Your SlideShare is downloading. ×
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Portafolio mate
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Portafolio mate

194

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
194
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
11
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Módulo De Àlgebra Página 1 UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES ESCUELA DE DESARROLLO INTEGRAL AGROPECUARIO MÓDULO “ÀLGEBRA” PRIMER NIVEL PARALELO: “ B ” DIANA KAROLINA MONTAÑO LUNA ING. OSCAR RENÉ LOMAS REYES MARZO 2013 – AGOSTO 2013
  • 2. Módulo De Àlgebra Página 2 Contenido INTRODUCCIÓN............................................................................................................................. 3 OBJETIVOS................................................................................................................................. 4 CONJUNTO DE NÚMEROS NATURALES..................................................................................... 5 PROPIEDADES DE LOS NÚMEROS REALES................................................................................. 6 EXPONENTES Y RADICALES........................................................................................................ 7 EXPRESIONES ALGEBRAICAS ..................................................................................................... 9 ¿QUÉ ES UNA ECUACIÓN?....................................................................................................... 11 Partes de una ecuación........................................................................................................... 11 ¡Exponente!............................................................................................................................. 12 PRODUCTOS NOTABLES .......................................................................................................... 13 FACTORIZACIÓN...................................................................................................................... 15 FACTORIZACIÓN POR AGRUPAMIENTO.................................................................................. 16 ECUACIONES LINEALES............................................................................................................ 16 SILABO......................................................................................................................................... 18
  • 3. Módulo De Àlgebra Página 3 INTRODUCCIÓN El álgebra es una rama de las matemáticas que se ocupa de estudiar las propiedades generales de las operaciones aritméticas y lo números para generar procedimientos que puedan globalizarse para todos los casos análogos. Esta rama se caracteriza por hacer implícitas las incógnitas dentro de la misma operación; ecuación algebraica. El álgebra continuó su constante progreso en la antigua Grecia. Los griegos usaban el álgebra para expresar ecuaciones y teoremas, un ejemplo es el Teorema de Pitágoras. El Álgebra es el área de las matemáticas donde las letras (como x o y) u otros símbolos son usados para representar números desconocidos. Por ejemplo: en x - 5 = 2, x es desconocido, pero puede resolverse sumando 5 a ambos lados del signo igual (=), así: x - 5 = 2 x - 5 + 5 = 2 + 5 x + 0 = 7 x = 7 (la respuesta) Se realizara el estudio tanto de números reales, números enteros positivos, negativos , fraccionarios , productos notables, factorización , sistemas de ecuaciones lineales aplicadas a nuestra carrera.
  • 4. Módulo De Àlgebra Página 4 OBJETIVOS OBJETIVO GENERAL  Recopilar toda la información de cada tema ya visto en el módulo de algebra, para que sirva de guía base para nuestro estudio. OBJETIVOS ESPECÍFICOS  Elaborar el portafolio estudiantil  Analizar la información recolectada que servirá de base de estudio para la evaluación.  Trabajar en forma grupal en la recolección de la información
  • 5. Módulo De Àlgebra Página 5 CONJUNTO DE NÚMEROS NATURALES Ciertos conjuntos de números tienen nombres especiales. Los números 1,2,3 y así sucesivamente , forman el conjunto de los números enteros positivos o números naturales. Conjunto de los enteros positivos = (1, 2,3…) Los enteros positivos junto con el cero, y los enteros negativos-1,-2,-3…… forman el conjunto de los enteros. Conjunto de enteros = (…,-3,-2,-1, 0, 1, 2,3,…) El conjunto de los números racionales consiste en números como y , que pueden escribirse como una razón (cociente) de dos enteros. Esto es, un numero racional es aquél que puede escribirse como donde p y q son enteros y q ≠ 0. El entero 2 es racional puesto que 2 = . De hecho todo entero es racional. Los números que se representan mediante decimales no periódicos que terminan se conocen como números irracionales. Los números y √ son ejemplos de números irracionales. Junto, los números racionales y los números irracionales forman el conjunto de los números reales. Los números reales pueden representarse por puntos en una recta. Primeros se selecciona un punto de la recta para representar el cero. Las posiciones a la derecha del origen se consideran positivas y las de la izquierda negativas
  • 6. Módulo De Àlgebra Página 6 PROPIEDADES DE LOS NÚMEROS REALES Propiedad transitiva de igualdad.-Dos números iguales a un tercer número son iguales entre sí. Propiedad de cerradura de la suma y la multiplicación.- Dos números pueden sumarse o multiplicarse y el resultado en cada caso es un número real. Propiedad conmutativa de la suma y la multiplicación.- Dos números pueden sumarse y multiplicarse en cualquier orden. Propiedad asociativa de la suma y la multiplicación.- En la suma o en la multiplicación, los números pueden agruparse en cualquier orden. ( ) ( ) ( ) ( ) Propiedad de la identidad.- existen números reales denotados 0 y 1 tales que para todo número real a. Propiedad del inverso.- Para cada número real a, existe un único número real denotado poa –a ( ) Propiedad distributiva.- establece que multiplicar una suma por un número da el mismo resultado que multiplicar cada sumando por el número y después sumar todos los productos. ( ) ( )
  • 7. Módulo De Àlgebra Página 7 EXPONENTES Y RADICALES Exponentes Un exponente es un valor índice que me indica el número de veces que se va a multiplicar otro valor conocido como base. El exponente se coloca arriba y a la derecha del valor base. Por ejemplo:  b es el valor base y -5 es el exponente  -2 es el valor base y 7 es el exponente Leyes de los exponentes ( )( ) ( ) ( ) ( ) ( ) RADICALES La radicación es la operación inversa a la potenciación. Se llama raíz enésima de un número “x” a otro número “y”, que elevado a la “n” da como resultado “x”. √ n = índice x = radicando y = raíz
  • 8. Módulo De Àlgebra Página 8 √ =signo radical Leyes radicales √ √ √ √ √ √ √ √ √ √ √ √ ( √ )
  • 9. Módulo De Àlgebra Página 9 EXPRESIONES ALGEBRAICAS Se llama a un conjunto de letras y números ligados por los signos de las operaciones aritméticas. Monomio: Se llama monomio a la expresión algebraica que tiene un solo término. Ejemplos de expresiones algebraicas de un solo término: Binomio: Se llama binomio a la expresión algebraica que tiene dos términos. Ejemplos de expresiones algebraicas de dos términos: Trinomio: Se llama trinomio a la expresión algebraica que tiene tres términos. Ejemplo: Las expresiones algebraicas que contienen más de tres términos se llaman Polinomios. Suma o adición.- es una operación que tiene por objeto reunir dos o más expresiones algebraicas en una sola expresión algebraica.
