Your SlideShare is downloading. ×
0
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
 nanoparticles
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

nanoparticles

16,124

Published on

Published in: Education, Technology, Business
41 Comments
35 Likes
Statistics
Notes
No Downloads
Views
Total Views
16,124
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
41
Likes
35
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Targeted Drug Delivery System NANOPARTICLES, LIPOSOMES, RESEALED ERYTHROCYTES Presented By: Mr. Amol B. Kokate. M.Pharm 1 st year. Department Pharmaceutics
  • 2. <ul><li>Targeted Drug Delivery System NANOPARTICLES </li></ul>
  • 3. Learning Objectives <ul><li>Introduction </li></ul><ul><li>Various methods of preparation </li></ul><ul><li>Novel Nanoparticulate systems </li></ul><ul><li>Pharmaceutical aspects of Nanoparticles </li></ul><ul><li>Characterisation of Nanoparticles </li></ul><ul><li>In Vivo fate and Biodistribution of Nanoparticles </li></ul><ul><li>Surface engineering of Nanoparticles </li></ul><ul><li>Therapeutic application of Nanoparticles </li></ul>
  • 4. What is Nanotechnology? . . . .technologies, that measure, manipulate, or incorporate material or features with at least one critical dimension between ~ 1 nanometer and 100 nanometers . . . . . . whose applications exploit properties, distinct from bulk/macroscopic systems, that arise from their scale/critical dimension . . .
  • 5. What are nanoparticles ? Coarse particle – smaller than 10 μm Fine particle – smaller than 2.5 μm Ultrafine particle – smaller than 0.1 μm (100nm) Nanoparticle – dimensions between 1 nm and 100 nm
  • 6. <ul><li>Nano' derives from the Greek word &quot;nanos&quot;, which means dwarf or extremely small . It can be used as a prefix for any unit to mean a billionth of that unit. </li></ul><ul><li>A nanosecond is a billionth of a second. </li></ul><ul><li>A nanoliter is a billionth of a liter. </li></ul><ul><li>A nanometer is a billionth of a meter or </li></ul><ul><li>10 -9 m. </li></ul>
  • 7. Introduction : <ul><li>Nanoparticles are solid colloidal particles ranging from 1 to 100 nm in size, they consist of micromolecular materials in which the active ingredients (drug or biologicaly active material) is dissolved, entrapped, or encapsulated, or adsorbed, or attached. </li></ul>
  • 8. Matrix type structure in which a drug is dispersed Membrane wall structure with an oil core containing drug Nanoparticles Nanospheres Nanoencapsules
  • 9. Nanospheres and Nanocapsules
  • 10. Natural Hydrophilic Polymers <ul><li>Proteins and Polysaccharides have been extensively studied and characterized. </li></ul><ul><li>Alginate </li></ul><ul><li>Dextran </li></ul><ul><li>Chitosan </li></ul><ul><li>Agarsoe </li></ul><ul><li>Pullulan </li></ul><ul><li>Gelatin </li></ul><ul><li>Albumin </li></ul><ul><li>Lectins </li></ul><ul><li>Legumin </li></ul><ul><li>Viciline </li></ul>Polysaccharides Proteins
  • 11. <ul><li>Disadvantage: </li></ul><ul><li>Batch to batch variation </li></ul><ul><li>Conditional biodegradability </li></ul><ul><li>Antigenicity </li></ul>
  • 12. Synthetic Hydrophobic Polymer : <ul><li>The polymer used are either pre-polymerized or polymerized in process </li></ul><ul><li>Poly (isobutylcynoacrylates) (PICA) </li></ul><ul><li>Poly (butylcynoacrylates) (PBCA) </li></ul><ul><li>Polyhexylcyanoacrylates (PHCA) </li></ul><ul><li>Poly (methacrylate) (PMMA) </li></ul><ul><li>Poly ( ε - caprolactone) (PECL) </li></ul><ul><li>Poly (lactic acid) (PLA) </li></ul><ul><li>Poly ( lactide -co- glycolide) (PLGA) </li></ul><ul><li>Polystyrene </li></ul>Polymerized in process Pre-polymerized
  • 13. Preparation Techniques of Nanoparticles <ul><li>Amphiphilic micromolecule cross linking </li></ul><ul><li>Heat cross linking </li></ul><ul><li>Chemical cross linking </li></ul><ul><li>Polymerization based methods </li></ul><ul><li>Polymerization of monomers in situ </li></ul><ul><li>Emulsion (micellar) polymerization </li></ul><ul><li>Dispersion polymerization </li></ul><ul><li>Interfacial condensation polymerization </li></ul><ul><li>Interfacial complexation </li></ul>
