Data-Ed Online: Monetizing Data Management
 

Data-Ed Online: Monetizing Data Management

on

  • 737 views

Many data professionals struggle with the ability to demonstrate tangible returns on data management investments. In a webinar that is designed to appeal to both business and IT attendees, your ...

Many data professionals struggle with the ability to demonstrate tangible returns on data management investments. In a webinar that is designed to appeal to both business and IT attendees, your presenter Dr. Peter Aiken will describe multiple types of value produced through data-centric development and management practices. One of our examples, the healthcare space, offers the unique opportunity to demonstrate additional types of return on investment or value outcomes, namely returns in the form of lives saved through increased rates of Bone Marrow Donor matches. In addition to metrics around increasing revenues or decreasing costs, i.e. investments that directly impact an organization’s financial position, these additional statistics of lives saved can be used to justify data management and quality initiatives.

Takeaways:

Learn to think about data differently, in terms of how it can drive organizational needs. Data is not an IT solution but an information solution.
Take a broad view to ensure data sharing across organizational silos
Smart small and go for quick wins: Build momentum and support

Statistics

Views

Total Views
737
Views on SlideShare
610
Embed Views
127

Actions

Likes
0
Downloads
32
Comments
0

3 Embeds 127

http://www.dataversity.net 119
http://feedly.com 7
http://www.feedspot.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution-NonCommercial-NoDerivs LicenseCC Attribution-NonCommercial-NoDerivs LicenseCC Attribution-NonCommercial-NoDerivs License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Data-Ed Online: Monetizing Data Management Data-Ed Online: Monetizing Data Management Presentation Transcript