  • 10. Módulo De Àlgebra Página 10 Resta o sustracción.- se escribe el minuendo con sus propios signos y a continuación el sustraendo con los signos cambiados y se reducen los términos semejantes. Multiplicación.- se multiplica el monomio por cada uno de los términos del polinomio, teniendo en cuenta en cada caso la regla de los signos , y se separan los productos parciales con sus propios signos. División.- se divide cada uno de los términos del polinomio por el monomio separando los cocientes parciales con sus propios signos.
  • 11. Módulo De Àlgebra Página 11 ¿QUÉ ES UNA ECUACIÓN? Una ecuación dice que dos cosas son iguales. Tendrá un signo de igualdad "=", por ejemplo: x + 2 = 6 Lo que esta ecuación dice: lo que está a la izquierda (x + 2) es igual que lo que está en la derecha (6) Así que una ecuación es como una afirmación "esto es igual a aquello" Partes de una ecuación Para que la gente pueda hablar de ecuaciones, hay nombres para las diferentes partes (¡mejor que decir "esta cosa de aquí"!) Aquí tienes una ecuación que dice 4x-7 es igual a 5, y todas sus partes: Una variable es un símbolo para un número que todavía no conocemos. Normalmente es una letra como x o y. Un número solo se llama una constante. Un coeficiente es un número que está multiplicando a una variable (4x significa 4 por x, así que 4 es un coeficiente) Un operador es un símbolo (como +, ×, etc) que representa una operación (es decir, algo que quieres hacer con los valores).
  • 12. Módulo De Àlgebra Página 12 Un término es o bien un número o variable solo, o números y variables multiplicados juntos. Una expresión es un grupo de términos (los términos están separados por signos + o -) Ahora podemos decir cosas como "esa expresión sólo tiene dos términos", o "el segundo término es constante", o incluso "¿estás seguro de que el coeficiente es 4?" ¡Exponente! El exponente (como el 2 en x2 ) dice cuántas veces usar el valor en una multiplicación. Ejemplos: 82 = 8 × 8 = 64 y3 = y × y × y y2 z = y × y × z Los exponentes hacen más fácil escribir y usar muchas multiplicaciones Ejemplo: y4 z2 es más fácil que y × y × y × y × z × z, o incluso yyyyzz
  • 13. Módulo De Àlgebra Página 13 PRODUCTOS NOTABLES Binomio al cuadrado Binomio de suma al cuadrado Un binomio al cuadrado (suma) es igual es igual al cuadrado del primer término, más el doble producto del primero por el segundo más el cuadrado segundo. (a + b)2 = a2 + 2 · a · b + b2 (X + 3)2 = x 2 + 2 · x ·3 + 3 2 = x 2 + 6 x + 9 Binomio de resta al cuadrado Un binomio al cuadrado (resta) es igual es igual al cuadrado del primer término, menos el doble producto del primero por el segundo, más el cuadrado segundo. (a − b)2 = a2 − 2 · a · b + b2 (2x − 3)2 = (2x)2 − 2 · 2x · 3 + 3 2 = 4x2 − 12 x + 9 Suma por diferencia Una suma por diferencia es igual a diferencia de cuadrados. (a + b) · (a − b) = a2 − b2 (2x + 5) · (2x - 5) = (2 x)2 − 52 = 4x2 − 25 Binomio al cubo Binomio de suma al cubo Un binomio al cubo (suma) es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo. (a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3 (x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 32 + 33 = = x 3 + 9x2 + 27x + 27
  • 14. Módulo De Àlgebra Página 14 Binomio de resta al cubo Un binomio al cubo (resta) es igual al cubo del primero, menos el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, menos el cubo del segundo. (a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3 (2x - 3)3 = (2x)3 - 3 · (2x)2 ·3 + 3 · 2x· 32 - 33 = = 8x 3 - 36 x2 + 54 x - 27 Trinomio al cuadrado Un trinomio al cuadrado es igual al cuadrado del primero, más el cuadrado del seguno, más el cuadrado del tercero, más el doble del primero por el segundo, más el doble del primero por el tercero, más el doble del segundo por el tercero. (a + b + c)2 = a2 + b2 + c2 + 2 · a · b + 2 · a · c + 2 · b · c (x2 − x + 1)2 = = (x2 )2 + (−x)2 + 12 +2 · x2 · (−x) + 2 x2 · 1 + 2 · (−x) · 1 = = x4 + x2 + 1 − 2x3 + 2x2 − 2x = = x4 − 2x3 + 3x2 − 2x + 1 Suma de cubos a3 + b3 = (a + b) · (a2 − ab + b2 ) 8x3 + 27 = (2x + 3) (4x2 - 6x + 9) Diferencia de cubos a3 − b3 = (a − b) · (a2 + ab + b2 ) 8x3 − 27 = (2x − 3) (4x2 + 6x + 9) Producto de dos binomios que tienen un término común (x + a) (x + b) = x2 + ( a + b) x + ab (x + 2) (x + 3) = = x2 + (2 + 3)x + 2 · 3 = = x2 + 5x + 6
  • 15. Módulo De Àlgebra Página 15 FACTORIZACIÓN Con frecuencia se necesita expresar o transformar a un polinomio dado en el producto de dos o más polinomios de menor grado .este proceso se llama factorización y nos permite transformar polinomios complejos en el producto de polinomios simples. Factorización por factor común. Cuando en los diversos términos de un polinomio participa un mismo factor, se dice que se le saca como factor común, para lo cual, se escribe e inmediatamente, después, dentro de un paréntesis se anotan los cocientes que resulten de dividir cada uno de los términos del polinomio entre el factor común. ( ) ( ) Factorización de una diferencia de cuadros. Se sabe que: ( )( ) ; por lo tanto una diferencia de cuadrados, es igual al producto de dos binomios conjugados. ( )( ) Factorización de un cuadrado perfecto Para factorizar un trinomio cuadrado perfecto, una vez que ha sido identificado como tal, con apoyo de los productos notables, se extrae raíz cuadrada al primero y tercer término del trinomio separándose estas raíces por medio del signo del segundo término y elevando este binomio al cuadrado: ( )( ) Factorización de una suma o diferencia de cubos Se sabe que: ( )( ) ( )( ) Factorización de cubos perfectos de binomios. ( ) ( )