  • 14. Preparation Techniques of Nanoparticles <ul><li>Polymer precipitation methods </li></ul><ul><li>Solvent extraction/evaporation </li></ul><ul><li>Solvent displacement (Nanoprecipitation) </li></ul><ul><li>Salting out </li></ul>
  • 15. Nanoparticle(s) preparation by cross-linking of Amphiphilic Macromoleculs <ul><li>Nanoparticles can be prepared from amphiphilic marcomolecules, proteins and polysaccharides. </li></ul><ul><li>The technique of their preparation involves firstly, the aggregation of amphiphiles followed by further stabilization either by Heat denaturation or Chemical cross-linking. </li></ul><ul><li>These process may occur in biphasic O/W or W/O type dispersed system. </li></ul>
  • 16. Heat cross linking / Chemical cross linking <ul><li>The cross-linking method is exhaustively used for the nano - encapsulation of drug. </li></ul><ul><li>The method involves the emulsification of bovine serum albumin (BSA) / human serum albumin (HAS) or protein aqueous solution in oil using high pressure homogenization or high frequency sonication </li></ul>
  • 17. Aqueous protein (BSA) surfactant oil O/W emulsion Dilution with a preheated (at 100 o C) oil (heat cross linking) or addition of cross linking agent (chemical cross linking) Centrifugation and isolation of nanoparticles
  • 18. <ul><li>The high temperature used in the original method restrict the application of method to heat sensitive drugs. </li></ul><ul><li>As an alternative to heat stabilization method a chemical cross linking agent, usually gultaraldehyde, is incorporated in to the system. </li></ul><ul><li>Though the heat borne drawbacks are obviated, yet a need to remove residual cross-linking agent makes the method cumbersome. </li></ul>
  • 19. Emulsion chemical dehydration : <ul><li>Chemical dehydration has been reported for producing BSA nanoparticles </li></ul><ul><li>Bhargava and Aindo suggested a simple chemical cross-linking method in 1992. </li></ul><ul><li>Hydroxypropyl cellulose solution in chloroform was used as a continuous phase. </li></ul><ul><li>2,2, di-methyle propane (Dehydrating agent) was used to translate internal aqueous phase in to a solid particulate dispersion. </li></ul><ul><li>produce nanoparticles of size ( 300 nm ) </li></ul>
  • 20. Nanoparticles preparation using Polymerization based methods <ul><li>Polymers used for Nanospheres preparation include ; </li></ul><ul><li>poly (methelymethacrylate ), poly(acrylamide), </li></ul><ul><li>poly (butyl cyanoacrylate), </li></ul><ul><li>N-N’methylene-bis-acrylamide etc. </li></ul>
  • 21. <ul><li>Two different approaches are generally adopted for the preparation of nanospheres using in-situ polymerization technique : </li></ul><ul><li>1.Methods in which the monomer to be polymerized is emulsified in a non-solvent phase (emulsion polymerization) OR </li></ul><ul><li>2.Methods in which the monomer is dissolved in a solvent that is non solvent for the resulting polymer (dispersion polymerization) </li></ul>
  • 22. Emulsion polymerization <ul><li>The process of emulsion polymerization can be conventional or inverse, depending upon the nature of the continuous phase in the emulsion. </li></ul><ul><li>Two different mechanism: </li></ul><ul><ul><li>micellar nucleation and polymerization </li></ul></ul><ul><ul><li>homogeneous nucleation and polymerization </li></ul></ul>
  • 23. <ul><li>The micellar nucleation and polymerization: </li></ul><ul><li>It involves the swollen monomers micelles as the site of nucleation and polymerization. </li></ul><ul><li>The monomers is emulsified in non solvent phase with the help of surfactant molecules. </li></ul><ul><li>It leads to formation of monomer-swollen micelles and stabilized monomer droplets . </li></ul>