  • Copyright 2013 by Data Blueprint Show Me The Money: Monetizing Data Management Failure to successfully monetize data management investments sets up an unfortunate loop of fixing symptoms without addressing the underlying problems. As organizations begin to understand poor data management practices as the root causes of many of their business problems, they become more willing to make the required investments in our profession. This presentation uses specific examples to illustrate the costs of poor data management and how it impacts business objectives. Join us and learn how you can better align your data management projects with business objectives to justify funding and gain management approval. Date: June 10, 2014 Time: 2:00 PM ET/11:00 AM PT Presenter: Peter Aiken, Ph.D. 1 PETER AIKEN WITH JUANITA BILLINGS FOREWORD BY JOHN BOTTEGA MONETIZING DATA MANAGEMENT Unlocking the Value in Your Organization’s Most Important Asset. PETER AIKEN WITH JUANITA BILLINGS FOREWORD BY JOHN BOTTEGA MONETIZING DATA MANAGEMENT Unlocking the Value in Your Organization’s Most Important Asset.
  • Copyright 2013 by Data Blueprint Get Social With Us! Live Twitter Feed Join the conversation! Follow us: @datablueprint @paiken Ask questions and submit your comments: #dataed 2 Like Us on Facebook www.facebook.com/ datablueprint Post questions and comments Find industry news, insightful content and event updates. Join the Group Data Management & Business Intelligence Ask questions, gain insights and collaborate with fellow data management professionals
  • Show Me The Money Monetizing Data Management Presented by Peter Aiken, Ph.D. PETER AIKEN WITH JUANITA BILLINGS FOREWORD BY JOHN BOTTEGA MONETIZING DATA MANAGEMENT Unlocking the Value in Your Organization’s Most Important Asset.
  • Copyright 2013 by Data Blueprint 4 2 • 30+ years of experience in data management • Multiple international awards & recognition • Founder, Data Blueprint (datablueprint.com) • Associate Professor of IS, VCU (vcu.edu) • (Past) President, DAMA Int. (dama.org) • 9 books and dozens of articles • Experienced w/ 500+ data management practices in 20 countries • Multi-year immersions with organizations as diverse as the US DoD, Nokia, Deutsche Bank, Wells Fargo, Walmart, and the Commonwealth of Virginia Peter Aiken, Ph.D.
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 5 Tweeting now: #dataed
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 6
  • Data Program Coordination Feedback Data Development Copyright 2013 by Data Blueprint Standard Data Data Management is an Integrated System of Five Practice Areas Organizational Strategies Goals Business Data Business Value Application Models & Designs Implementation Direction Guidance 7 Organizational Data Integration Data Stewardship Data Support Operations Data Asset Use Integrated Models Leverage data in organizational activities Data management processes and infrastructure Combining multiple assets to produce extra value Organizational-entity subject area data integration Provide reliable data access Achieve sharing of data within a business area
  • Copyright 2013 by Data Blueprint Five Integrated DM Practices 8 Manage data coherently. Share data across boundaries. Assign responsibilities for data. Engineer data delivery systems. Maintain data availability. Data Program Coordination Data Development Organizational Data Integration Data Stewardship Data Support Operations
  • Maslow's Hierarchiy of Needs Copyright 2013 by Data Blueprint 9
  • You can accomplish Advanced Data Practices without becoming proficient in the Basic Data Management Practices however this will: • Take longer • Cost more • Deliver less • Present greater risk Copyright 2013 by Data Blueprint Data Management Practices Hierarchy Basic Data Management Practices Advanced Data Practices • MDM • Mining • Big Data • Analytics • Warehousing • SOA 10 Data Program Management Data Stewardship Data Development Data Support Operations Organizational Data Integration
  • Copyright 2013 by Data Blueprint We believe ... • Data is the most powerful, yet underutilized and poorly managed, asset in business today. • Data is your – Sole – Non-depletable – Non-degrading – Durable – Strategic • Asset • Our mission is to unlock business value by – Strengthening your data management capabilities – Providing tailored solutions, and – Building lasting partnerships. 11
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 12
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 13
  • Copyright 2013 by Data Blueprint 2013 Monetizing Data Management Survey Results 14
  • Copyright 2013 by Data Blueprint 15 2013 Monetizing Data Management Survey Results
  • Copyright 2013 by Data Blueprint Amazon Reviews 16