  • 16. Módulo De Àlgebra Página 16 FACTORIZACIÓN POR AGRUPAMIENTO. Algunas veces en un polinomio los términos no contienen ningún factor común, pero pueden ser separados en grupos de términos con factor común. Este método consiste en formar grupos, los más adecuados, para factorizar cada uno como más convenga en cada caso y lograr finalmente la factorización total de la expresión. ( ) ( ) ( )( ) FACTORIZACIÓN DE UN TRIN0MIO DE LA FORMA ( )( ) ( )( ) ECUACIONES LINEALES Sabemos que una ecuación lineal o de primer grado es aquella que involucra solamente sumas y restas de variables elevadas a la primera potencia (elevadas a uno, que no se escribe). Son llamadas lineales porque se pueden representar como rectas en el sistema cartesiano. Se pueden presentar tres tipos de ecuaciones lineales: a) Ecuaciones lineales propiamente tales En este tipo de ecuación el denominador de todas las expresiones algebraicas es igual a 1 (no se presentan como fracción, aunque el resultado sí puede serlo). Para proceder a la resolución se debe: Eliminar paréntesis. Dejar todos los términos que contengan a "x" en un miembro y los números en el otro. Luego despejar "x" reduciendo términos semejantes. Ejemplo: 4x – 2(6x – 5) = 3x + 12(2x + 16) 4x – 12x + 10 = 3x + 24x + 192 4x – 12x – 3x – 24x = 192 – 10
  • 17. Módulo De Àlgebra Página 17 –35x = 182 b) Ecuaciones Fraccionarias En este tipo de ecuación lineal el denominador de a lo menos una de las expresiones algebraicas es diferente de 1 (es una fracción). Para proceder a la resolución se debe: Llevar a ecuación lineal (eliminar la fracción) multiplicando la ecuación por el mínimo común múltiplo de los denominadores (m.c.m.) Ejemplo: C . ECUACIONES LITERALES Pueden ser lineales o fraccionarias. Si son fraccionarias, se llevan al tipo lineal, pero en el paso de reducir términos semejantes se factoriza por "x" para despejarla.
  • 18. Módulo De Àlgebra Página 18 SILABO I. DIRECCIONAMIENTO ESTRATÉGICO UPEC – MISIÓN MISIÓN - ESCUELA Formar profesionales humanistas, emprendedores y competentes, poseedores de conocimientos científicos y tecnológicos; comprometida con la investigación y la solución de problemas del entorno para contribuir con el desarrollo y la integración fronteriza La Escuela de Desarrollo Integral Agropecuario contribuye al desarrollo Provincial, Regional y Nacional, entregando profesionales que participan en la producción, transformación, investigación y dinamización del sector agropecuario y agroindustrial, vinculados con la comunidad, todo esto con criterios de eficiencia y calidad UPEC - VISIÓN VISIÓN – ESCUELA Ser una Universidad Politécnica acreditada por su calidad y posicionamiento regional Liderar a nivel regional el proceso de formación y lograr la excelencia académica generando profesionales competentes en Desarrollo Integral Agropecuario, con un sólido apoyo basado en el profesionalismo y actualización de los docentes, en la investigación, criticidad y creatividad de los estudiantes, con una moderna infraestructura que incorpore los últimos adelantos tecnológicos, pedagógicos y que implique un ejercicio profesional caracterizado por la explotación racional de los recursos naturales, producción limpia, principios de equidad, participación, ancestralidad, que den seguridad y consigan la soberanía alimentaria. ÁREA CONOCIMIENTO ESCUELA CINE- UNESCO SUB-ÁREA CONOCIMIENTO CINE- UNESCO Agricultura. Agricultura, Silvicultura y Pesca. II. DATOS BÁSICOS DEL MÓDULO “ALGEBRA”: CÓDIGO NIVEL PRIMERO DOCENTE: Oscar René Lomas Reyes Ing. TELEFONO: 0986054587 062-932310 e-mail: oscar.lomas@upec.edu.ec
  • 19. Módulo De Àlgebra Página 19 oscarlomasreyes@yahoo.es CRÉDITOS T 1 CRÉDITOS P 2 TOTAL CRÉDITOS 3 HORAS T 16 HORAS P 32 TOTAL HORAS 48 PRE-REQUISITOS: (Módulos obligatorios que DEBEN estar aprobados antes de éste módulo) CÓDIGOS 1. Nivelación Aprobada CO-REQUISITOS: (Módulos obligatorios que TIENEN que aprobar en paralelo a éste módulo) CÓDIGOS 1. Física Aplicada 1 EJE DE FORMACIÓN: (En la malla ubicado en un eje con un nombre) PROFESIONAL ÁREA DE FORMACIÓN: (En la malla agrupado con un color y un nombre) Agrícola LIBRO(S) BASE DEL MÓDULO: (Referencie con norma APA el libro, físico o digital, disponible en la UPEC para estudio ) Haeussler, E. (2008). Matemáticas para Administración y Economía, Décima segunda edición: México LIBRO(S) REFERENCIAL/COMPLEMENTARIO DEL MÓDULO: (Referencie con norma APA el libro, físico o digital, disponible en la UPEC para estudio)  Snut S. y otros (2012). Matemáticas para el análisis económico. Segunda edición: Madrid España.  Escudero R. y otros. (2011). Matemáticas Básicas. Segunda edición: Colombia  Soler F. y otros. (2009). Fundamentos de Matemáticas. Tercera edición: Colombia.  Pullas G. (2011). Matemática básica. Primera edición: Ecuador.