  • 24. Monomer droplet Monomer supply Monomer supply for growth Monomer bearing micelle Catalyst Nucleated micelle Stabilized polymeric nanospheres Surfactant Drug Monomer
  • 25. <ul><li>Homogenous nucleation and polymerization : </li></ul><ul><li>(kreuter,1991; 1994) </li></ul><ul><li>applies in case where the monomer is sufficiently soluble in the continuous outer phase </li></ul><ul><li>The nucleation and polymerization stages can directly occur in this phase, leading to the formation of primary chains called oligomer . </li></ul><ul><li>When the oligomer have reached a certain length, they precipitate and form primary particles which are stabilized by the surfactant molecules. </li></ul>
  • 26. Monomer droplet Stabilized polymeric nanospheres Primary particle Oligomer Activated Monomer Surfactant Drug Monomer
  • 27. <ul><li>The polymerization rate is dependent on the pH of the medium. </li></ul><ul><li>Anionic polymerization takes place in micelles after diffusion of monomer molecules through the water phase and is initiated by negative charged compound. </li></ul><ul><li>At neutral pH the rate of polymerization is extremely fast. </li></ul><ul><li>However, at acidic pH, i.e., 2-4, the reaction rate remains controlled and slow. </li></ul><ul><li>Stirring </li></ul><ul><li>Polymerization time. </li></ul><ul><li>e.g. ethyl cynoacrylate- 2 hr, hexyl cynoacrylate-10 to 12 hrs. </li></ul>
  • 28. Centrifugation and isolation of nanocapsules Oil, drug, monomer, stabilizer (lecithin, polar solvent ) (O/W emulsion) Aqueous phase, Polaxomer Magnetic stirring Preparation of PACA using emulsion polymerization process <ul><li>- - - - - - - - - - - </li></ul><ul><li>- - - - - - - - - - - </li></ul>
  • 29. Dispersion polymerization : <ul><li>In case of Dispersion polymerization however the monomer instead of emulsified, is dissolved in an aqueous medium which acts as the precipitant for subsequently formed polymer. </li></ul><ul><li>Nucleation is directly induced in aqueous monomer solution and the presence of stabilizer or surfactant is not necessary for the formation of stable nanospheres. </li></ul>
  • 30. Surfactant Drug Monomer Surfactant Drug Monomer Empty micelle Stabilized polymeric nanospheres Primary particle Oligomer Activated Monomer
  • 31. Interfacial polymerization : <ul><li>The preformed polymer phase is transformed to an embryonic sheath. </li></ul><ul><li>A polymer that eventually become core of nanoparticle and drug molecule to be loaded are dissolved in a volatile solvent. </li></ul><ul><li>The solution is poured in to a non solvent for both polymer and core phase. </li></ul><ul><li>The polymer phase is separated as a coacervate phase at O/W interface. </li></ul>
  • 32. Preparation of nanoparticls by interfacial polymerization : drug Core dispersed in polymer phase (O/W emulsion) Nanocapsules ( 30-300 nm ) Core phase + Polymer phase <ul><li>- - - - - - - - - - - </li></ul><ul><li>- - - - - - - - - - - </li></ul>Non-solvent, which precipitate out polymer from either of phases
  • 33. Interfacial complexation <ul><li>The method is based on the process of microencapsulation introduced by Lin and Sun,1969. </li></ul><ul><li>In case of nanoparticles preparation, aqueous polyelectrolyte solution is carefully dissolved in reverse micelles in an apolar bulk phase with the help of an appropriate surfactant. </li></ul><ul><li>Subsequently competing polyelectrolyte is added to the bulk, which allows a layer of insoluble polyelectrolyte complex to coacervate at the interface. </li></ul>
  • 34. Preparation of nanoparticls by interfacial complexation : Monomer A (W/O emulsion) Oil phase Nanocapsules High pressure homogenization water + <ul><li>- - - - - - - - - - - </li></ul><ul><li>- - - - - - - - - - - </li></ul>Monomer B Monomer B Monomer A
  • 35. Nanoprticles preparation using polymer precipitation methods <ul><li>Solvent extraction / evaporation method : </li></ul><ul><li>This method involves the formation of O/W emulsion between partially water miscible solvent containing the polymer and the drug, and aqueous phase containing the stabilizer. </li></ul><ul><li>Salting out method. </li></ul><ul><li>Solvent displacement method. </li></ul>