  • Copyright 2013 by Data Blueprint One Star Reviews • "My reason for purchasing this book was to learn about how organizations are finding ways to monitize their data assets. By that I mean finding ways to generate income using their data assets or the insights derived from those assets." • "This book title 'Monetizing data management', the reason I purchased this book is to know how to earn the money from organizational data. however this book didn't talk anything about making money through data management." 17 PETER AIKEN WITH JUANITA BILLINGS FOREWORD BY JOHN BOTTEGA MONETIZING DATA MANAGEMENT Unlocking the Value in Your Organization’s Most Important Asset.
  • Copyright 2013 by Data Blueprint Five Star Reviews • "A book you can read from cover to cover on an airplane trip or during lunch over a period of days. I'm very big on stories, and the book contains many stories from the authors' experiences on how to valuate data management. It helped me brainstorm on a presentation I was working on to explain the value of our enterprise information management initiative." • "A concise summary of how to put a value on data management in your organization. I would not categorize this book as a "how to" guide - more of a brainstorming book to help someone come up with a value for their hard data management work. Great stories and tangible results!" 18 PETER AIKEN WITH JUANITA BILLINGS FOREWORD BY JOHN BOTTEGA MONETIZING DATA MANAGEMENT Unlocking the Value in Your Organization’s Most Important Asset.
  • Copyright 2013 by Data Blueprint Motivation ... • Amazon rank: 1,257,801 • Task: helping our community better articulate the importance of what we do • Until we can meaningfully communicate in monetary or other terms equally important to the C-suite, we will continue to struggle to articulate the value of its role • Today’s business executives – Smart, talented and experienced experts – Executive decision-makers being far removed and insufficiently data knowledgeable – Too many decisions about data have been poor • Four Parts – Unique perspective to the practice of leveraging data – 11 cases where leveraging data has produced positive financial results – Five instance non-monetary outcomes of critical important to the C-suite – Interaction of data management practices and both IT projects and legal responsibilities 19 PETER AIKEN WITH JUANITA BILLINGS FOREWORD BY JOHN BOTTEGA MONETIZING DATA MANAGEMENT Unlocking the Value in Your Organization’s Most Important Asset.
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 20
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 21
  • Copyright 2013 by Data Blueprint Data Data Data Information Fact Meaning Request Strategic Information Use: Prerequisites [Built on definitions from Dan Appleton 1983] Intelligence Strategic Use 1. Each FACT combines with one or more MEANINGS. 2. Each specific FACT and MEANING combination is referred to as a DATUM. 3. An INFORMATION is one or more DATA that are returned in response to a specific REQUEST 4. INFORMATION REUSE is enabled when one FACT is combined with more than one MEANING. 5. INTELLIGENCE is INFORMATION associated with its STRATEGIC USES. 6. DATA/INFORMATION must formally arranged into an ARCHITECTURE. Wisdom & knowledge are often used synonymously Data Data Data Data 22
  • Copyright 2013 by Data Blueprint Leverage is an Engineering Concept 23 • Using proper engineering techniques, a human can lift a bulk that is weighs much more than the human
  • Copyright 2013 by Data Blueprint Data Leverage is an Engineering Concept 24 Organizational Data Organizational Data Managers Technologies Process People • Note: Reducing ROT increases data leverage Less Data ROT ->
  • Copyright 2013 by Data Blueprint Why Is Data Management Important? • Too much data leads directly to wasted productivity – Eighty percent (80%) of organizational data is redundant, obsolete or trivial (ROT) • Underutilized data leads directly to poorly leveraged organizational resources – Manpower – costs associated with labor resources and market share – Money – costs associated with management of financial resources – Methods – costs associated with operational processes and product delivery – Machines – costs associated with hardware, software applications and data to enhance production capability 25
  • Copyright 2013 by Data Blueprint Incorrect Educational Focus • Building new systems – 80% of IT costs are spent rebuilding and evolving existing systems and only 20% of costs are spent building and acquiring new systems – Putting fresh graduates on new projects makes this proposition more ridiculous – Only the most experienced professionals should be allowed to participate in new systems development. • Who is responsible for managing data assets? – Business thinks IT is taking care of it - it is called IT after all? – IT thinks if you can sign on to the system their job is complete • System development practices – Data evolution is separate from, external to and must precede system development life cycle activities! – Data is not a project - it has no distinct beginning and end 26
