 4: 0 II 141.1 101.1 19.4
  • 191. 120 4 13C NMR I3C Chemical Shifts of Acetals, Ketals and Ortho Esters (6 in ppm relative to TMS) 109.9 <0- 53.7 99.9 95.0 u64.5 OAo 108.8 147*8 121.8 O-I.,100.7 ‘ 0 94.8 ono u ono 27.5 67.5 Lo, 93.7 115.0 112.9 15.2 121.0 -0 10 -0 53: 50.40
  • 192. 4.9 Nitrogen Compounds 1214.9Nitrogen Compounds4.9.1Amines13C Chemical Shifts of Amines ( 6 in ppm relative to TMS) as well as hydrochloride -Shifts Induced by Protonation (in parentheses: 6aamineSamine,measured in D20)The protonation of amines causes a shielding of the carbon atoms in the vicinityof the nitrogen. This shielding amounts to -2 ppm for an a-carbon atom, -3 to -4for a P-carbon, and -0.5 to -1 .O ppm for a y-carbon. The most frequent exceptionsoccur in branched systems: Tertiary and quaternary carbon atoms in the a-positionare generally deshielded by protonation of the nitrogen (A6 = +OS to + 9 ppm)PI.28.3 38.2 47.6 56.5(-1.8) (-2.0) (-1.2) N ;( ICH3-NH2 / " P- " 2 7 7 / 54.4 9.519.0(-5.0) 36.9 1" (-0.2) 15.7 44.5 (-3.2) (-0.6) 27.4 (-5.4) 2 " 24.0 LNH11.5 44.6(-0.4) (-1.8) (2??52.4 1210 (-1.4) 12.0 10.9 (-0.5)26.5 32.9(-4.9) (-4.7) %? 4 (+5.7)
  • 193. 122 4 13C NMR 14.3 23.2 22.5 28.2 (-2.6) H (-2.9) H (-3.1) H (-1.2) H N r c / N 45.9 35.2 12.5 54.0 36.1 50.5 " 3 3 . 9 y x"28.5 (-0.4) (-1.8) (-0.9) (-2.1) (-2.0) (+1*9) (-2.5) (-2.7) 50.4 (+6.6) 12.8 20.6 18.7 25.4 (-2.1) I (-2.0) I (-1.3) I (-0.8) 1 N f i K 53.6 44.6 11.9 61.8 45.2 55.5 " 4 0 . 9 y KNl8.7 (+0.5) (-1.3) (-0.8) (-1.6) (-1.2) (+3.8) (-0.8)53.6 (+0.2) (+8.9) 44.8 I"; - 113.6 139.9 *doubly protonated form *doubly protonated form 64.2 (-5.4) H O m N H 2 44.6 H 60.3 e, ,, , (-1.9)td HO 6 33.5 (-1.5) 41.1 (-0.7) 6 6 51.1 (+0.7) 37.6 (-5.4) 58.7 (+0.6) 64.3 (+2.4) 25.8 (-1.0) 32.7 (-2.7) 29.2 (-1.6) 26.3 (-1.1) 25.7 (-0.3) 26.5 (-0.9) 26.8 (-0.7) 26.9 (-1.2) 30.2 39.9 / NH N 118.5 129.3 (jZ3 @:.l 129.3 129.4 116.9 117.0
  • 194. 4.9 Nitrogen Compounds 123 128.3 117.9 126.5 129.4 118.0 122.913C Chemical Shifts of Cyclic Amines ( 6 in p p m relative to TMS) I 42.7 H 25.7 0 56.7 24.4 H 0:I C :::: : J 147.7 25.9 26.44.9.2Nitro and Nitroso Compounds13C Chemical Shifts of Nitro and Nitroso Compounds( 6 in ppm relative to TMS)61.2 12.3 21.2 20.8 13.3 29.6CH3N02 k N 0 2 b N 0 2 NO2 70.8 10.8 77.4 19.8 75.626.9 1 0 - 385.0 14.0 31.4 ~ 2 9 . 626.2 22.6 ~ 2 9 . 6 NO2 27.9 75.8 28.6 18.7
  • 195. 124 4 13C NMR 6 1 148.4 6 2 3 . / 129.4 25.5 134.6 135.5 4.9.3 Nitrosamines and Nitramines 13C Chemical Shifts of Nitrosamines ( 6 in ppm relative to TMS) 32.1 11.5 38.4 11.3 ? 7 //O I 9 . 2 //o 19.14 y ,/o 39.9 /-" 14.5 47.0 20.3 22.51 " 23.7 3 )N * / 54.2 51.1 11.8 13C Chemical Shifts of Nitramines ( 6 in ppm relative to TMS)N 4.9.4 Imines and Oximes 13C Chemical Shifts of Imines ( 6 in p p m relative to TMS) 22.6 29.3 29.7 163*4)=&r.6 17.8 128.6 129.0 137.3 129.8 130.2 137.4 122.0 129.8 130.8 - P E W 1 3 2 . 4 w E a 127.0 153.2
  • 196. 4.9 Nitrogen Compounds 12513C Chemical Shifts of Oximes ( 6 in p p m relative to TMS) 11.2 OH 15.0 OH /147.8)”p” 148*2/=N 155.4)=N/ H 15.0 21.7 19’6y13.6 151.9 -N /OH 2 0 . 31.5 ’ 13.9 7 OH ,OH 32.3 8 9 . 27.5 1 5 5 5 6 126.0 4 y .5 ,OH 26.3 26.1 / 128.5 24.6 129.14.9.5Hydrazones and Carbodiimides13C Chemical Shifts of Hydrazones ( 6 in pprn relative to TMS) 22.6 167.2 13a7 20.1 ydr.2 N / ’ 16e2 r46.513C Chemical Shifts of Carbodiimides ( 6 in pprn relative to TMS) 35.0 24.8 0 - p 25.5 ~ 55.7
  • 197. 126 4 I3C NMR4.9.6Nitriles and Isonitriles13C Chemical Shvts of Nitriles (6 in p p m relative to TMS)1.7 117.4 10.6 120e8 1 9 . y 119.9 19.9 123.7 CH3CN /CN mCN 10.8 13.3 19.3* * assignment uncertain13.2 21.9 19* 28.5 125.1 110.5 118.0 C -N NC-CN N m C N 16.8 27.4 8.6 14.6137.5 117.2 +CN 107.8 122.4 25.8 24.6 6::; 118.7 132.813C Chemical Shifts of Isonitriles(6 in ppm relative to TMS, IJI C,J in Hz)Because of the symmetrical electron distribution around the nitrogen atom, the13C-14N-coupling can be observed in the 13C NMR spectra of isonitriles:triplets with relative intensities of 1:1:1 (spin quantum number of 14N: I = 1,natural abundance 99.6%).2J 7.5 J 5.8 35= o J 5.3 3J= o J 5.0 165.7 J 5.2 626.8 158.2 15.3 156.8 120.6 165.7 CH3NC NC b N C 126.7 J 13.2 36.4 119.4 126.3 2J=0 2J 6.5 2J 11.7 129.9 3J = 0 129.4 4J=0
  • 198. 4.9 Nitrogen Compounds 1274.9.7Isocyanates, Thiocyanates and lsothiocyanates13C Chemical Shifts of Isocyanates ( 6 in pprn relative to TMS)26.3 121.5 13.6 34.2 125 (broad) 110.7 124*2 CH3NCO -NCO +NCO 20.4 43.3 124.713C Chemical Shifts of Thiocyanates and Zsothiocyanates(6 in ppm relative to TMS)15.4 111.8 133.3 29’3 128*7 13.3 32.3 131 (broad) SCN S CN- CH3NCS -NCS 28.7 20.0 45.04.9.8References[l] J.E. Sarneski, H.L. Surprenant, F.K. Molen, Ch.N. Reilley, Chemical shifts and protonation shifts in carbon- 13 nuclear magnetic resonance studies of aqueous amines, Anal. Chem. 1975,47, 2116. N
  • 199. 128 4 13C NMR 4.1 0 Sulfur-Containing Functional Groups 4.10.1 Thiols 13C Chemical Shifts of Thiols ( 6 in p p m relative to T M S ) 6.5 19.7 27.6 27.4 CH3SH V S H b S H 19.1 12.6 26.4 12.0 35.7 35.0 22.2 33.9 -H S 21.0 23.7 Y’’ - S H 14.0 30.6 24.6 28.1 38.8 14.0 31.4 34.1 H S W S H 1 64.2 W S H 28.7 HOwsH 22.6 28.1 24.7 27.3 25.9 28.8 126.8 6 130.6 129.2 / 128.8 125.3S 4.1 0.2 Sulfides 13C Chemical Shifts of Sulfides ( 6 i n pprn relative to TMS) 19.3 25.5 34.3 13.7 ‘S’ -S- -sv ,l,k.4 14.8 23.2 23.6 34.1 22.0 A s k 4 5 . 6 r s y . 9 -S- 31.4 13.7 33.2 32.6
  • 200. 4.1 0 Sulfur-Containing Functional Groups 12915.5 34.1 22.0 54.8 43.1 $- ‘9 31.4 13.7 30.4 25.4 132.3 141.8 772.6 81.4 -* s S e14.2 110.5 106.9 15.6 128.7 131.0 124.9 127.013C Chemical Shifts of Cyclic Sulfides ( 6 in p p m relative to TMS)A 18.7 528.0 26.0 <’> S 18.6 C=X_,.1 -/128.8 38.1 Q 34.4 S 26.9 ;;:; 26.6 29.8 c:, 29.1
  • 201. 130 4 13C NMR 4.10.3 Disulfides and Sulfonium Salts 13C Chemical Shifts of Disulfides and Sulfonium Salts ( 6 in ppm relative to TMS) 22.0 32.8 vs,s-. 13*0 127.4 14.5 / 127.2 129.3 27.5 -s+1- / 4.1 0.4 Sulfoxides and Sulfones 13C Chemical Shifts of Sulfoxides and Sulfones ( 6 in ppm relative to TMS) / i? 0 40.1 8 25.4 54.3 1> 4& 123.5 43*9 129.6 130.9 42.6 39.3 48.2 40.3 56.3 13.0s / //Y + - A 0 0 dq$-, 6.7 0 0 16.3 37.1 k 3 . 5 0% 4 0 15.2 34.2 x57*6 0 0 22.7 0% 133.2 141.6
  • 202. 4.10 Sulfur-Containing Functional Groups 1314.1 0.5Sulfonic and Sulfinic Acids and Derivatives13C Chemical Shifts of Sulfonic and Sulfinic Acids andDerivatives (8in pprn relative to TMS)39.6 8.0 18.8 16.8 25.0CH3S03H b S 0 3 H m S 0 3 H 46.7 13.7 53.752.6 9.1 18.4 17.1 24.5CH3S02Cl k 60.22 " S o AO 12.1 67.1 2" 7 6 ; y 1 yiyl 42.7 48.7 s/S 0 13.7 0 o0 18.2 132.3 143.5 6 134.9 134.4 127.9 / 130.0 135.3 144.1 131.7 139.34 . 1 0.6Sulfurous and Sulfuric Acid Derivatives S13C Chemical Shifts of Sulfurous and Sulfuric Acid Derivatives(6 in pprn relative to TMS) n 26.0 57.1 9 0 8 0