  • 20. Módulo De Àlgebra Página 20  Sánchez A. (2012). Desarrollo del Pensamiento. Editorial Imprenta Mariscal, Edición Primera, Ecuador.  http://www.sectormatematica.cl /libros.htm. Recuperado: Septiembre 2012.  Sectormatematica.cl, Programas Gratis.  http://www.sectormatematica.cl/software.htm.Recuperado: Septiembre 2012  Manual_Razonamiento_Matemático.pdf DESCRIPCIÓN DEL MÓDULO: (Describe el aporte del módulo a la formación del perfil profesional, a la MISIÓN y VISIÓN de la ESCUELA y, a los logros de aprendizaje de éste módulo). 100 palabras / 7 líneas El módulo de Algebra, permite al estudiante identificar las posibilidades de resolución de problemáticas del entorno a través del conocimiento matemático, haciendo énfasis en estudio de casos, datos estadísticos, análisis de datos, las matemáticas relacionadas a los finanzas, la economía, al campo empresarial de manera preferencial al campo agropecuario; donde se genere proyectos productivos y así fortalecer el aprendizaje académico pedagógico de los educandos. III. RUTA FORMATIVA DEL PERFIL Nodo Problematizado: (Elija uno de la propuesta GENÉRICA de la UPEC o GLOBAL de la ESCUELA). Escaso razonamiento lógico matemático Competencia GENÉRICA - UPEC: (Elija una que guarde coherencia con el NODO PROBLEMATIZADO) Desarrollar el pensamiento lógico Competencia GLOBAL - ESCUELA: (Elija una que guarde coherencia con el NODO PROBLEMATIZADO y las COMPETENCIAS GENÉRICA) Planificar, implementar, coordinar, supervisar y evaluar proyectos y servicios del sector rural Competencia ESPECÍFICA - MÓDULO: (Escriba una que guarde coherencia con el NODO PROBLÉMICO y las COMPETENCIAS GENÉRICA y GLOBAL) Desarrollar el pensamiento lógico adecuadamente a través del lenguaje y las estructuras matemáticas
  • 21. Módulo De Àlgebra Página 21 para plantear y resolver problemas del entorno. NIVELES DE LOGRO PROCESO COGNITIVO LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) Seleccione de los sugeridos por la Escuela para perfil de Ingenierías El estudiante es capaz de: DIMENSIÓN (Elija el grado de complejidad que UD. EXIGIRÁ para alcanzar el logro) 1. TEÓRICO BÁSICO RECORDAR MLP Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. FACTUAL.- Si el estudiante va a TRATAR el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER para estar al tanto de una disciplina o resolver problemas en ella. 2. TEÓRICO AVANZADO ENTENDER Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. CONCEPTUAL.- Si el estudiante va a INTERRELACIONAR entre el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER dentro de una ESTRUCTURA más grande que les permitan FUNCIONAR JUNTOS los vocablos. PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 3. PRÁCTICO BÁSICO APLICAR Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 4. PRÁCTICO AVANZADO ANALIZAR Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 5. TEÓRICO PRÁCTICO BÁSICO EVALUAR Argumentar el planteamiento que dará solución a los problemas planteados. CONCEPTUAL.- Si el estudiante va a INTERRELACIONAR entre el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER dentro de una ESTRUCTURA más grande que les permitan FUNCIONAR JUNTOS los vocablos. PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 6. TEÓRICO PRÁCTICO AVANZADO CREAR Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. 1. FACTUAL.- Si el estudiante va a TRATAR el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER para estar al tanto de una disciplina o resolver problemas en ella. 2. CONCEPTUAL.- Si el estudiante va a INTERRELACIONAR entre el VOCABULARIO o ELEMENTOS BÁSICOS de lo QUE DEBE SABER dentro de una ESTRUCTURA más grande que les
  • 22. Módulo De Àlgebra Página 22 permitan FUNCIONAR JUNTOS los vocablos. 3. PROCESAL.- Si el estudiante SABE CÓMO HACER, métodos de investigación, y los criterios para el uso de habilidades, algoritmos, técnicas y métodos. 4. METACOGNITIVO.- Si el estudiante llega a adquirir EL CONOCIMIENTO DE LA COGNICIÓN GENERAL, así como la sensibilización y el conocimiento del propio conocimiento. Trabajo interdisciplinar: (Saberes integrados de los módulos recibidos y recibiendo que tributan directamente a la formación de la COMPETENCIA ESPECÍFICA). Algebra, calculo, estadística descriptiva, estadística inferencial, investigación de operaciones, matemáticas discretas.
  • 23. Módulo De Àlgebra Página 23 IV. METODOLOGÍA DE FORMACIÓN DEL PERFIL: LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) El estudiante será capaz de CONTENIDOS DE APRENDIZAJE PARA QUE EL ESTUDIANTE ALCANCE LOS LOGROS ESPERADOS ESTRATEGIAS DIDÁCTICAS Estrategias, métodos y técnicas HORAS CLASE COGNITIVOS ¿Qué TIENE que saber? PROCEDIMENTALES ¿Saber cómo TIENE que aplicar el conocimiento? AFECTIVO MOTIVACIONALES ¿Saber qué y cómo TIENE actuar axiológicamente? T P Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. Sistema de Números Reales Recta de números Reales Operaciones Binarias Potenciación y Radicación Propiedades fundamentales Aplicaciones Utilizar organizadores gráficos para identificar las clases de números reales que existe Utilizar organizadores gráficos para ubicar los elementos Relacionar en la uve heurística Identificar los diferentes propiedades en potenciación y radicación Hacer síntesis gráfica Repasar los conocimientos adquiridos y aplicarlos a la vida del profesional Turístico Demostrar comprensión sobre los tipos de números reales Disposición para trabajar en equipo Utilizar una actitud reflexiva y critica sobre la importancia de la matemática básica Aceptar opiniones diferentes Potenciar el clima positivo Aceptar errores y elevar el autoestima para que pueda actuar de manera autónoma y eficiente DEMOSTRAR. 1. Caracterizar los números reales para la demostración 2. Seleccionar los argumentos y hechos que corroboraron los números reales. CONVERSACIÓN HEURISTICA 1. Determinación del problema. 2. Dialogo mediante preguntas. 3. Debatir, discutir, intercambiar criterios, hurgar la ciencia, discutir la ciencia, búsqueda individual de la solución, socializar la solución. 2 4