  • Copyright 2013 by Data Blueprint Evolving Data is Different than Creating New Systems 27 Common Organizational Data (and corresponding data needs requirements) New Organizational Capabilities Systems Development Activities Create Evolve Future State (Version +1) Data evolution is separate from, external to, and precedes system development life cycle activities!
  • Copyright 2013 by Data Blueprint Application-Centric Development Original articulation from Doug Bagley @ Walmart 28 Data/ Information Network/ Infrastructure Systems/ Applications Goals/ Objectives Strategy • In support of strategy, organizations develop specific goals/objectives • The goals/objectives drive the development of specific systems/applications • Development of systems/applications leads to network/infrastructure requirements • Data/information are typically considered after the systems/applications and network/ infrastructure have been articulated • Problems with this approach: – Ensures data is formed to the applications and not around the organizational-wide information requirements – Process are narrowly formed around applications – Very little data reuse is possible
  • Copyright 2013 by Data Blueprint Payroll Application (3rd GL)Payroll Data (database) R& D Applications (researcher supported, no documentation) R & D Data (raw) Mfg. Data (home grown database) Mfg. Applications (contractor supported) Finance Data (indexed) Finance Application (3rd GL, batch system, no source) Marketing Application (4rd GL, query facilities, no reporting, very large) Marketing Data (external database) Personnel App. (20 years old, un-normalized data) Personnel Data (database) 29 Typical System Evolution
  • Einstein Quote Copyright 2013 by Data Blueprint 30 "The significant problems we face cannot be solved at the same level of thinking we were at when we created them." - Albert Einstein
  • Copyright 2013 by Data Blueprint Data-Centric Development Original articulation from Doug Bagley @ Walmart 31 Systems/ Applications Network/ Infrastructure Data/ Information Goals/ Objectives Strategy • In support of strategy, the organization develops specific goals/objectives • The goals/objectives drive the development of specific data/information assets with an eye to organization-wide usage • Network/infrastructure components are developed to support organization-wide use of data • Development of systems/applications is derived from the data/network architecture • Advantages of this approach: – Data/information assets are developed from an organization-wide perspective – Systems support organizational data needs and compliment organizational process flows – Maximum data/information reuse
  • Copyright 2013 by Data Blueprint Polling Question #1 • Who or what department(s) makes the decision on investing in data management initiatives? A) IT B) Supported business area C) IT and the supported business area together D) Office of Chief Data Officer or Enterprise Data Office/Equivalent 32
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 33
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 34
  • Copyright 2013 by Data Blueprint Monitization: Time & Leave Tracking 35 At Least 300 employees are spending 15 minutes/week tracking leave/time
  • Copyright 2013 by Data Blueprint 36 Capture Cost of Labor/Category
  • District-L (as an example) Leave Tracking Time Accounting Employees 73 50 Number of documents 1000 2040 Timesheet/employee 13.70 40.8 Time spent 0.08 0.25 Hourly Cost $6.92 $6.92 Additive Rate $11.23 $11.23 Semi-monthly cost per timekeeper $12.31 $114.56 Total semi-monthly timekeeper cost $898.49 $5,727.89 Annual cost $21,563.83 $137,469.40 Copyright 2013 by Data Blueprint 37 Compute Labor Costs
  • • Range $192,000 - $159,000/month • $100,000 Salem • $159,000 Lynchburg • $100,000 Richmond • $100,000 Suffolk • $150,000 Fredericksburg • $100,000 Staunton • $100,000 NOVA • $800,000/month or $9,600,000/annually • Awareness of the cost of things considered overhead Copyright 2013 by Data Blueprint 38 Annual Organizational Totals
  • Copyright 2013 by Data Blueprint International Chemical Company Engine Testing 39 • $1billion (+) chemical company • Develops/manufactures additives enhancing the performance of oils and fuels ... • ... to enhance engine/ machine performance – Helps fuels burn cleaner – Engines run smoother – Machines last longer • Tens of thousands of tests annually – Test costs range up to $250,000!
  • Copyright 2013 by Data Blueprint 40 1. Manual transfer of digital data 2. Manual file movement/duplication 3. Manual data manipulation 4. Disparate synonym reconciliation 5. Tribal knowledge requirements 6. Non-sustainable technology