  • 203. 132 4 13C NMR4 . 1 0.7Sulfur-Containing Carbonyl Derivatives13C Chemical Shifts of Sulfur-Containing Carbonyl Derivatives(6 in ppm relative to TMS)The chemical shifts of thiocarbonyl groups are higher by about 30 ppm than thoseof the correspondingcarbonyl groups: 6+, 1.5 6 p o - 57.5Carbonyl groups of thiocarboxylic acids and their esters are deshielded by about 20ppm with respect to the corresponding oxygen compounds. 278.4 i l - 11.3 32.6 SH 30.2 194.5 195.430.1 194.1 28.4 22.2 32.1 13.6 39.2 Ad 234.1 20.6 33.3 A " 2 205.6 - s 202.132.7 199.4 1 42.3 132.1
  • 204. 4.1 1 Carbonyl Compounds 1334.1 1Carbonyl Compounds4.1 1.1AldehydesAdditivity Rule f o r Estimating the 13C Chemical Shifts ofAldehyde Carbonyl Carbon Atoms ( 6 in p p m relative to TMS) 6,=, = 193.0 + Z Z i 1 -Cp-CrCHO Substituent i z , Z8 -Cf 6.5 2.6 -CH=CH2 -0.8 0.0 -CH=CH-CH3 0.2 0.0 -phenyl -1.2 0.013C Chemical Shifts of Aldehydes ( 6 i n p p m relative to TMS)197.0 31.3 200.5 5.2 202.7 15.7 201.6CH2=O CH3- CHO vCHO m C H O 36,7 13.3 45.715.5 204*6 13.8 24.3 201*3 23.4 205.6 95.3 176.9 -H CO CC13-CHO 22.4 43.6 194.4 - 176.8 204.7 192.0 c=x CHO - CHO CHO CHO 4 83.1 81.8137.8 138.6 25.2 / 129.0 25.2 134.3
  • 205. 134 4 13C NMR4.1 1.2KetonesAdditivity Rule for Estimating the 13C Chemical Shifts ofKetone Carbonyl Carbon Atoms ( 8 in ppm relative to TMS) 6,=, = 193.0 + CZi i 0 II -cp-c,--c-c,(-p- Substituent i Za Zp -CC 6.5 2.6 -CH=CH* -0.8 0.0 -CH=CH-CH3 0.2 0.0 -pheny 1 -1.2 0.013C Chemical Shifts of Aliphatic Ketones ( 6 in ppm relative to T M S )206.7 0 207.6 30.7 29.3 45.2 13.5 0 213.5 26.5 27.5 29.4 43.5 23.8 24:hUa313C Chemical Shifts of Halogenated Ketones(6 in ppm relative to TMS)203.5 0 187.5 0 115.6 x/F 25.1 84.9 23.1
  • 206. 4.1 1 Carbonyl Compounds 135 193.6& a ;2 186.3 q:l 27.2 49.4 22.1 21.1 c c 1 1 qB: c1 & 203.5 187.5 27.0 35.5 25.1 Br 84.9 Br Br 23.1 Br 1 715 . g ; : c C c1 c1 c113C Chemical Shifts of Unsaturated and Alicyclic Ketones( 6 in ppm relative to TMS)197S k U 8 . 0 207*9l h 0 . 3 29.9 25.7 137.1 81.9 78.1 21.1209.4 128.4 51.5 26.3 137.4 / 132.9 132.2 137.813C Chemical Shifts of Diketones ( 6 in p p m relative to TMS) Enol form: see Chapter 4.8
  • 207. 136 4 13C NMR13C Chemical Shifts of Cyclic Ketones and Quinones(6 in ppm relative to TMS) 0 34.0 29.1 8209.8 134.2 165.3 38.2 22.9 150.6 b 185.8 127.3 156.76 25.8 37.9 26.7 131.8 187.0 136.4 139.7 0 04.1 1.3Carboxylic Acids and CarboxylatesAdditivity Rule f o r Estimating the 13C Chemical Shifts ofCarboxyl Carbon Atoms ( 6 in ppm relative to TMS) 6= ,, = 166.0 + X Zi i -C+p-C,COOH Substituent i za ZB Zr -Cf 11.0 3 .O -1.0 -CH=CH, 5.0 -phenyl 6.0 1.o
  • 208. 4.1 1 Carbonyl Compounds 137I3C Chemical Shifts of Carboxylic Acids (6 in pprn relative to T M S ) 166.3 21.7 176.9 9.6 180.4 18.7 179.4H-COOH CH3- COOH k C O O H a C O O H 28.5 13.7 36.218.8 184.1 14.2 27.7 180.6 r;:.Y -COOH 22.7 34.8 =/ 171.7 COOH133.1 128.3 - COOH _. 78.6 74.0 156.5 8;:; 182.1 26.6 172.6 133.7115.0 163.0 40.7 173.7 63.7 170.4 88.9 167.1 CF,-COOH C HZC1-COOH CHC12-COO H CC1, - C O O H 169.2 173.9 166.1 166.6160.1FooHCOOH ( 40.9 COOH 28.9O (H 130.4 (,," 134.2JC00H COOH COOH COOH HOOC13C Chemical Shifts of Carboxylate Anions( 6in ppm relative to TMS; measured in water unless indicated otherwise) 171.3 24.4 182.6 11.1 185.1 188.6-coo- 20.8* 177.6* 10.6* 181.3" CH3- COO- * solvent: CDCl, /coo- 31.5 28.4* Too- c=x * solvent: CDCl,/DMSO =PO0- 174.5126.7 134.3 0::; COO- 185.4 26.9 133.145.0 175.9- 65.6 171.8 96.2 167.6CH2Cl-COO CHClZ--COO CCl, -COO-
  • 209. 138 4 13C NMR 4.1 1.4 Esters and Lactones Additivity Rule for Estimating the 13C Chemical Shifts of Ester Carbonyl Carbon Atoms (6 in ppm relative to TMS) = 166.0 + Z,Zi i - c r cp-c- coo- Ca- -CL -CH=CHz - Substituent i za 11.0 5 .O Zp 3.0 -1.0 zct -5.0 -9.0 -phenyl 6.0 1.o -8.0 13C Chemical Shifts of Acetic Acid Esters ( 6 in ppm relative to TMS) 170x0) 20.9 14.4 17 O x 0 & 21.3 .5 21.9 22.3 28.1 1 6 9 3 21.0 x>"" O f 32.2 24.4 1 6 9 3 20.8 0"" 121.4 128.9 72.3 150.9 13C Chemical Shifts of Methyl Esters ( 6 in ppm relative to TMS) 161.6 173.3 172.2 9 0* &: 5 1 f i 8 1 . 9.: )( H 20.6 27.2 13.8 35.6 23.9 34.9 26.0 26.4
  • 210. 4.1 1 Carbonyl Compounds 139 167.8cl 40.7 d cl c1 64.1 c1 89.6 166.51 3 0 . 4 a 0 / 5 1.5 128.8 74.8 16.* & 130.5 51.8 129.7 / 128.4 132.8 17 6.) 6- : 52*3 2 ; , ;0 y 3 51.3 41.2 O, 0130.1 1 I 6 5 52.1~ ~ $d ~ 52.2 1521:~~~ % 133.5 0 0 0 013C Chemical Shifts of Lactones ( 6 in ppm relative to TMS)&C 168.6 58.7 39.1 68.8 178.1 27.8 22.3 69.3 6 22.3 171.2 29.2 19.1 c=x 6:& .: 6 1 . 117.0 6 69.2 23.1* 28.9* 29.5" 152.1 142.9 106.0 * assignment uncertain
  • 211. 140 4 13C NMR 4.1 1.5 Amldes and Lactams Additivity Rule for Estimating the 13C Chemical Shifts of Amide Carbonyl Carbon Atoms ( 6 in ppm relative to T M S ) Substituent i za zp zq a zp -Cf 7.7 4.5 -0.7 -1.5 -0.3 -CH=CH* 3.3 -phenyl 4.7 -4.5 13C Chemical Shifts of Amides ( 6 in ppm relative to TMS) Fonnamides: 167.6 163.3 0 166.5 ?!AN,24.8 - H H H = 90% = 10% I 28.2 36.5 161.8 162.6 H 164c3t XNT - NH H 14.6 - H H 12.8 36.9k 1 6 . 8-.x = 90 % = 10% Primary and Secondary Acetamides: 173.4 171.7 22.3 22.7 H * in water
  • 212. 4.1 1 Carbonyl Compounds 141 169.8 168.6 169.0 22.5 H 22.5 22.6 H 22.3 23.6 H t 49.9Tertiary Aliphatic Amides:“03 N ,35.0 169.6 gNK 170.1 gN)1.4 21.5 I 21.4 13.1 21.5 38.0 42*9L 14.2 50.65 2”:.;” ‘11.2 40.114.0 35.1 [ - 13’2 42*0 14.413C Chemical Shifts of Lactams ( 6 in ppm relative to T M S ) 179.4 175.5 171.942.4 20.8 49.5 147.6 42.0 22.334‘4N.(z;3 49.9 23.3 21.6 m ( : & . 8 136.1 ‘ 106.6 142.0 “3:: 42.0 29.9* 30.7* * assignment uncertain
  • 213. 4 . 1 1.6Miscellaneous Carbonyl DerivativesI3C Chemical Shifts of Carboxylic Acid Halides(6 in ppm relative to TMS) A70.4 A65.7 k 8 . 9 9 0 7 4 . 7 c1 Br I c133.6 39.1 41.01 3 7 3 65.6 176.3 168.0 131.4 c1 25.9 6 l% c/ 133.2 131.2 / 128.8 135.113C Chemical Shifts of Carboxylic Acid Anhydrides( 6 in ppm relative to TMS)HHO 158.5 167.4 170.9- 27.4 AA0h 169.6 37.2 13.4 & 0 % / 162.4 128.9 / *f28.9 134.5
  • 214. 4.1 1 Carbonyl Compounds 14313C Chemical Shifts of Carboxylic Acid Imides( 6 in ppm relative to TMS)135*5(173*0 133.12@ 131S0 167.5 I ” N- 23.2 0 0l 3 C Chemical Shifts of Carbonic Acid Derivatives(6 in ppm relative to TMS)CO 181.3 C02 124.2 ~ 0 168.2 ~ ~ - (2%192.8 0 lo, 54.9 0 - 1 - 0 67.3 19.1 156.5 155.9 30.9 13.6 226.2 21.7 68.1 27.4 N lo) 157.8 14.7 k63.5 165.4H2N “2 N ‘”38.5 I I k61.3 “uN/ 45.0 31.2 22.5
  • 215. 144 4 NMR 4.1 2 Miscellaneous Compounds 4.12.1 Derivatives of Group IV Elements 13C Chemical Shifts and Coupling Constants of Derivatives of Group ZV Elements (6 in ppm relative to TMS, IJI in Hz) I 0.0 -Si- I 128.3 129.6 129.1 4 4J 19 +9*3 I -4.2 --.Pb - I 129.1 128.5 A 16.2 S y>cl 1 129.6 I .i2*0 +S 136.3 f 26.7 16.6 c1 138.7 co- 21.6 4*7 169.0MISC.