  • 24. Módulo De Àlgebra Página 24 Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. Expresiones algebraicas: nomenclatura y clasificación. Polinomios clasificación. Operaciones con Polinomios: adición, resta, multiplicación y división. Productos notables. Descomposición Factorial Aplicar operaciones mentales Identificar los diferentes tipos polinomios Aplicar operaciones mentales en la resolución de un sistema de ecuaciones. Identificar los diferentes tipos de productos notables Resolver ejercicios Aceptar opiniones divergentes Destacar la solidaridad en los ambientes de trabajo Potenciar la resolución de problemas Valorar las participaciones de los demás Demostrar grado por lo que hacemos INDUCTIVO-DEDUCTIVO INDUCTIVO 1.Observación 2. Experimentación. 3. Información (oral, escrita, gráfica, etc.) 4. Dramatización. 5. Resolución de problemas. 6. comprobación. 7. Asociación (especial temporal y casual) 8. Abstracción. 9. Generalización. 10. Resúmenes. 11. Ejercicios de fijación. CONVERSACIÓN HEURISTICA 1. Determinación del problema. 2. Dialogo mediante preguntas. 3. Debatir, discutir, intercambiar criterios, hurgar la ciencia, discutir la ciencia, búsqueda individual de la solución, 2 4
  • 25. Módulo De Àlgebra Página 25 socializar la solución. Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. Máximo común divisor de polinomios. Mínimo común múltiplos de polinomios. Operaciones con fracciones. Aplicaciones Resolver ejercicios con polinomios sencillos y complejos Aplicar procesos de resolución adecuados para resolver problemas. Resolver ejercicios aplicando en forma conjunta los máximos y los mínimos Distinguir los componentes de las expresiones racionales Utilizar una actitud crítica y reflexiva sobre el tema. Cooperar en el desarrollo del conocimiento. Demostrar confianza en el desarrollo del proceso. Cooperar con el grupo en la resolución de funciones. RAZONAR 1. Determinar las premisas. 2. Encontrar la relación de inferencia entre las premisas a través del término medio. 3. Elaborar las conclusiones. RELACIONAR. 1. Analizar de manera independiente los objetos a relacionar. 2. Determinar los criterios de relación entre los objetos 3 6 Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados Ecuaciones lineales, resolución Sistemas lineales y clasificación. Resolución de ecuaciones lineales. Aplicaciones Plantear ecuaciones lineales. Identificar los sistemas líneas y su clasificación Elaborar modelos matemáticos en la solución de problemas de la carrera Implementar procesos de resolución adecuados en problemas reales. Trabajar con eficiencia y eficacia respetando los criterios en la resolución de problemas. Demostrar interés en el trabajo individual y de equipo Respetar las opiniones del grupo y fuera de él. Expresar coherencia en las soluciones propuestas valorando las iniciativas de cada participante. EXPOSICION PROBLEMICA. 1. Determinar el problema. 2. Realizar el encuadre del problema. 3. Comunicar el conocimiento. 4. Formulación de la hipótesis. 5. Determinar los procedimientos para resolver problemas. 6. Encontrar solución (fuentes, argumentos, búsqueda, contradicciones) 3 6 Argumentar el planteamiento que dará solución a los problemas planteados. Definición y clasificación. Ecuaciones reducibles a cuadráticas Resolución de ecuaciones Nombrar la definición de ecuaciones cuadráticas Reducir a expresiones sencillas las expresiones cuadráticas Resolver ejercicios sobre Utilizar creatividad y capacidad de análisis y síntesis respetando los criterios del grupo. Demostrar razonamiento crítico y reflexivo cooperando en la obtención de resultados EXPOSICIÓN PROBLEMICA 1. Determinar el problema 2. Realizar el encuadre del problema 3. Comunicar el 3 6
  • 26. Módulo De Àlgebra Página 26 cuadráticas por factoreo. Resolución por completación de un trinomio cuadrado. expresiones cuadráticas Ejercitar las operaciones con polinomios incompletos. conocimiento (conferencia ,video ) 4. Formulación de la hipótesis ( interacción de las partes) Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. Fórmula general para resolver ecuaciones cuadráticas. Aplicaciones de la ecuación cuadrática. Aplicar la fórmula general para la resolución de ecuaciones cuadráticas Distinguir los componentes de las expresiones racionales Valorar la creatividad de los demás Respetar el criterio del grupo. 1. Determinar los procedimientos para resolver problemas. 2. Encontrar la solución ( fuentes ,argumentos, búsqueda ,contradicciones) 3 6
  • 27. Módulo De Àlgebra Página 27 V. PLANEACIÓN DE LA EVALUACIÓN DEL MÓDULO LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) FORMAS DE EVALUACIÓN DE LOGROS DE APRENDIZAJE indicar las políticas de evaluación para éste módulo según los resultados esperados DIMENSIÓN (Elija el grado de complejidad que UD. EXIGIRÁ para alcanzar el logro) INDICADORES DE LOGRO DE INGENIERIA descripción TÉCNICAS e INSTRUMENTOS de EVALUACIÓN 1° PARCIA L 2° PARCIA L 3° PARCIA L SUPLETORI O Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. FACTUAL. Interpretar información. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10% Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. CONCEPTUAL. Interpretar la información. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10% Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. CONCEPTUAL. Modelar, simular sistemas complejos. Deberes Trabajos Consultas Participación virtual Documento Documento Documento Chat-Foro 10% 10% 10% 10%