  • Copyright 2013 by Data Blueprint Data Integration Solution • Integrated the existing systems to easily search on and find similar or identical tests • Results: – Reduced expenses – Improved competitive edge and customer service – Time savings and improve operational capabilities • According to our client’s internal business case development, they expect to realize a $25 million gain each year thanks to this data integration 41
  • Copyright 2013 by Data Blueprint Vocabulary is Important-Tank, Tanks, Tankers, Tanked 42
  • Copyright 2013 by Data Blueprint How one inventory item proliferates data throughout the chain 43 555 Subassemblies & subcomponents 17,659 Repair parts or Consumables System 1: 18,214 Total items 75 Attributes/ item 1,366,050 Total attributes System 2 47 Total items 15+ Attributes/item 720 Total attributes System 3 16,594 Total items 73 Attributes/item 1,211,362 Total attributes System 4 8,535 Total items 16 Attributes/item 136,560 Total attributes System 5 15,959 Total items 22 Attributes/item 351,098 Total attributes Total for the five systems show above: 59,350 Items 179 Unique attributes 3,065,790 values
  • • National Stock Number (NSN) Discrepancies – If NSNs in LUAF, GABF, and RTLS are not present in the MHIF, these records cannot be updated in SASSY – Additional overhead is created to correct data before performing the real maintenance of records • Serial Number Duplication – If multiple items are assigned the same serial number in RTLS, the traceability of those items is severely impacted – Approximately $531 million of SAC 3 items have duplicated serial numbers • On-Hand Quantity Discrepancies – If the LUAF O/H QTY and number of items serialized in RTLS conflict, there can be no clear answer as to how many items a unit actually has on-hand – Approximately $5 billion of equipment does not tie out between the LUAF & RTLS Copyright 2013 by Data Blueprint Business Implications
  • Copyright 2013 by Data Blueprint Improving Data Quality during System Migration 45 • Challenge – Millions of NSN/SKUs maintained in a catalog – Key and other data stored in clear text/comment fields – Original suggestion was manual approach to text extraction – Left the data structuring problem unsolved • Solution – Proprietary, improvable text extraction process – Converted non-tabular data into tabular data – Saved a minimum of $5 million – Literally person centuries of work
  • Unmatched Items Ignorable Items Items Matched Week # (% Total) (% Total) (% Total) 1 31.47% 1.34% N/A 2 21.22% 6.97% N/A 3 20.66% 7.49% N/A 4 32.48% 11.99% 55.53% … … … … 14 9.02% 22.62% 68.36% 15 9.06% 22.62% 68.33% 16 9.53% 22.62% 67.85% 17 9.50% 22.62% 67.88% 18 7.46% 22.62% 69.92% Copyright 2013 by Data Blueprint Determining Diminishing Returns 46
  • Time needed to review all NSNs once over the life of the project:Time needed to review all NSNs once over the life of the project: NSNs 2,000,000 Average time to review & cleanse (in minutes) 5 Total Time (in minutes) 10,000,000 Time available per resource over a one year period of time:Time available per resource over a one year period of time: Work weeks in a year 48 Work days in a week 5 Work hours in a day 7.5 Work minutes in a day 450 Total Work minutes/year 108,000 Person years required to cleanse each NSN once prior to migration:Person years required to cleanse each NSN once prior to migration: Minutes needed 10,000,000 Minutes available person/year 108,000 Total Person-Years 92.6 Resource Cost to cleanse NSN's prior to migration:Resource Cost to cleanse NSN's prior to migration: Avg Salary for SME year (not including overhead) $60,000.00 Projected Years Required to Cleanse/Total DLA Person Year Saved 93 Total Cost to Cleanse/Total DLA Savings to Cleanse NSN's: $5.5 million Copyright 2013 by Data Blueprint 47 Quantitative Benefits
  • Copyright 2013 by Data Blueprint Seven Sisters (from British Telecom) 48 Thanks to Dave Evans http://www.datablueprint.com/thought-leaders/peter-aiken/book-monetizing-data-management/
  • Copyright 2013 by Data Blueprint Polling Question #2 • Is it hard to obtain funding for your data management projects? A) Yes, because it is hard to show value B) Yes, because we have not aligned with the business objectives C) Yes, because no precedent has been set D) No, because we can clearly demonstrate value 49
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 50
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 51