  • 216. 4.1 2.2Phosphorus Compounds13C Chemical Shifts and 31P-13C Coupling Constants ofAliphatic Phosphorus Compounds ( 6 i n ppm relative to TMS, IJI in Hz) 3J 11 J12 3J 12.5 J -10.9 126.0; J 12 24.5 32.6 J 16 24.8 28.67-13.9 28.3 14.4 -- L 14.0 27.9 130.8 @pH2 2J20450 2J 14 4J0 2J 15 3J 10 2J 14 27.0 28.9 10.7 J55 /< I- 12.3; J 49 6.3 TP+- 1- 2 J 5 - L J 8 3J 15 J 48 3 J l l J44 3J 11 J20 24.1 1 8 . 7 y 23.4 42.9 24.7 33.6 -c2 p1 /V-PMO,1 3 z c 13.7 25.1 4J 0 2J 14 14.0 24.8 4 J 0 2J 16 A , 53.44J 0 2J 4 2J 12 3J 13 J 66 J 143 0 61.4;2J7 24.4 2 7 . 8 y -PO 6.6 "Fk o/ 0 - 16.5 3J 6 -13.6 24.0 2J 74J 0 2J 5 48.8 13.7 33.4 0, T 2 J 12 5 J 0 3J5 I/ 8 /o 19.1 61.9 Misc. /N 4~~ *J 113J 6 13.6 32.616.2 0- 5J0 -0-yo- 3J7 ? k0-#=0 63.6 4J 0 2J 6 -b 2 J 6 O4 18.9 67.2
  • 217. 3J 16 J 54 J 54 3J 16 J 51 14.9 23.9 34.61 20.8 24*0 30*9y 53.8/& FS YN2J4 13.6 24.8 1 3 z L 2J 5 % 4J 0 2J 4 4J 0 2J4 13C Chemical Shifts and 3 1 P - 1 3 C Coupling Constants of Aromatic Phosphorus Compounds ( 6 in ppm relative to TMS, IJI in H z ) 2J 20 12 J 2J 10 104 J 137.2 / 3J 12 132.3 135.6 128.5 132.3 11.4; J 145 0 II qPP- 120.5; 3J 4 HO-P-OH 128.1; 3J 15 0 0 0 1 5 0 . 4 y 0 129*87 0 2J 8 125.1 5J 4J 130.5; 4J 0 2J 8 129.5 124.1 151.5 4J 129.7 120.1 3J 150.4 - 5J0 O O - T - O G 5J 0 O ! - l - O G Ja 125.5 PMisc.
  • 218. 4.12 Miscellaneous Compounds 14713C Chemical Shifts and 3 1 P - 1 3 C Coupling Constants ofPhosphoranes ( 6 in ppm relative to TMS, (JI in Hz) 2~ 93J 11132.9<128.5- J 83 .? 11.0 130.6 2J 4 4J 3 I 3..2 24.1; 3J 6 J 1114.1 2.3Miscellaneous Organometallic Compounds 3C Chemical Shifts and Coupling Constants of MiscellaneousOrganometallics ( 6 in ppm relative to TMS, IJI in H z ) -16.6 14.8 I 6.2 -6.3Li- -BL Li+ /B- I /* 11.2 I 8.4 -AS+- I-/As- I 4 / 136.8 129.4 d S b o 129.1 / 139.3 qB;p 1.o 128.3 2J 85 3J 104 137.4 128.3 170.3 Misc, 131.1 J 1275 (couplings with 199Hg)
  • 219. 148 4 13C NMR 4.1 3 Natural Products 4.13.1 Amino Acids I3C Chemical Shifts of Amino Acids ( 6 i n ppm relative to TMS;solvent: water) 41.5 42.8 46.0 + ~ 3 ~ % 02 ? H 3 N 7 - 173.6 H2NV0- 182.7 (pH 0.45) (pH 4.53) (pH 12.01) 7+ :H N 3 : * 0 34.8 11 179.4 H 2 N 5 10 2 . 7 y 0 (pH 0.49) (pH 5.03) (pH 12.56) 17.5 21.7 fH3Nf174.0 q O H 50.1 51.9 52.7 (pH 0.43) (pH 4.96) (pH 12.52) 18.0 18.5 17.8 19.2 17.9 20.3 H3N 30&75.40 59.8 0 61.9 63.2 (PH 3.0) (PH 5.64) (pH 12.60) 22.1 21.8 22.5Natural 25/1 40.1 22.7 25/1 40.7 22.9 45.5$ 2 5 23.7Products +H3N 0 +H34%6.3 52.8 54.4 (pH 0.37) (pH 7.00) (pH 13.00)
  • 220. 4.13 Natural Products 149 12.1 12.4 2 . L $ . 6 1 H2Nf 184.1 0 62.3 58.7 60.9 (pH 0.28) (pH 6.04) (pH 12.84) 60.4 < OH 56.0 6 57.5 O 57.8 o (pH 1.12) (pH 6.05) (pH 9.28) 20.2 HO H o d 66*3$0H+H3Nf 171.7 59.8 61.5 0 62.1 0 (pH 1.36) (pH 5.87) (pH 9.27) 25.1 rSH 55.9 0 56.7 60.7 (pH 1.75) (pH 5.14) (pH 11.02) / 15.2 HO t N H 3 + 31+H3Nf 175.3 9) 55.3 0 39.0fS 44.1 f s +H3Nf - 1 1 O 180.7 55.8 0 Natural (in D20) Products
  • 221. 150 4 13C NMR 1 3 130.7 129.5 1 p 1 3 0 p z F 3 117.5 =145 , ~138, 37.5 37.5 +H3N b5 ?.O 57.3 0 174.4 35.0 P OH 178.7 0- 181.3 53.5 O 55.3 O (pH 0.41) (pH 6.73) (pH 12.73) 182.4 26.1/ 30.7 28.2 33.0 0- 53.4 0 56.0 57.2 (pH 0.32) (pH 6.95) (pH 12.51) 33.3 0- 53.7 0 55.5 0 57.2 0 (pH 0.46) (pH 5.02) (pH 13.53)Natural 30.5 31.2 35.7Products + H 3 N h O H 0- 173.2 54.0 55.9 0 57.3 0 (pH 0.50) (pH 6.03) (pH 13.85)
  • 222. 4.1 3 Natural Products 151 H2N NH2 y157.9 "7 41.6 ""e;") 42.1 28.8 / 25.0 32.7 25653.9 0 56.6 (pH 1.33) (pH 7.87) (pH 11S 2 )24.4 29.4 24.8 30.0 24.8 30.0 62.30- 173.3 4 7 . 2 k 175.4 175.8 H2+ 0 (pH 1.27) (pH 7.26) (PH 9.8) 53.9 174.9 H2+ 0 127.7 53.6 133.1 55.7- 133.5 56.1 (pH 1.74) (pH 7.82) (pH 9.21) 56.1 "3 174.4 74.8 120.3 %108.7 125.8 H 1193 ~-2, 112.7 H 137.3 (in D20, sat., 80 OC) Natural Products
  • 223. 152 4 13C NMR4.1 3.2Carbohydratesl 3 C Chemical Shifts of Monosaccharides(6 in ppm relative to TMS)Ribose 68.1 63.80 68.2 63.8 H 0 7 m 70.84 * 3 9 - 69.7 OH 71.9 83.8 "/OH - . Hdf fbH H d f fbHHorn 70.8 71.7 71.2 76.0 H0y>103.1 100.4 70.4 84.6 "lo- 5 5.5 - . OH 69.2 56.7 H d f fibH 69.8 71.1 68.6 63.9H o s Y57.0 . - OH 71.0 103.1 H d f f"bH 70.9 74.3Glucose 61.6 OH 72.3 7 HO 0 . e OH HO 92.9 76.7 OH 96.7 72.5 75.1
  • 224. 4.13 Natural Products 1537 .% 0; 100.0 70.6% HO 74.1 58.1 72.2 o55.9 76.8 OH 104.0 74.1 x3 (: 69.4 Ac 0 Ac 0 70.5Fructose 99.1 OH Ho-O 65.9 - H 0 7 J 3 i y o H 70.0 in water and in DMSO: traces in water: 75%; in DMSO: 25% 61.9 1055 63.8 Ho82.2 W O OH H 77.0 82.9 75.4 76.4 in water: 4%; in DMSO: 20% in water: 21%; in DMSO: 55%1 3 C - l H Coupling Constants through one Bond (JCH in H z ) Natural I I Products OR H lJCH 169-171 ~ J C H158-162
  • 225. 154 4 l3C NMR 4.1 3.3 Nucleotides and Nucleosides 13C Chemical Shifts of Nucleotides and Nucleosides (6 in ppm relative to TMS) " 2 164.4 H H H e (in DMSO/water, 1:2) (in DMSO) (in D20) " 2 10 1.7 93.8?% 141.4 I k 5 165*5 5.4 140.6 I NAg0.7 109.5 I :y;;:q;; N O 136.2 I I I 69.3 69.8 70.5 OHOH OHOH OH (in D20) (in D20) (in D20) 140.3 tpJ 119.1 2 # " N H 156.4 153.4 168.8 151.7 162.2 (in DMSO) (in D20)NaturalProducts
  • 226. 4.13 Natural Products 15586.2 7 0 . 6 1 73.9 OHOH OHOH (in DMSO) (in DMSO) Hq62.5 I 152.088.3 88.0ky 84.8 7 2 . 0 v 39.6 OH OH (in DzO) (in D20) Natural Products
  • 227. 156 4 13C NMR 4.1 3.4 Steroids 13C Chemical Shifts of Steroids ( 6 in p p m relative to TMS) 21.2 38.0 38.8 26.8 27.4 26.6 32.3 28.9 H 28.9 11.0 197.7 123.9 32.5 197.4 124.0 32.3 18.8 12.0 I 39.2 22.7 32.6 23.1 23.8N iit t I ra IP!odllc:s