  • 36. Nanoparticles preparation using Emulsion solvent evaporation method <ul><li>- - - - - - - - - - - </li></ul><ul><li>- - - - - - - - - - - </li></ul>Solvent extraction, Solvent evaporation Organic phase Solvent, Drug, polymer (O/W emulsion) Aqueous phase Distilled water, stabiliser Nanocapsules Sonication, Homogenization
  • 37. Nanoparticles preparation using Double Emulsion Solvent Evaporation Method (W1/O/W2 emulsion) Organic phase Solvent, Drug, polymer (O/W emulsion) stabilized at 4C Aqueous phase Distilled water, stabiliser Sonication, Homogenization <ul><li>- - - - - - - - - - - </li></ul><ul><li>- - - - - - - - - - - </li></ul>Aqueous phase with stabilizer (PVP)
  • 38. Solvent extraction, Solvent evaporation Nanoparaticles
  • 39. Distilled water Organic Solvent, Drug, polymer (O/W emulsion) Distilled water, PVA, Mechanical stirrring <ul><li>- - - - - - - - - - - </li></ul><ul><li>- - - - - - - - - - - </li></ul>Organic phase Aqueous phase Nanoparticles preparation using salting out of polymer
  • 40. Distilled water, Polaxamer 188 Mechanical stirrring Organic Solvent, Drug, polymer Aqueous phase Distilled water, Polaxamer 188 Aqueous phase Nanospheres Nanocapsules Nanoparticles preparation using Solvent Displacement method Organic phase Polar solvent, Oil Polymer, Drug Organic phase
  • 41. Novel Nanoparticulate System <ul><li>Solid Lipid Nanopraticles </li></ul><ul><li>These are colloidal carriers (50-100 nm ) which are composed of physiological lipid dispersed in water or in an aqueous surfactant solution. </li></ul>
  • 42. <ul><li>Versatility : </li></ul><ul><li>Parenteral administration </li></ul><ul><li>Brain delivery </li></ul><ul><li>Ocular delivery </li></ul><ul><li>Rectal delivery </li></ul><ul><li>Oral delivery </li></ul><ul><li>Topical delivery </li></ul><ul><li>Potential vaccine delivery system </li></ul>
  • 43. Advantages of SLN : <ul><li>Small size and relatively narrow size distribution which provide biological opportunities for site specific drug delivery by SLN </li></ul><ul><li>Controlled release of active drug over a long period can be achieved </li></ul><ul><li>Protection of incorporated drug against chemical degradation. </li></ul><ul><li>No toxic metabolites are produced. </li></ul><ul><li>Relatively cheaper and stable. </li></ul><ul><li>Ease of industrial scale production by hot dispersion technique. </li></ul>
  • 44. Preparation methods of SLN <ul><li>Hot Homogenization Technique : </li></ul><ul><li>Homogenization of melted lipids at elevated temperature </li></ul><ul><li>Cold Homogenization Technique : </li></ul><ul><ul><li>Homogenization of a suspension of solid lipid at room temperature </li></ul></ul>
  • 45. Melting of the lipid Dissolution of the drug in the melted lipid Mixing of the preheated dispersion medium and the drug lipid melt Hot Homogenization Technique :
  • 46. High pressure homogenization at a temperature above the lipids melting point O/W – nano emulsion Solidification of the nano emulsion by cooling down to room temperature to form SLN
  • 47. Melting of the lipid <ul><li>Cold Homogenization Technique : </li></ul>Dissolution of the drug in the melted lipid Solidification of the drug loaded lipid in liquid nitrogen or dry ice
  • 48. Grinding in a powder mill ( 50 – 100 particles ) Dispersion of the lipid in the cold aqueous dispersion medium Solid Lipid Nanoparticles
  • 49. Nanocrystals : Drug Dispersion with agitation Surfactant solution Milling for few hours/day Nanocrystals
  • 50. Nanosuspension : Drug Dispersion with high speed stirring Surfactant solution High pressure homognization 1500 bar pressure Nano – suspension