  • 28. Módulo De Àlgebra Página 28 Pruebas Portafolio Reactivos Documento 50% 10% 100% Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados PROCESAL Analizar problemas y sistemas complejos. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 10% 10% 10% 10% 50% 10% 100% Argumentar el planteamiento que dará solución a los problemas planteados. CONCEPTUAL Desarrollar una estrategia para el diseño. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 5% 5% 5% 5% 25% 5% Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. FACTUAL. CONCEPTUAL. PROCESAL METACOGNITIVO Interpretar información. Modelar, simular sistemas complejos. Analizar problemas y sistemas complejos. Deberes Trabajos Consultas Participación virtual Pruebas Portafolio Documento Documento Documento Chat-Foro Reactivos Documento 5% 5% 5% 5% 25% 5% 100% ESCALA DE VALORACIÓN 9.0 a 10.0 Acreditable - Muy Satisfactorio 7.0 a 7.9 Acreditable – Aceptable
  • 29. Módulo De Àlgebra Página 29 Nivel ponderado de aspiración y alcance 8.0 a 8.9 Acreditable – Satisfactorio 4.0 a 6.9 No Acreditable – Inaceptable
  • 30. Módulo De Àlgebra Página 30 VI. GUÍA DE TRABAJO AUTÓNOMO / PRODUCTOS / TIEMPOS LOGROS DE APRENDIZAJE (Acciones sistémicas, ELEMENTOS DE COMPETENCIA, SUB - COMPETENCIAS) APRENDIZAJE CENTRADO EN EL ESTUDIANTE HORAS AUTÓNO MAS INSTRUCCIONES RECURSOS PRODUCTO T P Identificar los términos básicos utilizados durante el desarrollo del pensamiento lógico matemático. Consulte información en el internet y textos especializados los conceptos de números reales, presentar en organizadores gráficos. Prueba Libros. Copias Documentos en pdf. Descarga de documentos de la web. Diferencia los diferentes tipos de sistemas de números reales. 2 4 Diferenciar los conceptos básicos utilizados para el desarrollo de pensamiento lógico matemático. Consulta sobre la definición de un monomio y polinomio. Grado de un polinomio y su ordenamiento Libros. Copias Documentos en pdf. Descarga de documentos de la web. Identifica los tipos de polinomios 2 4 Demostrar la utilidad de las matemáticas para el desarrollo del razonamiento lógico matemático. Distinguir plenamente entre expresiones racionales e irracionales Libros. Copias Documentos en pdf. Descarga de documentos de la web. Distinguir plenamente entre expresiones racionales e irracionales 3 6 Plantear alternativas mediante la aplicación de la matemática que permitan dar solución a los problemas planteados Dar solución a ecuaciones de primer grado Libros. Copias Documentos en pdf. Descarga de documentos de la web. Dar solución a ecuaciones de primer grado 3 6
  • 31. Módulo De Àlgebra Página 31 Argumentar el planteamiento que dará solución a los problemas planteados. Identificar los tipos de soluciones que pueden presentarse en la solución de expresiones cuadráticas. Libros. Copias Documentos en pdf. Descarga de documentos de la web. Identificar los tipos de soluciones que pueden presentarse en la solución de expresiones cuadráticas 3 6 Construir expresiones algebraicas que contribuyan a la solución de problemas del entorno. 3 6 PROYECTO INTEGRADOR DE SABERES: (Proyecto Integrador de conocimientos con los módulos del Nivel ) TOTAL 16 32 CRÉDITOS 1 2 3
  • 32. Módulo De Àlgebra Página 32 VII. Bibliografía. BÁSICA: (Disponible en la UPEC en físico y digital – REFENCIAR con normas APA)  Haeussler, E. (2008). Matemáticas para Administración y Economía, Décima segunda edición: México COMPLEMENTARIA: (NO Disponible en la UPEC en físico y digital - REFENCIAR con normas APA)  Snut S. y otros (2012). Matemáticas para el análisis económico. Segunda edición: Madrid España.  Escudero R. y otros. (2011). Matemáticas Básicas. Segunda edición: Colombia  Soler F. y otros. (2009). Fundamentos de Matemáticas. Tercera edición: Colombia.  Pullas G. (2011). Matemática básica. Primera edición: Ecuador.  Sánchez A. (2012). Desarrollo del Pensamiento. Editorial Imprenta Mariscal, Edición Primera, Ecuador.  http://www.sectormatematica.cl /libros.htm. Recuperado: Septiembre 2012.  Sectormatematica.cl, Programas Gratis.  http://www.sectormatematica.cl/software.htm.Recuperado: Septiembre 2012  Manual_Razonamiento_Matemático.pdf DOCENTES: Firma: Nombres y Apellidos Oscar Rene Lomas Reyes Ing. ENTREGADO: Marzo 2013
  • 33. Módulo De Àlgebra Página 33
  • 34. Módulo De Àlgebra Página 34
  • 35. Módulo De Àlgebra Página 35
  • 36. Módulo De Àlgebra Página 36
  • 37. Módulo De Àlgebra Página 37
  • 38. Módulo De Àlgebra Página 38
  • 39. Módulo De Àlgebra Página 39
  • 40. Módulo De Àlgebra Página 40
  • 41. Módulo De Àlgebra Página 41
  • 42. Módulo De Àlgebra Página 42
  • 43. Módulo De Àlgebra Página 43
  • 44. Módulo De Àlgebra Página 44
  • 45. Módulo De Àlgebra Página 45
  • 46. Módulo De Àlgebra Página 46
  • 47. Módulo De Àlgebra Página 47
  • 48. Módulo De Àlgebra Página 48
  • 49. Módulo De Àlgebra Página 49
  • 50. Módulo De Àlgebra Página 50
  • 51. Módulo De Àlgebra Página 51
  • 52. Módulo De Àlgebra Página 52
  • 53. Módulo De Àlgebra Página 53
  • 54. Módulo De Àlgebra Página 54
  • 55. Módulo De Àlgebra Página 55
  • 56. Módulo De Àlgebra Página 56
  • 57. Módulo De Àlgebra Página 57
  • 58. Módulo De Àlgebra Página 58
  • 59. Módulo De Àlgebra Página 59
  • 60. Módulo De Àlgebra Página 60
  • 61. Módulo De Àlgebra Página 61
  • 62. Módulo De Àlgebra Página 62
  • 63. Módulo De Àlgebra Página 63 FRACCIONES ALGEBRAICAS Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones numéricas. El valor de una fracción no se altera si se multiplican o dividen el numerador y denominador por una misma cantidad. Esta cantidad debe ser distinta de cero. Por ejemplo: Si se multiplica por x + 2 en su numerador y denominador resulta: Se recomienda hacer las operaciones con calma y mucha concentración ya que son frecuentes los errores de signos y los errores en el uso incorrecto de paréntesis. Operaciones con fracciones algebraicas Simplificar fracciones algebraicas La simplificación de fracciones algebraicas es objeto de frecuentes errores, pero se simplifican igual que las fracciones ordinarias: dividiendo el numerador y el denominador por factores comunes. Entonces, la clave está en el factor común. Para simplificar al máximo habrá que factorizar los polinomios numerador y denominador. Por ejemplo, simplificar: Otro ejemplo, simplificar la fracción Primero, factorizamos los polinomios del numerador y del denominador, para quedar Como vemos, simplificar (o reducir) una fracción algebraica consiste en transformarla a otra equivalente cuya particularidad es ser irreductible (se puede simplificar sólo hasta un cierto nivel). Suma y resta de fracciones algebraicas