  • 228. 4.1 4 Spectra of Solvents and Reference Compounds 1574.14Spectra of Solvents and Reference Compounds4.1 4.113C NMR Spectra of Common Deuterated Solvents(125 MHz, 6 in ppm relative to TMS)Acetone-dg I 206.0 1 1 1 1 9 I , I 31 . - A I 30 29 I ~ 29.8 I 1 I I 1 - . I L 1 200 180 160 140 120 100 80 60 40 20 0Acetonitrile-d3 I 118.3 I 1 ~ 1 ~ 1 ~ 1 - 2 ~ 1 1 ~ I ~ 200 180 160 140 120 100 80 60 40 20 0Benzene-dg 129 128 127 1 I I I l l ~ 1 ~ , * , . I . I 2bO 180 160 140 120 100 80 60 40 20 0Bromoform-d 11 io I I ~ I l ~ 1 , I I - I T I . 1 3 I . I 200 180 160 140 120 100 80 60 40 20 0Chloroform-d I . I I . . . I . ( . 78 77 76 - - I I I I , . I . l . I . l ~ 1 , L l Solvents 200 180 160 140 120 100 80 60 40 20 0
  • 229. 158 4 13C NMRCyclohexane-dl2 27 26 1 l 1 1 1 1 1 1 ~ 1 1 ~ ~ ~ 200 180 160 140 120 100 80 60 40 20 0Dimethyl sulfoxide-dg 1 ~ 1 1 - 1 - 1 - 40 1 39 ~ 1 L ~ 1 1 1 1 200 180 160 140 120 100 80 60 40 20 0Methanol-dl I I I I - R I 51 ~ 50 I 49 I I 49.9 l ~ I ~ I I 200 180 160 140 120 100 80 60 40 20 0Methanol-d4 50 49 48 1 L I . I 1 1 1 ~ 1 ~ 1 , 1 ~ 1 ~ 1 200 180 160 140 120 100 80 60 40 20 0Pyridine-dg 1149 - - - L 135.5 123.5 151 150 149 1 136.0 135.0 124.0 123.0 A 6k - - 68 67 26 25 25.3 I
  • 230. 4.14 Spectra of Solvents and Reference Compounds 1594.1 4.2 3C NMR Spectra of Secondary Reference CompoundsChemical shifts in 13C NMR spectra are usually reported relative to the peakposition of tetramethylsilane (TMS), which is added as an internal reference. WhenTMS is not sufficiently soluble in the sample, use of a capillary containing TMSas external reference is recommended. Owing to the different volumesusceptibilities, the local magnetic fields differ in the solvent and reference.Therefore, the position of the reference must be corrected. For a D2O solution in acylindrical sample and TMS in a capillary, the correction amounts to +0.68 and-0.34 ppm for superconducting and electromagnets, respectively. These valuesmust be subtracted from the shifts relative to external TMS if its position is set to0.00 ppm. Alternatively, secondary references with (CH3)3SiCH2 groups may beused. The following spectra of two secondary reference compounds in D 2 0 weremeasured at 125 MHz with TMS as external reference. Chemical shifts are reportedin ppm relative to TMS upon correction for the difference in the volumesusceptibilities of D20. As a result, the peak for the external TMS appears at 0.68PPm. 0.68 TMS (external reference) - .9 H3C, FH3 Si.,-.-SO3Na 55.1 H3C 19.8 15.8 1 1 I I 2,2,3,3-D~-3-(Trimethylsilyl)-propionic sodium salt acid -2.0 0.68 TMS A e r n a lreference) 186.3 -l----l-- 187 186 33 32 31 13 12 31.9 12.7 11 260 180 1bO 140 1 O ; 100 sb I 60 40 I 20 I 0 I ~ Solvents
  • 231. 160 4 13C NMR4.1 4.3 3C NMR Spectrum of a Mixture of Common NondeuteratedSolventsThis broad band-decoupled I3C NMR spectrum of a CDC13 sample with 20common solvents (0.05-0.4 ~ 0 1 % ) shown as a guide for the identification of issolvent impurities (125 MHz, 6 in ppm relative to TMS). Chemical shifts ofsignals marked with an asterisk (*) may change up to a few ppm if the samplecontains solutes with functional groups that can form hydrogen bonds. DMF:dimethyl formamide; THF tetrahydrofuran; EGDME: ethylene glycol dimethylether. 149.9* pyridine ethyl acetate DMF 206.8* acetone 192.6 CS, 171.1 162.5210 205 200 195 190 185 180 175 170 165 160 155 150 145 140 pyridine 129.1 toluene 136.0 128.4, 128.3 toluene, benzenetoluene 123.8 pyridine137.9 dimethyl sulfoxide 41.1 25.6 DMF36.4 THF
  • 232. 5.1 Alkanes 1615 l H NMR Spectroscopy / / C5.1AI kanes5.1.1Chemical ShiftsI H Chemical Shifts of Alkanes ( 6 in ppm relative to TMS, J in H z )CH4 0.23 Jgem -12.4 fH3 0.86 FH3 0.91 Jvic 7.4 CH3 FH2 1.33 CH3 FH3 0.89 Jvic 6.8 FH3 a 0.91 3J,b 7.3 CH 1.74 7H2 b 1.31 2Jbb -12.4 I 3Jbc 5.7CH3 CH3 7H2 c 3Jbci 8.5 CH3In long-chain alkanes, the methyl groups at ca. 0.8 ppm typically show distortedtriplets because of second order effects:
  • 233. 162 5 H NMR,, IHin Chemical Shifts ofC ( 6 ppm relative to TMS) Monosubstituted Alkanes1 , Substituent Methyl Ethyl Propyl -CH3 -CH2 -CH3 -CH2 -CH2 -CH3 -H 0.23 0.86 0.86 0.91 1.33 0.91 C -CH=CH2 1.71 2.00 1.oo 2.02 1.43 0.91 -C=CH 1.80 2.16 .15 2.10 SO 0.97 -phenyl 2.35 2.63 .21 2.59 .65 0.95 H -F 4.27 4.36 .24 4.30 .68 0.97 a -C1 3.06 3 -47 .33 3.47 .81 1.06 1 -Br 2.69 3.37 .66 3.35 .89 1.06 -I 2.16 3.16 .88 3.16 .88 1.03 0 -OH 3.39 3.59 1.18 3.49 1.53 0.93 -0-alkyl 3.24 3.37 1.15 3.27 1.55 0.93 -OCH=CH2 3.16 3.66 1.21 *phenyl 3.73 3.98 1.38 3.86 1.70 1.05 -0COCH3 3.67 4.12 1.26 4.02 1.65 0.95 -OCO-phenyl 3.88 4.37 1.38 4.25 1.76 1.07 -0S02-4-tolyl 3.70 4.07 1.30 3.94 1.60 0.95 N -NH2 2.47 2.74 1.10 2.61 1.43 0.93 -NHCH3 2.3 -N(CH3)2 2.31 2.32 1.06 -NHCOCH3 2.79 3.26 1.14 3.18 1.55 0.96 -NO2 4.29 4.37 1.58 4.28 2.01 1.03 -CN 1.98 2.35 1.31 2.29 1.71 1.11 -NC 2.85 3.39 1.28 S -SH 2.00 2.44 1.31 2.50 1.63 0.99 -S-alkyl 2.09 2.49 1.25 2.43 1.59 0.98 -SS-alkyl 2.30 2.67 1.35 2.63 1.71 1.03 -SOCH3 2.50 -S02CH3 2.84 2.94 2.80 0 -CHO 2.20 2.46 1.13 2.42 1.67 0.97 11 -COCH3 2.09 2.47 1.05 2.32 1.56 0.93 C -CO-phenyl 2.55 2.92 1.18 2.86 1.72 1.02 / -COOH 2.10 2.36 1.16 2.31 1.68 1.oo -COOCH3 2.01 2.32 1.15 2.22 1.65 0.98 -CONH, * 2.02 2.23 1.13 2.19 1.68 0.99 -coc1 2.66 2.93 1.24 2.87 1.74 1.00
  • 234. 5.1 Alkanes 163 H Chemical Shifts of Monosubstituted Alkanes (contd.) /(6 in ppm relative to TMS) C / Substituent Isopropyl Butyl tert-Butyl -CH -CH3 -CH2 -CH2 -CH2 -CH3 -CH3 -H 1.33 0.91 0.91 1.31 1.31 0.91 0.89 C -CH=CH2 2.06 ~ 1 . 5 ~ 1 . 2 .0.90 1.02 -C_CH 2.59 1.15 2.18 1.52 1.41 0.92 1.22 -phenyl . . 2.89 1.25 2.61 1.60 1.34 0.93 1.32 H -F 4.34 1.65 0.95 1.34 a -C1 4.14 1.55 3.42 1.68 1.41 0.92 1.60 1 -Br 4.21 1.73 1.76 -I 4.24 1.89 3.20 1.80 1.42 0.93 1.95 -OH 3.94 1.16 3.63 1.53 1.39 0.94 1.22 -0-alkyl 3.55 1.08 3.40 1.54 1.38 0.92 1.24 -OCH=CH2 4.06 1.23 3.68 1.61 1.39 0.94 -0-phenyl 4.51 1.31 3.94 1.76 1.47 0.97 -0COCH3 4.99 1.23 4.06 1.60 1.39 0.94 1.45 -0CO-phenyl 5.22 1.37 1.58 -0S02-4-tolyl 4.70 1.25 4.03 1.62 1.36 0.88 N -NH2 3.07 1.03 2.68 1.43 1.33 0.92 1.15 -NHCOCH3 4.01 1.13 3.21 1.49 1.35 0.92 1.28 -NO? 4.44 1.53 4.47 2.07 1.50 1.07 1.59 -CNL 2.67 .35 2.34 .63 1.50 0.96 1.37 -NC 3.87 .45 1.44 S -SH 3.16 .34 2.52 .59 1.43 0.92 1.43 -S-alkyl 2.93 .25 2.49 .56 1.42 0.92 1.39 -SS-alkyl 2.69 .64 1.42 0.93 1.32 -SO~CHQ 3.13 .4 1 1.44 0 -CHb 2.39 .13 2.42 .59 1.35 0.93 1.07 11 -COCH3 2.54 1.08 1.12 C -CO-phenyl 3.58 1.22 2.95 1.72 1.41 0.96/ -COOH 2.56 1.21 2.35 1.62 1.39 0.93 1.23 356 117 2.31 1.61 1.33 0.92 1.20 2.22 1.60 1.37 0.93 1.22 -coc1 2.97 1.31 2.88 1.67 1.40 0.93