  • 51. Pharmaceutical aspects of Nanoparticles <ul><li>Should be free from potential toxic impurities </li></ul><ul><li>Should be easy to store and administer </li></ul><ul><li>Should be sterile if parenteral use is advocated </li></ul><ul><li>Process parameters are performed before releasing them for clinical trials; </li></ul><ul><ul><ul><ul><li>Purification </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Freeze drying </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Sterilization </li></ul></ul></ul></ul>
  • 52. Purification of nanoparticles : Gel filtration : Remark : High molecular weight substances and impurities are difficult to remove Schematic principle Nanoparticle Impurity
  • 53. Purification of nanoparticles : Dialysis : <ul><li>Remark : </li></ul><ul><li>High molecular weight impurities are difficult to remove </li></ul><ul><li>Time consuming process </li></ul>
  • 54. Purification of Nanoparticles : Ultra-centrifugation : <ul><li>Remark : </li></ul><ul><li>Aggregation of particles </li></ul><ul><li>Time consuming process </li></ul>
  • 55. Purification of Nanoparticles : Cross-flow filtration technique: Nanopraticles Impurites Membrane
  • 56. Freeze drying of Nanoparticles <ul><li>This technique involves the freezing of the nanoparticle suspension and subsequent sublimation of its water content under reduced pressure to get freeflowing powder material. </li></ul><ul><li>Advantages : </li></ul><ul><li>Prevention from degradation. </li></ul><ul><li>Prevention from drug leakage, drug desorption . </li></ul><ul><li>Easy to handle and store and helps in long term preservation. </li></ul><ul><li>Readily dispersed in water without modifications in their physicochemical properties </li></ul>
  • 57. Sterilization of Nanoparticles : <ul><li>Nanoparticles intended for parenteral use should be sterilized to be pyrogen free . </li></ul><ul><li>Sterilization can achieved by </li></ul><ul><li>Using aseptic technique throughout their preparation, processing and formulation </li></ul><ul><li>Subsequent sterilizing treatments like autoclaving, irradiation. </li></ul><ul><li>It is deduced from these consideration that the sterilization of nanoparticles is a critical step that should be systematically investigated during formulation development stage. </li></ul>
  • 58. Characterization of nanoparticles : Parameter Characterization method Particle size and size distribution Charge determination Laser Doppler Anemometry Zeta potentiometer Chemical analysis of surface Static secondary ion mass spectrometry Sorptometer Carrier drug interaction Differential scanning calorimetry photon correlation spectroscopy Laser diffractometry Transmission electron microscopy Scanning electron microscopy Atomic force microscopy Drug satbility Bioassay of drug extracted from nanoparticles Chemical analysis of drug
  • 59. In Vivo Fate and Biodistribution of Nanoparticles RES RES Phagocytosis recognition Dysopsonin adsorption Opsonin adsorption Avoidance of recognition Nanoparticle Nanoparticle
  • 60. Surface Engineering of Nanoparticles <ul><li>Steric stabilized (stealth) nanoparticles </li></ul><ul><li>Magnetically guided nanoparticles </li></ul><ul><li>( fe 3 o 4 ) </li></ul><ul><li>Biomimetic nanoparticles </li></ul><ul><li>(biomimetic ligands – sailic acids ) </li></ul><ul><li>Bioadhesive nanoparticles </li></ul><ul><li>Antibody coated nanoparticles </li></ul>
  • 61. Nanoparticles coated with polaxomer / polaxamines. Magnetically guided nanoparticles
  • 62. NANOPARTICLE ADVANTAGES <ul><li>Increase drug solubilization </li></ul><ul><li>Protect drug from degradation </li></ul><ul><li>Decrease of toxic side effects </li></ul><ul><li>Produce a prolonged release of the drug </li></ul><ul><li>Improve the bioavailability of the drug </li></ul><ul><li>Modify the pharmacokinetics and tissue distribution of the drug </li></ul><ul><li>Provide a targeted delivery of the drug </li></ul>
  • 63. Nanotechnology – Applications Nano before Nano 2008 Nano 2012