  • 64. Módulo De Àlgebra Página 64 Para sumar y restar procederemos de forma similar a como lo hacemos con fracciones de números enteros, reduciendo primero acomún denominador. Igual como ocurre con las fracciones de números enteros, la suma y resta de fracciones algebraicas puede ser con fracciones de igual denominador o de distinto denominador. Suma y resta de fracciones algebraicas con igual denominador Veamos el siguiente ejemplo de suma y resta: Como el denominador es común (x + 1), este se ha unificado en una sola fracción, que ahora tiene como numerador a todas las cantidades que eran numeradores en las fracciones que estamos sumando y restando. Nótese que dichas cantidades se anotan entre paréntesis cuando no son monomios, para no confundir luego los signos. Ahora sacamos los paréntesis teniendo cuidado de cambiar el signo interior cuando delante del paréntesis hay un signo menos (−), y nos queda Hicimos las operaciones posibles y llegamos al resultado. Suma y resta de fracciones algebraicas con distinto denominador Veamos el siguiente ejemplo: Tal como lo hacíamos al sumar o restar fracciones de números enteros, utilizando el mínimo común múltiplo (m.c.m.) las fracciones con distintos denominadores se transforman en fracciones equivalentes con denominador común. Entonces, que debemos hacer: encontrar el m.c.m. de los denominadores, que llamaremos mínimo común denominador (m.c.d.). Para calcular el m.c.m. factorizamos 5aba2 15b2 a 5b a 15b2 a 5b 1 15b2 b 5 1 15b b 5 1 15 5 1 1 3 3 1 1 1 Multiplicamos los factores y queda a • a • b • b • 5 • 3 = a2 • b2 • 15 que es lo mismo que 15a2 b2 y es el mínimo común denominador (m.c.d.) de las tres fracciones involucradas. Conocido el m.c.d. operamos con fracciones con denominador común:
  • 65. Módulo De Àlgebra Página 65 Previamente, dividimos el denominador común (15a2 b2 ) por cada uno de los denominadores individuales, para conocer la cifra o valor que se multiplica por cada uno de los numeradores, y lo hacemos así: Esta es la forma tradicional de operar cuando hemos hallado el m.c.d. Pero también hay otra, como la siguiente: Encontrado el m.c.d. (15a2 b2 ) se multiplica cada fracción (tanto numerador como denominador) por los términos que faltan por completar dicho m.c.d., del modo siguiente: Nótese que “los términos que faltan” se obtienen haciendo la misma división del caso anterior. Un ejemplo más: Sumar El m.c.m. de los denominadores, o mínimo común denominador (m.c.d.) es x(x − 3) Hacemos ¿Qué hicimos? Sumamos los numeradores dejando el mismo denominador y simplificamos el numerador:
  • 66. Módulo De Àlgebra Página 66 Producto (multiplicación) de fracciones algebraicas Para multiplicar fracciones algebraicas procederemos igual como lo hacemos con fracciones, multiplicando los numeradores y los denominadores, aunque antes de multiplicar debemos simplificar, si se puede. Veamos qué significa esto: Sea una fracción algebraica cualquiera que está multiplicada por otra , entonces: Veamos ahora ejemplos de multiplicación (producto) de fracciones algebraicas Multiplicar Anotamos la multiplicación de los numeradores y de los denominadores: Simplificamos antes de efectuar el producto: Ahora, podemos multiplicar los factores finales: Ejemplos desarrollados: a) b) c) Importante: en los tres ejemplos anteriores (como en casi todos los casos) es preciso dominar la factorización de productos notables. Cociente o división de fracciones algebraicas Para dividir fracciones algebraicas procederemos igual como lo hacemos con fracciones, haciendo el producto cruzado de numeradores y denominadores, aunque antes de multiplicar debemos simplificar, si se puede. Veamos, ahora qué significa esto:
  • 67. Módulo De Àlgebra Página 67 Sea una fracción algebraica cualquiera que está dividida por otra , entonces: Veamos ahora ejemplos de división (cociente) de fracciones algebraicas Dividir Anotamos haciendo el producto cruzado: Simplificamos y finalmente multiplicamos: Ejemplos desarrollados a) b) c) Nota: en ejercicios de este tipo es importante tener bien definida la línea divisoria de las fracciones participantes. Si el ejercicio está bien expresado, la línea divisoria principal es la que se halla frente al signo igual (=). d) Fracciones algebraicas compuestas
  • 68. Módulo De Àlgebra Página 68 En los últimos ejemplos nos encontramos con un tipo de fracción algebraica especial: las fracciones compuestas. Una fracción algebraica compuesta contiene una o varias fracciones simples en el numerador y/o denominador. La operación de reducción de fracciones compuestas consiste en identificar y reducir las fracciones simples que la componen. Ejemplos: 1) 2) 3)
  • 69. Módulo De Àlgebra Página 69
  • 70. Módulo De Àlgebra Página 70
  • 71. Módulo De Àlgebra Página 71
  • 72. Módulo De Àlgebra Página 72
  • 73. Módulo De Àlgebra Página 73
  • 74. Módulo De Àlgebra Página 74
  • 75. Módulo De Àlgebra Página 75
  • 76. Módulo De Àlgebra Página 76
  • 77. Módulo De Àlgebra Página 77 FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES ESCUELA DE DESARROLLO INTEGRAL AGROPECUARIO MÓDULO: ÀLGEBRA ECUACIONES CUADRÀTICAS PRIMER SEMESTRE - PARALELO “B” ING. OSCAR LOMAS DIANA KAROLINA MONTAÑO LUNA 2013 VIDEO EDUCATIVO DE ECUACION CUADRATICA
  • 78. Módulo De Àlgebra Página 78 http://www.youtube.com/watch?v=GZwTXWRvD84 DOCUMENTO SOBRE ECUACIONES DE SEGUNDO GRADO O TAMBIÈN LLAMADAS CUADRÀTICAS http://recursostic.educacion.es/secundaria/edad/3esomatematicas/3quincena3/3eso_quince na3.pdf ECUACIONES CUADRÀTICAS Una ecuación de segundo grado es toda expresión de la forma: ax2 + bx + c = 0 con a ≠ 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos la siguiente fórmula: Ecuaciones de 2º grado completas Las ecuaciones de segundo grado deben tener una x elevada al cuadrado.