  • 235. 164 5 H NMR / Estimation of IH Chemical Shifts of Aliphatic Compounds C (6 in ppm relative to TMS)[ l ]/ CH, ~ C H ~ 0.86 + Z, =X ~ C H ~ C X Y= 0.86 + Z zpi i CH2 ~ C H ,= 1 . 3 7 + Z Z a i +ZZpj i j CH 6CH=1.50+xZ,i +xzpj i j Substituent (X, Y, Z) CH3 CH2 CH z , q3 z , q 3 z , zP -C 0.00 0.05 0.00 -0.04 0.17 -0.01 -c=C 0.85 0.20 0.63 0.00 0.68 0.03 -c c- 0.94 0.32 0.70 0.13 1.04 -phenyl 1.49 0.38 1.22 0.29 1.28 0.38 H -F 3.41 0.41 2.76 0.16 1.83 0.27 a -C1 2.20 0.63 2.05 0.24 1.98 0.3 1 1 -Br 1.83 0.83 1.97 0.46 1.94 0.41 -I 1.30 1.02 1.80 0.53 2.02 0.15 0 -OH 2.53 0.25 2.20 0.15 1.73 0.08 -0-c 2.38 0.25 2.04 0.13 1.35 0.32 -0c=c 2.64 0.36 2.63 0.33 -0-phenyl 2.87 0.47 2.61 0.38 2.20 0.50 -o(C=Ot 2.81 0.44 2.83 0.24 2.47 0.59 N -N 1.61 0.14 1.32 0.22 1.13 0.23 -N+ 2.44 0.39 1.91 0.40 1.78 0.56 -N(C=Ot 1.88 0.34 1.63 0.22 2.10 0.62 -NO2 3.43 0.65 3.08 0.58 2.31 -CN 1.12 0.45 1.08 0.33 1.oo -NCS 2.51 0.54 2.27 2.14 s -s- 1.14 0.45 1.23 0.26 1.06 0.3 1 -sco- 1.41 0.37 1.54 0.63 1.31 0.19 S(=O)- 1.64 0.36 1.25 -S(=0)2- 1.98 0.42 2.08 0.52 1S O -SCN 1.75 0.66 1.62 1.64 0 -CHO 1.34 0.21 1.07 0.29 0.86 0.22 II -co- 1.23 0.20 1.12 0.24 C -COOH 1.22 0.23 0.90 0.23 0.87 0.32 / -coo- 1.15 0.28 0.92 0.35 0.83 0.63 40-N 1.16 0.28 0.94 -coc1 1.94 1.51 For other approaches: see [2]
  • 236. 5.1 Alkanes 165 H Chemical Shifts of Aromatically Substituted Alkanes(6 in ppm relative to TMS) C/ / C H 3 2.65 dmCH3 2.46 QCH3 2.17 d3 0 1.940r p3 a H 2.16 d N CH3 2.05 a 3 3.50 H<a3H 2.42 2.27 pJ N P Y a N 3 3.80 H ,CH3 2.79 CH3 2.05 P N I? H CH3 2.21 2.18 CHQCH3 2.41 0 2.47 CH3 qLCH3 2.74 tJ om 2.32 3 2.37 ,CH3 2.30 -CH3 2.30 (333 3.60 H or";, H
  • 237. 166 5 H NMR 5.1.2c/ coupIing constants Geminal Coupling Constants (25" in HZ) -8 to 2 J ~ ~ H -18 Hz Electronegative substituents cause a decrease in IJI while a double or triple bond next to the CH2 group causes an increase. The fzKr effect is strongest if one of the C-H bonds is parallel to the K orbitals: Compound Jgern Compound Jgem CH4 -12.4 CH3COCH3 - 14.9 CH3Cl -10.8 CH3COOH -14.5 CH2C12 -7.5 CH3CN -16.9 CH30H -10.8 CH2(CN)2 -20.3 -14.3 O C - C N -18.5 H2 Vicinal Coupling Constants ( 5 3" in HZ) conformation not fixed: 3J" = 7 fixed: 3 J = 0 - 18 ~ ~ Influence of Substituents on the Vicinal Coupling Constant
  • 238. 5.1 Alkanes 167Vicinal coupling constants strongly depend on the dihedral angle, @ (Karplus /equation): C / J = Jo COS:! @ - 0.3 Oo I Q I 90° J = J180 cos2 @ - 0.3 90° I @ 5 180°The same relationship between torsional angle and vicinal coupling constant holdsfor substituted alkanes if appropriate values are used for Jo and J180. Theselimiting values depend on the electronegativity and orientation of substituents, thehybridization of carbon atoms, bond lengths, and bond angles. J/Hz 15 - 10 - - 5- 0- I , I I I ( I I I I I ( I I , I I ( J I I I I I I I I I ( I I I I I 0 30 60 90 120 150 180 4 I degreesLong-Range Coupling Constants (IJl" in Hz)Coupling constants through more than three bonds (long-range coupling) inalkanes are generally much smaller than 1 Hz and thus not visible in routine 1DNMR spectra. They are, however, much larger than 1 Hz for fixed conformations(e.g. in condensed alicyclic systems, see Chapter 5.4) and in unsaturatedcompounds (see Chapter 5.2). They are also significant when electronegativesubstituents are present between the coupling partners, as e.g.: ~ 0 4J" 0.7 ~ ~ ~ 3 Ro CH35.1.3References[l] R. Burgin Schaller, C. Arnold, E. Pretsch, New parameters for predicting H NMR chemical shifts of protons attached to carbon atoms, Anal. Chim. Acta 1995, 312, 95.[2] E. Friedrich, K.G. Runkle, Empirical NMR chemical shift correlations for methyl and methylene protons, J. Chem. Educ. 1984, 61, 830.
  • 239. 168 5 ‘H NMR 5.2 Alkenesc=c 5.2.1 Substituted Ethylenes IH NMR Chemical Shifts and Coupling Constants of Alkenes ( 6 in ppm relative to TMS, J in Hz) 2.5 4.88 H ~ H ; 5 . 7 3 3Jab 10.0 - 3Jac 16.8 H H trans 19.1 4.97Hc CH31.72 3Jad 6.4 2Jbc 2.1 4Jbd -1.3 4Jcd -1.8 cH&H15*55 b -1.7 4J,b 3Jac 15.1 3Jad 6.5 HkHa5*3 CH3 CH31.54 3Jab 10.9 4Jac -1.8 3Jad 6.8 Hc CH31.58 5Jbd 1.6 C d 5Jcd 1.2 4.87 HwH:5.7: 3Jab 10.3 4Jbd -1.3 - 3Jac 17.2 4Jcd -1.7 4.94Hc CH2-CH3 3Jad 6.2 2.00 1.00 2Jbc 2.0 Geminal and Vicinal Coupling of Alkenes (J in Hz) The coupling constants strongly depend on the electronegativity of the substituents (see Table on pp 170, 171). They decrease with increasing electronegativity and number of electronegative substituents. The same trend holds for the signed values of geminal coupling constants but not for the absolute values because Jgem can be positive or negative. Although the total ranges of cis and trans vicinal coupling constants overlap, JtranS> Jcis always holds for given substituents. Typical ranges: Jgem -4 to 4 Jcis 4 to 12 JtranS 14 to 19
  • 240. Coupling Over More than Three Bonds in Alkenes (Long-RangeCoupling) ( J in H z )Allylic Coupling l @ n c=c b : Ha H 4 CiSOid Jab -3.0 to +2.0 =,-?: c-: transoid: Jac -3.5 to +2.5 H CIn acyclic systems, lJlcisoid > IJ(transoid usually holds. The magnitudes of thecoupling constants depend on the conformation. Largest absolute values areobserved if the C-H bond of the substituents overlaps with the n-electrons (@=0): @ Jab Jac 00 -3.0 -3.5 90° +1.8 +2.2 1800 -3.0 -3.5 270° 0.0 0.8Homoallylic Coupling tfb ra . * : cisoid i" IJlab 0-3 transoid lJlac 0-3 HcAllylic and homoallylic couplings with methyl groups are often comparable:4JH-C=C-CH3 5JCH3-C=C-CH3In acyclic systems, IJlcisoid < lJltransoid usually holds. Large homoallyliccoupling constants are generally observed in cyclic systems: Jab 5-11 xx X: 0, NH HxR R: any substituent bX: CH, NR: any substituent