  • 64. Therapeutic application of nanoparticles <ul><li>Cancer therapy : </li></ul><ul><li>Material – </li></ul><ul><li>poly ( alkylcyanoacrylate ) nanoparticles with anticancer agents, oligonucleotides </li></ul><ul><li>Purpose – </li></ul><ul><li>Targeting, reduced toxicity, enhanced uptake of antitumour agents, improved in vitro and in vivo stability </li></ul>
  • 65. Intracellular targeting <ul><li>Material : </li></ul><ul><li>Poly ( alkylcyanoacrylate ) polyester nanoparticles with anti-parasitic or antiviral agents </li></ul><ul><li>Purpose : </li></ul><ul><li>Targeting reticuloendothelial system for intracellular infections </li></ul>
  • 66. Prolonged systemic circulation : <ul><li>Material : </li></ul><ul><li>Polyesters with adsorbed polyethylene glycols or pluronics or derivatized polyesters </li></ul><ul><li>Purpose : </li></ul><ul><li>Prolong systemic drug effect, avoid uptake by the reticuloendothelial system </li></ul>
  • 67. Vaccine adjuvant <ul><li>Material : </li></ul><ul><li>poly ( methylmethacrylate ) nanoparticles with vaccines ( oral and intramuscular immunization ) </li></ul><ul><li>Purpose : </li></ul><ul><li>enhances immune response, alternate acceptable adjuvant </li></ul>
  • 68. Occular delivery : <ul><li>Material : </li></ul><ul><li>poly (alkylcyanoacrylate) nanoparticles with steroids, anti-inflammatory agents, anti bacterial agents for glucoma </li></ul><ul><li>Purpose : </li></ul><ul><li>improved retention of drug / reduced wash out. </li></ul>
  • 69. DNA delivery : <ul><li>Material : </li></ul><ul><li>DNA-gelatin nanoparticles, DNA-chitosan nanoparticles, PDNA-poly(D,L) lactic acid nanoparticles </li></ul><ul><li>Purpose : </li></ul><ul><li>Enhanced delivery and significantly higher expression levels </li></ul>
  • 70. Other applications: <ul><li>Poly (alkylcyanocrylate) nanoparticles with peptides </li></ul><ul><li>Poly (alkylcyanocrylate) nanoparticles for transdermal application </li></ul><ul><li>Nanoparticles with adsorbed enzymes </li></ul><ul><li>Nanoparticles with radioactive or contrast agents </li></ul><ul><li>Crosses blood- brain barrier </li></ul><ul><li>Improved adsorption and permeation </li></ul><ul><li>Enzyme immunoassays </li></ul><ul><li>Radio-imaging </li></ul>
  • 71.  
  • 72. Energy: Nanocrystals are an ideal light harvester photovoltaic devices. They absorb sunlight more strongly than dye molecules or bulk semiconductor material. Automobiles: In 2001, Toyota started using nanocomposites in a bumper that makes it 60 percent lighter and twice as resistant to denting and scratching. Emerging Applications
  • 73. Sports: Wilson Double Core tennis balls have a nanocomposite coating that keeps them bouncing twice as long as an old-style ball. Clothing: Eddie Bauer is currently using embedded nanoparticles to create stain-repellent khakis. Emerging Applications
  • 74. Effective in pancreatic cancer treatment A retroviral vector carrying cytotoxic gene Rexin-G (Epeius Biotechnology corporation) Enhance dose tolerance and hence effect elimination of solvent associated toxicity Paclitaxel (anticancer drug) bound albumin particles Abraxane (American Biosciences, Inc.) Enhanced dissolution rate& bioavailability Nanocrystallied Rapamycin (immunosuppressant) in a tablet Rapamune (Wyeth-Ayerst Laboratories) Enhanced dissolution rate & bioavailability Nanocrystal aprepiant (antiemetic) in a capsule Emend (Merck & Co. Inc.) Advantages Description Brand name
  • 75. More powerful antibiotics   Nano-sized plastic spheres with drugs (active against methicillin-resistant staph (MRSA) bacteria) chemically bonded to their surface that allow the drug to be dissolved in water. Nano-balls (Univ. of South Florida) Better protection from infection   Enhance the solubility and sustained release of silver nanocrystals SILCRYST (Nucryst Pharmaceuticals) enhanced MRI images at least 25 times better than current  contrast agents MRI images Trimetaspheres (Luna Nanoworks) Offer better UV protection Contains added transparent, better protecting nano zinc oxide particles Olay Moisturizers (Proctor and Gamble)

×