  • 79. Módulo De Àlgebra Página 79 Ecuaciones de 2º grado incompletas
  • 80. Módulo De Àlgebra Página 80
  • 81. Módulo De Àlgebra Página 81
  • 82. Módulo De Àlgebra Página 82 FACULTAD DE INDUSTRIAS AGROPECUARIAS Y CIENCIAS AMBIENTALES ESCUELA DE DESARROLLO INTEGRAL AGROPECUARIO MÓDULO: ÀLGEBRA GRÀFICAS DE ECUACIONES CUADRÀTICAS PRIMER SEMESTRE - PARALELO “B” ING. OSCAR LOMAS DIANA KAROLINA MONTAÑO LUNA 2013
  • 83. Módulo De Àlgebra Página 83
  • 84. Módulo De Àlgebra Página 84 REPRESENTACIÓN GRÁFICA DE LAS ECUACIONES DE SEGUNDO GRADO Recordarás que cuando nos referimos a las ecuaciones de primer grado las representábamos por medio de una recta: Ejemplo: Tienes la ecuación si das un valor a x obtienes otro para y, este valor lo llevábamos al eje de coordenadas y fijábamos un punto. Dábamos otro valor a x y obteníamos el correspondiente a y .Con estos dos valores conseguíamos el segundo punto. Al unir los dos puntos determinábamos la recta. Todos los puntos de la recta son respuestas de la ecuación. En el caso de las ecuaciones de 2º grado su representación gráfica es muy diferente. Supongamos una ecuación de 2º grado (el exponente de x debe ser 2): Vamos a dar valores a la variable independiente x y conseguiremos que la variabledependiente y tome los suyos: En primer lugar damos a x el valor 3, luego 2, después 0, seguidamente – 2 y por fin, – 3. La variable dependiente y recibirá los valores: 9,4,0, 4 y 9 Podemos escribir: Colocamos en el eje de coordenadas los puntos: y luego, unimos esos puntos tal como lo ves en la figura siguiente:
  • 85. Módulo De Àlgebra Página 85 13.82 Representa gráficamente la ecuación de 2º grado: Respuesta: Solución Dando valores a x : 2, 1, 0, -1 y -2 obtenemos los de y en la ecuación de 2º grado:
  • 86. Módulo De Àlgebra Página 86 Fijados los puntos, los unimos y obtendremos la parábola. ¿Por qué los puntos no los unimos con rectas? Porque si en la ecuación de 2º grado diéramos a x los valores que indicamos a continuación los correspondientes al eje y serían:: Estos valores obtenidos los llevamos al eje de coordenadas para crear los puntos y obtendríamos algo parecido a:
  • 87. Módulo De Àlgebra Página 87 Por la colocación de los puntos, sin necesidad de unirlos puedes ver el resultado.
  • 88. Módulo De Àlgebra Página 88
  • 89. Módulo De Àlgebra Página 89
  • 90. Módulo De Àlgebra Página 90
  • 91. Módulo De Àlgebra Página 91
  • 92. Módulo De Àlgebra Página 92 REACTIVOS Test sobre la materia de algebra con preguntas de opción múltiple: 1. El producto de ( )( ) es: a. 25ab + 9 b. + 9 c. + 9 d. - – 9 2. La expresión equivale a: a. 3(x−1) b. – 1 c. d. ( ) 3. Un ejemplo de un número irracional es: a. 3.15 b. −5 c. √ d. 4. El resultado de la división es: a. −b b. 1−b c. 1−6ab
  • 93. Módulo De Àlgebra Página 93 d. 1 - 5. Una con líneas los tipos de expresiones algebraicas con sus diferentes tipos de formaciones: MONOMIO Dos Términos BINOMIO Más de un término TRINOMIO Un solo Término POLINOMIO Tres Términos
  • 94. Módulo De Àlgebra Página 94 Test sobre la materia de economía y finanzas con preguntas de opción múltiple: 1. La empresa individual que opera en competencia perfecta no ejerce ninguna influencia sobre el precio del producto, porque solo aporta una fracción insignificante de la oferta total. En contraste el monopolista puro es fijador de precios debido al control que puede ejercer sobre la producción en el mercado. Teniendo en cuenta lo anterior, una empresa monopolista decide el precio, debido a que : a. tiene controlada la competencia por la calidad de su producción. b. existe un importante número de consumidores del bien en el mercado. c. aporta y controla la cantidad total de la oferta del bien. d. posee la mejor tecnología y logra una mayor producción del bien. 2. El principio contable de conservadurismo o prudencia propone no sobrestimar los activos ni los ingresos y no subestimar los pasivos y los gastos, apoyándose en la normativa. ¿Cuál debe ser la acción a seguir por parte de la administración y la contabilidad de un ente económico cuando se establece que el valor de realización de un activo es mayor al valor expresado? a. cancelar la diferencia en los libros de contabilidad. b. establecer una provisión por la diferencia de valor. c. informar a la Junta Directiva para que decida qué hacer. d. vender el activo por mayor valor. 3. El marco que establece los estados de situación financiera comprende varios elementos. El activo es: a. los decrementos en los bienes económicos de la empresa. b. la parte residual de los activos de la empresa una vez reducidos todos sus pasivos. c. el recurso controlado por la empresa como resultado de sucesos pasados del que se espera obtener beneficios económicos futuros. d. la obligación actual de la empresa sugerida a raíz de los sucesos pasados.
  • 95. Módulo De Àlgebra Página 95 4. Se denomina proceso al conjunto de acciones o actividades sistematizadas que se realizan o tienen lugar con un fin determinado. Los procesos son necesarios para: a. definir los objetivos de calidad de una forma estructurada. b. asegurar que nunca surjan problemas de servicio. c. proporcionar consistencia en el resultado de las actividades. d. satisfacer las necesidades de los principales proveedores de servicios tercerizados. 5. Si compré un automóvil que vale 20000 dólares incluido impuestos. El IVA es 15%. Cuanto valdría el auto sin impuestos ? a. 17391.30 b. 13000.80 c. 14000 d. 9000.56

×