  • 241. 170 5 H NMR H Chemical Shifts and Coupling Constants of Monosubstituted Ethylenes ( 6 in ppm relative to TMS, J in Hz)c- c HRHa Hb Substituent X Ha Hb Hc Jab Jac Jbc Other -H 5.28 5.28 5.28 19.1 11.6 2.5 C -CH3 5.73 4.97 4.88 16.8 10.0 2.1 CH3 1.72 -CH2CH=CH2 5.71 4.95 4.92 16.9 10.3 2.2 CH2 2.72 -CH2-phenyl 5.89 5.01 5.00 17.0 10.0 1.9 CH2 3.19 -c yclopropyl 5.32 5.04 4.84 17.1 10.4 1.8 -cyclohexyl 5.79 4.95 4.88 17.6 10.5 1.9 -CH2F 5.89 5.24 5.12 17.2 10.6 1.5 CH2 4.69 -CF3 5.90 5.85 5.56 17.5 11.1 0.2 -CH2C1 5.93 5.30 5.17 16.9 10.1 1.3 CH2 3.91 -CH2Br 5.99 5.29 5.11 16.8 10.0 1.2 CH2 3.87 -CH$ 6.04 5.23 5.95 16.5 9.7 1.3 CH2 3.82 -CH20H 5.98 5.26 5.12 17.4 10.5 1.7 CH2 4.12 -CH2NH2 5.97 5.15 5.04 17.3 10.4 1.7 CH2 3.29 -CH2N02 6.11 5.46 5.49 16.7 10.7 0.8 CH2 4.93 -CH=C=CH2 6.31 5.19 4.99 17.2 10.1 1.6 -C=C-CH3 5.62 5.39 5.24 17.0 11.1 2.3 -phenyl 6.72 5.72 5.20 17.9 11.1 1.0 -2-naphthyl 6.87 5.86 5.32 -2-m-xyl yl 6.65 5.22 5.48 17.9 11.4 2.1 CH3 2.27 -2-nitrophenyl 7.19 5.68 5.45 17.4 10.7 1.1 -3-nitrophenyl 6.74 5.86 5.42 17.5 10.9 0.4 -4-nitrophenyl 6.77 5.90 5.48 17.4 10.9 0.8 -2-pyridyl 6.84 6.22 5.45 18.5 11.3 1.4 -4-pyridyl - 6.61 5.91 5.42 17.6 10.8 0.7 H -r 6.17 4.37 4.03 12.8 4.7 -3.2 a -C1 6.26 5.48 5.39 14.5 7.5 -1.4 1 -Br 6.44 5.84 5.97 14.9 7.1 -1.9 -I 6.53 6.57 6.23 15.9 7.8 -1.5 0 -OH 6.45 4.18 3.82 -OCH3 6.44 4.03 3.88 14.1 7.0 -2.0 CH3 3.16 -0CH2CH3 6.46 4.17 3.96 14.4 6.9 -1.9 -OCH=CH, 6.49 4.52 4.21 14.0 6.4 -1.8 -0-phenyl 6.64 4.74 4.40 13.7 6.1 -1.6 -0CHO 7.33 4.96 4.66 13.9 6.4 -1.7 CHO 8.07 -0COCH3 7.28 4.88 4.56 14.1 6.3 -1.6 CH3 2.13 -OCOCH=CH2 7.39 4.96 4.62 14.2 6.4 -1.6 -0CO-phenyl 7.52 5.04 4.67 13.8 6.3 -1.7 -OPO(OCHiCH3)2 6.58 4.91 4.59 13.8 6.0 -2.1
  • 242. 5.2 Alkenes 171Substituent X Ha Hb Hc Jab Jac Jbc Other N -NH2 26-05 24.04 23.99 -N+(CH3)3Br- 6.50 5.76 5.54 15.1 8.2 -4.3 -NHCOCHq -1.33 -4.53 24.68 c=c J -NO2 7.12 6.55 5.87 14.6 7.0 1.4 -CN 5.73 6.20 6.07 17.9 11.8 0.9 -NC 5.90 5.58 5.35 15.6 8.6 -0.5 -NCO 6.12 5.01 4.77 15.2 7.6 -0.1 S -SCH3 6.35 4.84 5.08 16.4 10.3 -0.3 CH3 2.12 -%phenyl 6.53 5.32 5.32 16.7 9.6 -0.2 -S(O)CH3 6.77 6.08 5.92 16.7 9.8 -0.6 CH3 2.61 -S02CH3 6.76 6.43 6.14 16.5 10.0 -0.5 CH3 2.96 -S02CH=CH2 6.67 6.41 6.17 16.4 10.0 -0.6 -S020H 6.73 6.41 6.13 16.8 10.2 -1.2 -SO2OCH3 6.57 6.43 6.22 16.9 10.1 -0.6 CH3 3.85 -S02NH2 6.93 6.17 5.98 16.3 10.0 0.0 NH2 6.7 -S02NH-phenyl 6.56 6.18 5.86 16.7 10.1 -0.3 NH 9.07 -SFg 6.63 5.96 5.64 16.6 9.8 0.4 -SCN 6.19 5.66 5.70 0 -CHO 6.26 6.11 6.26 17.4 10.0 1.0 CHO 9.51 1 1 -COCH3 6.30 6.27 5.90 18.7 10.7 1.3 CH3 2.25 C -COCH=CH2 6.67 6.28 5.82 17.9 11.0 1.4 / 40-phenyl 7.20 6.52 5.81 17.7 9.9 2.3 -COOH 6.15 6.53 5.95 17.2 10.5 1.8 COOH 12.08 -COOCH3 6.14 6.40 5.83 17.4 10.6 1.5 CH3 3.76 -CONH2 6.48 6.17 5.71 17.3 7.9 5.0 NH2 7.55 -CON(CH3)2 6.64 6.12 5.55 17.0 9.8 3.4 -COF 6.14 6.60 6.25 17.3 10.7 0.8 -coc1 6.35 6.63 6.16 17.4 10.6 0.2 P -P(CH3)2 6.23 5.39 5.51 18.3 11.8 2.0 CH3 0.95 -P(CH=CH2)2 6.16 5.59 5.64 18.4 11.8 2.0 -PC19 7.48 6.64 6.68 18.6 11.7 0.4 6.72 6.25 6.21 18.9 12.9 1.8 6.42 6.13 5.90 17.5 11.0 0.3 6.60 6.26 6.14 17.9 11.8 1.8 6.82 6.34 6.17 17.9 11.7 1.6 -L1 23.9 19.3 7.1 -MgCl 6.68 5.57 6.20 23.0 17.6 7.5 -MgBr 6.67 5.51 6.15 23.3 17.7 7.6 -Si(CH3)3 6.11 5.63 5.88 20.2 14.6 3.8 CH3 0.06 -Sn(CH=CH2)3 6.39 5.75 6.21 20.7 13.4 3.1 -Pb(CH=CH2)3 6.70 5.46 6.19 19.8 12.2 2.1 -HgBr 6.45 5.52 5.92 18.7 11.9 3.1
  • 243. 172 5 H NMREstimation of IH Chemical Shifts of Substituted Ethylenes(6 in ppm relative to TMS)Substituent R zgem %is Ztrans -H 0.00 0.00 0.00 C -alkyl 0.45 -0.22 -0.28 -alkyl ring 0.69 -0.25 -0.28 -CH2-aromatic 1.05 -0.29 -0.32 -CH2X, X: F, C1, Br 0.70 0.11 -0.04 -CHF2 0.66 0.32 0.21 -CF3 0.66 0.6 1 0.32 -CH20 0.64 -0.01 -0.02 -CH2N 0.58 -0.10 -0.08 -CH2CN 0.69 -0.08 -0.06 -CH2S 0.7 1 -0.13 -0.22 -CH2CO 0.69 -0.08 -0.06 -C=C 1.oo -0.09 -0.23 -C=C conjugated2 1.24 0.02 -0.05 -c=c 0.47 0.38 0.12 -aromatic 1.38 0.36 -0.07 -aromatic, fixed3 1.60 -0.05 -aromatic, o-substituted 1.65 0.19 0.09H -F 1.54 -0.40 -1.02 a -C1 1.os 0.18 0.13 1 -Br 1.07 0.45 0.55 -I 1.14 0.81 0.880 -0c (sp3) 1.22 - 1.07 -1.21 -0c (sp2) 1.21 -0.60 -1.00 -0co- 2.1 1 -0.35 -0.64 1.33 -0.34 -0.66 0.80 - 1.26 -1.21 1.17 -0.53 -0.99 -NCO-R 2.08 -0.57 -0.72 -N=N-pheny 1 2.39 1.11 0.67 -NO2 1.87 1.30 0.62 -CN 0.27 0.75 0.55
  • 244. 5.2 Alkenes 173Substituent R %emI Zcis Ztrans s -s- 1.11 -0.29 -0.13 -so- 1.27 0.67 0.41 402- 1.55 1.16 0.93 -sco- 1.41 0.06 0.02 C=C -SCN 0.94 0.45 0.41 -SFg 1.68 0.61 0.490 -CHO 1.02 0.95 1.17 11 -co- 1.10 1.12 0.87C -CO- conjugated2 1.06 0.91 0.74/ -COOH 0.97 1.41 0.71 -COOH conjugated2 0.80 0.98 0.32 -COOR 0.80 1.18 0.55 -COOR conjugated2 0.78 1.01 0.46 -CON 1.37 0.98 0.46 -coc1 1.11 1.46 1.01 -PO(OCH2CH3)2 0.66 0.88 0.671) The increment for "alkyl ring" is to be used if the substituent and the double bond arepart of a cyclic structure.2) The increment "conjugated" is to be used if either the double bond or the substituentis conjugated to other substituents.3) The increment "aromatic, fixed" is to be used if the double bond conjugated to anaromatic ring is part of a fused ring (such as in 1,2-dihydronaphthalene). H Chemical Shifts of Substituted Isobutenes(6 in ppm relative to TMS)1.70 4.63 1.68 5.13 1.80 5.17 CH3 H cH&H CH3 H 1.62 H C i 1.881.75 5.78 1.65 6.79 1.91 5.63 cH$==(H Br CH3 cHf4H CH3OCOCH3 c k HH CH3 CHO1.75 1.65 2.111.86 5.97 1.84 5.62 1.97 6.01 cHkH cHkH cHkH CH3 COCH3 CH3 COOCH3 CH3 COCl2.06 2.12 2.12