  • In one of the more horrifying incidents I've read about, U.S. soldiers and allies were killed in December 2001 because of a stunningly poor design of a GPS receiver, plus "human error." http://www.washingtonpost.com/wp-dyn/articles/A8853-2002Mar23.html A U.S. Special Forces air controller was calling in GPS positioning from some sort of battery-powered device. He "had used the GPS receiver to calculate the latitude and longitude of the Taliban position in minutes and seconds for an airstrike by a Navy F/ A-18." According to the *Post* story, the bomber crew "required" a "second calculation in 'degree decimals'" -- why the crew did not have equipment to perform the minutes-seconds conversion themselves is not explained. The air controller had recorded the correct value in the GPS receiver when the battery died. Upon replacing the battery, he called in the degree-decimal position the unit was showing -- without realizing that the unit is set up to reset to its *own* position when the battery is replaced. The 2,000-pound bomb landed on his position, killing three Special Forces soldiers and injuring 20 others. If the information in this story is accurate, the RISKS involve replacing memory settings with an apparently-valid default value instead of blinking 0 or some other obviously-wrong display; not having a backup battery to hold values in memory during battery replacement; not equipping users to translate one coordinate system to another; and using a device with such flaws in a combat situation Copyright 2013 by Data Blueprint Friendly Fire deaths traced to Dead Battery 52
  • Suicide Mitigation Copyright 2013 by Data Blueprint 53
  • Suicide MitigationData Mapping 12 Mental illness Deploy ments Work History Soldier Legal Issues Abuse Suicide Analysis FAPDMSS G1 DMDC CID Data objects complete? All sources identified? Best source for each object? How reconcile differences between sources? MDR Copyright 2013 by Data Blueprint 54
  • Copyright 2013 by Data Blueprint Senior Army Official • A very heavy dose of management support • Any questions as to future data ownership, "they should make an appointment to speak directly with me!" • Empower the team – The conversation turned from "can this be done?" to "how are we going to accomplish this?" – Mistakes along the way would be tolerated – Implement a workable solution in prototype form 55
  • Copyright 2013 by Data Blueprint Communication Patterns 56 Source: The Challenge and the Promise: Strengthening the Force, Preventing Suicide and Saving Lives - The Final Report of the Department of Defense Task Force on the Prevention of Suicide by Members of the Armed Forces - August 2010
  • Copyright 2013 by Data Blueprint Polling Question #3 • What percentage of your data projects are successful? A) All B) 25% C) 75% D) none 57
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 58
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 59
  • Plaintiff (Company X) Defendant (Company Y) April Requests a recommendation from ERP Vendor Responds indicating "Preferred Specialist" status July Contracts Defendant to implement ERP and convert legacy data Begins implementation January Realizes a key milestone has been missed Stammers an explanation of "bad" data July Slows then stops Defendant invoice payments Removes project team Files arbitration request as governed by contract with Defendant Copyright 2013 by Data Blueprint Messy Sequencing Towards Arbitration 60
  • Copyright 2013 by Data Blueprint Points of Contention • Who owned the risks? • Who was the project manager? • Was the data of poor quality? • Did the contractor (Company Y) exercise due diligence? • Was their methodology adequate? • Were required standards of care followed and were the work products of required quality? 61
  • Copyright 2013 by Data Blueprint Expert Reports Ours provided evidence that : 1. Company Y's conversion code introduced errors into the data 2. Some data that Company Y converted was of measurably lower quality than the quality of the data before the conversion 3. Company Y caused harm by not performing an analysis of the Company X's legacy systems and that that the required analysis was not a part of any project plan used by Company Y 4. Company Y caused harm by withholding specific information relating to the perception of the on-site consultants' views on potential project success Expert Report 62
  • Copyright 2013 by Data Blueprint FBI & Canadian Social Security Gender Codes 1. Male 2. Female 3. Formerly male now female 4. Formerly female now male 5. Uncertain 6. Won't tell 7. Doesn't know 8. Male soon to be female 9. Female soon to be male If column 1 in source = "m" • then set value of target data to "male" • else set value of target data to "female" 51