  • 245. 174 5 NMR HIH Chemical Shifts of Enols ( 6 in ppm relative to TMS, J in Hz) =16 =16 Hb Hb 5.04 5.605.2.2DienesI H Chemical Shifts and Coupling Constants of Conjugated Dienes( 6 in pprn relative to TMS, J in Hz)5.06 6*27 3Jab 10.2 4.86 6.21 5.61 3Jab10.2 5Jbf 0.7 #He b 3Jac 17.1 3Jac 16.9 4Jcd -0.8 3Jad 10.4 3Jad 10.3 6Jce -0.7 4Jae -0.9 5Jae 0.4 5Jcf 0.7 1.71 4Jaf -0.8 Hc Hd 4Jaf -0.8 4Jde -1.6 5.16 2Jbc 1.8 4.98 5.98 2Jbc 1.9 3Jdf 15.1 5Jbe 1.3 4Jbd -0.8 3Jef 6.6 5Jbf 0.6 6Jbe -0.7 5Jcf 0.7 6.59 1.72 3Jab 10.2 2Jbc 2.1 5Jc, 0.7 3Jac 16.9 4Jbd -0.8 6Jcf -0.65.03 3Jad 10.9 5Jbe -0.7 3Jde 10.8 H e 4Jae 5.45 -1.1 6Jbf 0.7 4Jdf -1.8 Hc Hd 5Jaf 0.2 4J,d -0.8 3Jef 7.0 5.11 5.92IH Chemical Shifts and Coupling Constants of Allenes( 6 in pprn relative to TMS, J in Hz)
  • 246. 5.3 Alkynes 1755.3Alkynes5.3.1Chemical Shifts and Coupling ConstantsI H Chemical Shifts and Coupling Constants of Alkynes C=C(6 in ppm relative to TMS, J in Hz)1.80 1.80 1.80 - -I: - H - CH3 4JH,CH3 2.91.91 2.15 1.12 4Jab 2.6 1.15H-CHz-CH3 2.59 ,CH3a b c 5 ~ a c0 3Jbc 7.4 I: = cy CH3 1.74 1.77 2.13 1.11 CH3 CH2-CH3 5 a b I Jlab 2.5 5.34 4Jab 2.0 5 ~ a c 1.0 2.93 7.42 7.23 5Jab 0.28i&ci:9 CH3 d 3Jbc 0.6 6~~~ 10.5 4 J b ~ 1.6 a - - b c d 7.24 6Jac -O.ll 7Jad 0.22 1.85 3Jcd 6.51.7-2.4 2.7-3.4 H = - R - H-mR1.3 2.1-3.3H+ 0-alkyl alkyl
  • 247. 176 5 NMR H 5.4 Alicyclics H Chemical Shifts and Coupling Constants of Saturated Alicyclic Hydrocarbons ( 6 in ppm relative to TMS, J in H z ) 0.20 2Jgem -4.3 In derivatives: 2Jgem -3 to -9 * 01.94 In derivatives: 2Jgem -10 to -17 3Jcis 9.0 3Jcis 6 to 12 3J,is 4 to 12 3~trans 5.6 3~trans to 9 2 3Jp,, 2 to 100 Throughout: Jcis > Jtrans 4Jcis =O 4Jpans -1 In derivatives: .44 In derivatives: 0 lS1 2Jgem -8 to -18 3Jcis 5 to 10 3Jtrans 5 to 10 0 At-lOOC: 2Jgem -11 to -14 3J,x,ax 8 to 13 3 Jeqm 2 to 6 Ha, 1.1 3~e9,eq 2 to 5 Generally: Jeq,ax Jeq,eq + 1 c b In derivatives: b 5.95 ,13.7 701 a 0.92 3Jab 1.5 to 2.0 3Jbc 0.5 to 1.5 io a 2.57 1.o -0.3 1.8 4.6 2.8 ed0~5*66 2Jgem,a -12.8 4Jbd 3Jab 1.3 b 2.27 3Jab,cis 9-3 5Jbe,cis -23 2*1 edoc;;3i8 a 3Jab,trans 5*7 5Jbe,trans 3*0 a 1.79 2Jgem,., -16.1 3Jcd 5.8 2.80 4Jbd 1.1 3Jbc 2.3 5Jbe 2.0 3Jcd 1.9 a 6-53 3Jab 5.1 4Jbc -0.2 b 6.22 5Jac 0.5 4Jbd -0.4 5.59 3Jab =lo 5Jad 1.4 4Jbe 2.0 1.96 3Jbc 1.5 5.85 4Jae 13 2Jcd O d 3Jaf 2.0 1.65
  • 248. 5.4 Alicyclics 177 b 5.71 3Jab=10 0 e 2.49 C 2.11 3Jbc 3*7 d 2.62 6 6 . 5 0 3Jab 11.2 5J,g -0.6 a b5.56 3Jab=10 c 6.09 4Jac o.8 3Jde C 2.1 1 3Jbc 5.3 3Jbc 5.5 4Jdf 0 f e d 5.26 3Jcd 8.9 5Jdg 2.22 5Jcf 0 0 2Jgem,e -13.0 0 0.51.47 f e 2.14 4J1,4 1.2 4J4,6n -0.5 4J1,5n -0.3 4J4,6x 0.7 4 J i , 5 ~ 0.2 3 ~ 4 , 7 a 2.1 3 ~ 1 , 6 n 0.1 3J4,7s 1.6 3 ~ 1 , 6 x 4.7 2J5n,5x -12.8 J I ,7a 1*2 3J5n,6n 9*1 3J1,7s 1.6 3J5n,6x 4.7 2J3n,3x -17.6 ~5 n ,7a -0.1 3J3n,4 0 ~5 n ,7 s 2.1 1.44 4J3n,7a 4.2 3J5x,6n 4.6 ~ 3 n , 7 a 4.2 3J5x,6x 12e1 3J3x,4 4.8 2J6n,6x -12.3 4J3x,5x 2.3 J6n,7 a 3 ~ 4 , 5 n 0.1 4J6n,7s 2.3 3J4,5x 4.3 2J7a,7s -10.2
  • 249. 178 5 H NMR In condensed alicyclics, couplings over four or more bonds are often observed. Such long-range couplings are particularly large if the arrangement of the bonds between the two protons is w-shaped: 4Jac = 7 4 J a ~4Jbd = 0 , H H HC CH3 signal broadened due to long- range coupling0 H Chemical Shifts and Coupling Constants of Monosubstituted Cyclopropanes (6 in ppm relative to TMS, J in Hz) Substituent X Ha Hb,d H ~ , e 3Jab 3Jac 2Jbc 3Jbd 3Jbe 3Jce -H 0.20 0.20 0.20 9.0 5.6 -4.3 9.0 5.6 9.0 C -CH=CH2 2.36 0.64 0.34 8.2 4.9 -4.5 9.3 6.2 9.0 -phenyl 1.71 2.65 2.83 9.5 6.3 -4.5 9.5 5.2 8.9 H -F 4.32 0.69 0.27 5.9 2.4 -6.7 10.8 7.7 12.0 a -C1 2.55 0.87 0.74 7.0 3.6 -6.0 10.3 7.1 10.6 1 -Br 2.83 0.96 0.81 7.1 3.8 -6.1 10.2 7.0 10.5 -1 2.31 1.04 0.76 7.5 4.4 -5.9 9.9 6.6 10.0 0 -OH 3.35 0.59 0.34 6.2 2.9 -5.4 10.3 6.8 10.9 N -NH2 2.23 0.32 0.20 6.6 3.6 -4.3 9.7 6.2 9.9 -CN 1.36 0.94 0.93 8.4 5.1 -4.7 9.2 7.1 9.5 0 -CO-cyclopropyl 1.70 0.56 1.02 7.9 4.6 -3.5 9.1 7.0 9.5 11 -COOH 1.59 0.91 1.05 8.0 4.6 -4.0 9.3 7.1 9.7 C -COOCH3 1.95 0.81 0.85 8.0 4.6 -3.4 8.8 6.9 9.6 / -COF 1.66 1.20 1.11 8.0 4.6 -4.5 10.1 7.5 9.3 -coc1 2.11 1.18 1.28 7.9 4.4 -4.5 9.2 7.6 10.0 -Li -2.53 0.43 -0.12 10.3 9.1 -1.6 7.7 3.2 6.5 -B(cyclopropyl)2 -0.25 0.66 0.61 8.9 5.8 -3.3 8.2 5.9 8.4 -Hg-cyclopropyl 0.00 0.75 0.47 9.6 6.9 -3.7 8.5 4.8 7.9
  • 250. 5.4 Alicyclics 179 H Chemical Shifts of Axially and Equatorially MonosubstitutedCyclohexanes (6 in p p m relative to TMS)Substituent R la 2a 2e 3a 3e le 2a 2e 3a 3e -D C -CHq -pheiyl 1.12 1.27 2.47 1.12 1.60 1.12 1.60 0.81 1.57 1.15 1.60 1.60 1.93 2.98 1.12 1.60 1.12 1.60 1.37 1.40 1.39 1.34 0 H 3.63 4.34 1.7 a -Br 3.81 4.62 1 -I 3.98 4.72 0 -OH 3.38 1.09 1.78 1.19 1.61 3.89 1.35 1.58 1.58 1.33 -0COCH3 4.46 4.98 1.47 2.3 N -NH2 2.52 3.15 -NHCH3 2.08 2.70 -NO2 4.23 2.2 1.9 4.43 1.6 2.6 S -SH 2.57 0.7 1.3 3.43 1.5 1.9
  • 251. 180 5 H NMR5.5Aromatic HydrocarbonsIH Chemical Shifts and Coupling Constants of AromaticHydrocarbons ( 6 in ppm relative to TMS, J in Hz) In derivatives: In derivatives: 0 7 . 2 6 3~0d0 6.5-8.5 7.67 3Jab 8-9 5Jae ~ 0 . 9 4J,eta 1.O-3.0 g~ 87.32 4Jac 6Jaf =-Oal 5Jpara 0.0-1 .O 5Jad 5Jag =0.2 f 35bc 5-7 4Jah=-0.5 e d 7Jbf ~ 0 . 3 6Jbg ~ 0 . 1 7.98 In derivatives: b7.61 3Jab 8.4 ; 7.44 3Jab 8*5-9*5 4Jac 0.8-1.5 5Jad 0.6-0.9 e d 5Ja, 10.8 8.40 3Jbc 6.5-8.0 f 4Jde 10.4 In derivatives: 3Jef 4In routine spectra, the small long-range couplings between aromatic protons andaliphatic substituents are not resolved. Nevertheless, they are diagnostically highlyrelevant because the line broadenings caused by them are easily detected (if there isa reference line in the spectrum, e.g. from another methyl group, or in an AAXXspin system of the aromatic protons). As a confirmation, a decoupling experimentmay be useful (line sharpening on weak irradiation of the frequency of thecoupling partner) or a COSY experiment is recommended.
  • 252. 5.5 Aromatics 181 CH3 ,CH31.25 FH31.32 CH3-C- CH37.09 7.08 6 7.05 7.28 7.186*99a & 7.08 2.91 2.04 c 3.33 8 6*82 3Jab 5.8 b 6.50 4Jac 0.7 6 Jad 2.0 3Jbc 2.0 . 7.01 2.85 9 3 a 1.60 3.91 7.31 7.38 7.19 3.87 7.55 7.28 A 2 -7.29 7.75 7.22 3 - a 7.15 ad d 7.46 d 7.79 4Jbd 0.6 3Jcd
  • 253. 182 5 NMR HEffect of Substituents on H Chemical Shifts of MonosubstitutedBenzenes (in ppm relative to TMS)Substituent X z2 z3 z4 -H 0.00 0.00 0.00C -CH3 -0.20 -0.12 -0.21 -CH2CH3 -0.14 -0.05 -0.18 -CH(CH3)2 -0.13 -0.08 -0.18 -C(CH3)3 0.03 -0.08 -0.20 -CF3 0.19 -0.07 0.00 -CC13 0.55 -0.07 -0.09 -CH20H -0.07 -0.07 -0.07 -CH=CH2 0.04 -0.05 -0.12 -CH=CH-phenyl (trans) 0.16 0.00 -0.15 -CZCH 0.16 -0.03 -0.02 -C eC-phenyl 0.20 -0.04 -0.07 -phenyl 0.22 0.06 -0.04 -2-pyridyl - 0.73 0.09 0.02H -r -0.29 -0.02 -0.23 a -C1 0.01 -0.06 -0.12I -Br 0.17 -0.11 -0.06 -I 0.38 -0.23 -0.010 -OH -0.53 -0.17 -0.44 -OCH3 -0.49 -0.11 -0.44 -OCH2CH=CH2 -0.45 -0.13 -0.43 -0-phenyl -0.34 -0.04 -0.28 -0COCH3 -0.19 -0.03 -0.19 -0CO-phenyl -0.1 1 0.07 -0.10 -0SO2CH3 -0.05 0.07 -0.01N -NH2 -0.80 -0.25 -0.64 -NHCH3 -0.83 -0.22 -0.68 -N(CH3)2 -0.67 -0.18 -0.66 -N+(CH3)31- 0.72 0.40 0.34 -NHCOCH3 0.38 -0.02 -0.26 -NHNH2 -0.60 -0.08 -0.55 -N=N-phenyl 0.67 0.20 0.20 -NO 0.55 0.29 0.35 -NO2 0.93 0.26 0.39 -CN 0.25 0.18 0.30 -NCS -0.11 0.04 -0.02
  • 254. 5.5 Aromatics 183Substituent X z2 z3 z4 S -SH -0.08 -0.16 -0.22 -SCH3 -0.08 -0.10 -0.24 -,%phenyl -0.06 -0.20 -0.26 -S-S-phenyl 0.24 0.02 -0.06 -SOzCH3 0.68 0.35 0.39 -S020CH3 0.68 0.34 0.36 -s02c1 0.68 0.23 0.34 -S02NH2 0.59 0.32 0.32 0 -CHO 0.61 0.25 0.35 11 -COCH3 0.60 0.11 0.19 C -COCH2CH3 0.63 0.08 0.18 / -CO-phenyl 0.44 0.10 0.19 -CO-(2-~yridyl) 0.86 0.1 1 0.20 -COOH 0.87 0.21 0.34 -COOCH(CH3)2 0.73 0.1 1 0.20 -COO-phenyl 0.88 0.15 0.25 -CONH2 0.69 0.18 0.25 -COF 0.71 0.21 0.38 -coc1 0.81 0.21 0.37 -COBr 0.77 0.21 0.38 -CH=N-phenyl 0.64 0.24 0.24 -Li 0.77 0.26 -0.29 -MgBr 0.40 -0.19 -0.26 -Mg-phenyl -0.49 0.18 0.25 -Si(CH& 0.19 0.00 0.00 -Si( phenyl)&l 0.32 0.07 0.12 -Sic13 0.52 =0.2 =0.2 P -Pb(phenyl)2Cl 0.68 0.28 0.11 -P(PhenY 112 -0.02 -0.33 -0.33 -PO(OCH3)2 0.46 0.14 0.22 -Zn-phenyl. - -0.36 0.02 0.05 -Hg-phenyl 0.00 0.00 -0.20
  • 255. 184 5 NMR H Effect of Substituents in Position 1 on the IH Chemical Shifts of Monosubstituted Naphthalenes (in ppm relative to TMS) Substituent X H-2 H-3 H-4 H-5 H-6 H-7 H-8 C -CHq -0.22 -0.13 -0.16 -0.03 -0.03 -0.01 0.10 -CH;CH3 0.01 0.08 0.03 0.17 0.14 0.17 0.380 -CH2CtCH -CH$1 -CF3 - 0.25 0.13 0.67 -0.07 0.01 0.15 -0.06 0.09 0.18 0.00 0.13 0.23 0.03 0.14 0.23 0.13 0.20 0.29 0.69 0.42 0.52 H -r -0.22 0.01 -0.11 0.13 0.15" 0.17* 0.42 a -C1 0.17 -0.04 -0.02 0.07 0.11 0.16 0.54 1 -Br 0.38 -0.09 0.03 0.05 0.11 0.19 0.51 -I 0.10 -0.48 0.18 -0.20 -0.07 -0.02 0.27 0 -OH -0.68 -0.15 -0.36 0.01 0.03 0.06 0.41 -OCH3 -0.68 -0.09 -0.38 -0.01 0.04 0.03 0.50 -0C0CH3 -0.15 0.11 -0.10 0.03 -0.07 0.07 0.16 N -NH2 -0.77 -0.17 -0.51 -0.06 -0.02 -0.01 -0.01 -N(CH3)2 -0.30 0.03 -0.19 0.11 0.13 0.10 0.55 -NHCOCH3 0.40 0.17 0.05 0.26 0.20 0.24 0.44 -NO2 0.80 0.14 0.19 0.33 0.21 0.32 0.72 -NCO -0.29 -0.15 -0.19 -0.03 0.05 0.03 0.24 -CN 0.48 0.12 0.30 0.16 0.22 0.29 0.51 0 -CHO 0.44 0.10 0.21 0.06 0.14 0.23 1.52 11 -COCH3 0.38 -0.07 0.10 0.01 0.04 0.13 1.08 C -COOH 1.11 0.23 0.42 0.24 0.25 0.34 1.43 / -COOCHq- 0.80 0.05 0.22 0.08 0.10 0.20 1.30 -coc1 1.17 0.17 0.37 0.17 0.21 0.30 1.04 * Assignment uncertain
  • 256. 5.5 Aromatics 185Effect of Substituents in Position 2 on the lH Chemical Shifts ofMonosubstituted Naphthalenes (in ppm relative to TMS)Substituent X H-1 H-3 H-4 H-5 H-6 H-7 H-8C -CH3 -0.21 -0.14 -0.06 0.01 -0.04 -0.01 -0.03 -CH2CH3 -0.05 0.02 0.09 0.12 0.08 0.12 0.10 -CH(CH3)2 -0.07 0.01 0.05 0.07 0.04 0.06 0.07 -CH=CH2 0.06 0.30 0.11 0.11 0.10 0.12 0.11 -CF3 0.45 0.30 0.23 0.25 0.22 -c1 0.13 0.08 0.07 0.12 0.13 0.15 0.05 -Br 0.23 0.14 -0.09 -0.08 0.05 0.07 0.010 -OH -0.69 -0.35 -0.05 -0.04 -0.11 -0.02 -0.14 -OCH3 -0.70 -0.28 -0.07 -0.03 -0.11 0.00 -0.07 -0COCH3 -0.19 -0.14 0.01 0.06 -0.04 0.11 0.08N -NH2 -0.88 -0.56 -0.16 -0.12 -0.23 -0.09 -0.23 -N(CH3)2 -0.90 -0.33 -0.13 -0.12 -0.23 -0.08 -0.16 -NHCOCH3 0.50 0.14 0.07 0.06 0.07 0.10 0.08 -NO2 0.98 0.82 0.18 0.18 0.28 0.24 0.26 -CN 0.51 0.25 0.20 0.19 0.31 0.26 0.190 -CHO 0.62 0.61 0.23 0.21 0.30 0.24 0.29 11 -COCH3 0.76 0.69 0.19 0.17 0.25 0.21 0.26C -COOH 1.00 0.73 0.37 0.36 0.36 0.32 0.48/-COOCH3 0.83 0.66 0.09 0.09 0.15 0.11 0.17 -coc1 1.02 0.74 0.39 0.49 0.32 0.37 0.37
  • 257. 186 5 ’H NMR5.6Heteroaromatic Compounds5.6.1Non-Condensed Heteroaromatic Rings‘ H Chemical Shifts and Coupling Constants of Non-CondensedHeteroaromatic Compounds ( 6 in ppm relative to TMS, II in H z ) J 4Jb, 2.3 b 7.12 3Jab 5.4 b7.09 3Jab 0.8 b7.13 3Jab 1-2d‘0 Se a 7.70 4Jac c l a 1 4Jad 2.5 7.95 0 n a 7.69 4Jac O S c 4Jbc 0.0 7.70 N 0a7.13 4Jac 1-2 3Jbc 3Jbc 3.6 Hd 13.4 (J values in derivatives) ;gba ‘qb 8.15 6.28 3Jab 1.7 7.55 6.25 3Jab 2.1 4Jac 0.3 4Jac 0.0 4Jbc 1.8 y N a7.55 3Jbc 2.1 0 8.39 H d 13.7 (in CS,)8.56 3 19b7.26 aJacc0.4 :b 4.7 a8.72 3Jbc 1.7 S H 12 N-Nc( 8.27 N H 13.5 -12 (in H2S04)
  • 258. 5.6 Heteroaromatics 187 7.64(in CDCl3) b 7.25 In DMSO: a 8.59 7*38 775 In den- vatives: 3Jab 6.0 4-6 4Jac 1.9 0-2.5 5Jad 0.9 0-2.5 6 e 9.04 N H 3Jab 6.0 b8.50 4JaC 16 5Jad 0.8 a9.23 45 ae 1.0 3Jbc 7.9 4Jae 0.4 0-0.6 (in CD3CN) 4Jbd 1.4 3J13c7.6 7-9 4Jbd 1.6 0.5-2de 7.32 C f b 7.40 4JaC 3Jab 6.5 5Jad 0.6 a 8 * l 9 4Jae 1.9 3Jbc 7.7 9 N, / b755 a9.24