  • Copyright 2013 by Data Blueprint The defendant knew to prevent duplicate SSNs !************************************************************************ ! Procedure Name: 230-Assign-PS-Emplid ! ! Description : This procedure generates a PeopleSoft Employee ID ! (Emplid) by incrementing the last Emplid processed by 1 ! First it checks if the applicant/employee exists on ! the PeopleSoft database using the SSN. ! !************************************************************************ Begin-Procedure 230-Assign-PS-Emplid move 'N' to $found_in_PS !DAR 01/14/04 move 'N' to $found_on_XXX !DAR 01/14/04 BEGIN-SELECT -Db'DSN=HR83PRD;UID=PS_DEV;PWD=psdevelopment' NID.EMPLID NID.NATIONAL_ID move 'Y' to $found_in_PS !DAR 01/14/04 move &NID.EMPLID to $ps_emplid FROM PS_PERS_NID NID !WHERE NID.NATIONAL_ID = $ps_ssn WHERE NID.AJ_APPL_ID = $applicant_id END-SELECT if $found_in_PS = 'N' !DAR 01/14/04 do 231-Check-XXX-for-Empl !DAR 01/14/04 if $found_on_XXX = 'N' !DAR 01/14/04 add 1 to #last_emplid let $last_emplid = to_char(#last_emplid) let $last_emplid = lpad($last_emplid,6,'0') let $ps_emplid = 'AJ' || $last_emplid end-if end-if !DAR 01/14/04 End-Procedure 230-Assign-PS-Emplid AJHR0213_CAN_UPDATE.SQR The exclamation point prevents this line from looking for duplicates, so no check is made for a duplicate SSN/National ID Legacy systems business rules allowed employees to have more than one AJ_APPL_ID. 64
  • Copyright 2013 by Data Blueprint 65
  • Copyright 2013 by Data Blueprint Identified & Quantified Risks 66
  • Copyright 2013 by Data Blueprint Risk Response “Risk response development involves defining enhancement steps for opportunities and threats.” Page 119, Duncan, W., A Guide to the Project Management Body of Knowledge, PMI, 1996 "The go-live date may need to be extended due to certain critical path deliverables not being met. This extension will require additional tasks and resources. The decision of whether or not to extend the go-live date should be made by Monday, November 3, 20XX so that resources can be allocated to the additional tasks." Tasks Hours New Year Conversion 120 Tax and payroll balance conversion 120 General Ledger conversion 80 Total 320 Resource Hours G/L Consultant 40 Project Manager 40 Recievables Consultant 40 HRMS Technical Consultant 40 Technical Lead Consultant 40 HRMS Consultant 40 Financials Technical Consultant 40 Total 280 Delay Weekly Resources Weeks Tasks Cumulative January (5 weeks) 280 5 320 1720 February (4 weeks) 280 4 1120 Total 2840 67
  • Process Planning Area Company YCompany Y Company X Lead Methodology Demonstrated Scope Planning √ √ Scope Definition √ √ Activity Definition √ Activity Sequencing √ Activity Duration Estimation √ Schedule Development √ Resource Planning √ √ Cost Estimating √ Cost Budgeting √ Project Plan Development ? Quality Planning ? ? Communication Planning √ √ Risk Identification √ √ Risk Quantification √ Risk Response √ ? ? Organizational Planning √ √ Staff Acquisition √ Copyright 2013 by Data Blueprint Project Management Planning 68
  • Copyright 2013 by Data Blueprint Inadequate Standard of Care - Tasks without Predecessors 69
  • Copyright 2013 by Data Blueprint Inadequate Standard of Care 70
  • Copyright 2013 by Data Blueprint Professional & Workmanlike Manner 71 Defendant warrants that the services it provides hereunder will be performed in a professional and workmanlike manner in accordance with industry standards.
  • Copyright 2013 by Data Blueprint The Defense's "Industry Standards" • Question: – What are the industry standards that you are referring to? • Answer: – There is nothing written or codified, but it is the standards which are recognized by the consulting firms in our (industry). • Question: – I understand from what you told me just a moment ago that the industry standards that you are referring to here are not written down anywhere; is that correct? • Answer: – That is my understanding. • Question: – Have you made an effort to locate these industry standards and have simply not been able to do so? • Answer: – I would not know where to begin to look. 72
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 73
  • Copyright 2013 by Data Blueprint 1. Data Management Overview 2. Book Motivations 3. Leveraging Data 4. Monetary ROI (6 cases) 5. Non-Monetary ROI (2 cases) 6. Legal Considerations 7. Take Aways and Q&A Outline 74
  • Monetizing Data Management Copyright 2013 by Data Blueprint 75 • State Agency Time & Leave Tracking – Time and leave tracking • $1 million USD annually • International Chemical Company – Data management: Test results – $25 million UDS annually • ERP Implementation – Transformation of non-tabular data • $5 million annually • Person Centuries • British Telecom Project Rollout – £250 (small investment) • Non-Monetary Examples – Friendly Fire – Suicide Mitigation • Legal – ERP Implementation Legal Case • $ 5,355,450 CAN damages/penalties PETER AIKEN WITH JUANITA BILLINGS FOREWORD BY JOHN BOTTEGA MONETIZING DATA MANAGEMENT Unlocking the Value in Your Organization’s Most Important Asset.
  • Copyright 2013 by Data Blueprint Upcoming Events 76 July Webinar: Designing and Managing Data Structure July 8, 2014 @ 2:00 PM – 3:30 PM ET (11:00 AM-12:30 PM PT) Sign up here: • www.datablueprint.com/webinar-schedule • www.Dataversity.net Brought to you by: