Agile BI via Data Vault and Modelstorming

1,635 views
1,433 views

Published on

Audience: Business Intelligence Architects, Project Managers and Sponsors. This slideshow accompanies a video presentation of the same name, available at http://youtu.be/e0cHFdeGEeE.

Published in: Business, Technology
1 Comment
11 Likes
Statistics
Notes
No Downloads
Views
Total views
1,635
On SlideShare
0
From Embeds
0
Number of Embeds
9
Actions
Shares
0
Downloads
132
Comments
1
Likes
11
Embeds 0
No embeds

No notes for slide

Agile BI via Data Vault and Modelstorming

  1. 1. Agile BI via Data Vault and Modelstorming Daniel Upton Business Intelligence Architect, Certified ScrumMaster DecisionLab.Net linkedIn.com / in / DanielUpton
  2. 2. The Business Intelligence Promise: Smarter, more fact-baseddecision-makingas aneverydayroutine
  3. 3. HowtomaximizeBIstakeholdersatisfactionandacceleratetimetocompletion… 1. BreakdownstakeholderrequirementsgatheringsessionstoresultinconciseDataStories 2. Completeapotentiallyshippableincrement(PSI)inall,ornearlyall,Sprints 3. WitheachPSI,bereadyandabletore-prioritizeaftereverySprint.
  4. 4. Business Intelligence Waterfall Data Model Profile Stage Data (ETL) Integrate Staged Data (ETL) Requirements Build Semantic Layer Load to Star Schema (ETL) Build Dashboard Train Users Quality Assurance On Everything Release Maintain
  5. 5. Entity Relational Model for Transactions
  6. 6. Dimensional Model / Presentation Layer
  7. 7. Business Intelligence Risk ReportA Still Doesn’t Match ReportB
  8. 8. Business Intelligence Waterfall Data Model Profile Stage Data (ETL) Integrate Staged Data (ETL) Requirements Build Semantic Layer Load to Star Schema (ETL) Build Dashboard Train Users Quality Assurance On Everything Release Maintain
  9. 9. Scrum Development Lifecycle
  10. 10. TraditionalWaterfallPrinciple: BigDesignUpFront(BDUF)-- An end-to-end design on which to build an entire solution. LeanPrinciple: JustEnoughDesignUpFront(JEDUF)-- A design increment with just enough design features on which to build and deliver an incremental solution that satisfies a required feature’s AcceptanceCriteria. AgilePrinciple: Maximize the amount of work not done.
  11. 11. BI’s most time intensive phases
  12. 12. Data Vault Tables: Hubs, Satellites and Links
  13. 13. The most time intensive phases …accelerated by Data Vault
  14. 14. Faster, but not yet Agile-Fast
  15. 15. Agile ModelStorming
  16. 16. Agile ModelStorming
  17. 17. Agile ModelStorming
  18. 18. Agile ModelStorming
  19. 19. Review time intensive phases
  20. 20. Breakdown each step into ‘Data Story’ size
  21. 21. Assumption: Same overall amount of work
  22. 22. Accelerate delivery of data stories. Setupmultiple team-tracks. Bereadyfor changingpriorities.
  23. 23. The most time intensive phases …accelerated with Agile DW Design
  24. 24. DataVaultalreadyacceleratedtheWaterfall Agile DWdesign andDataVaultaccelerate eachother
  25. 25. Agile Data Vault within Sprint Cycles Result:Maximizestakeholdersatisfactionandacceleratetimetocompletion. How? 1. BreakdownstakeholderrequirementsgatheringinvolvementintoconciseDataStories 2. Completeapotentiallyshippableincrement(PSI)inall,ornearlyall,Sprints 3. BeAgile: WithaPSI,bereadyandabletore-prioritizeaftereverySprint.
  26. 26. Recommended Technical Reading…
  27. 27. ForanintroductiontoDataVault… “Data Vault: Data Warehouse Design Goes Agile” www.slideshare.net/DanielUpton
  28. 28. The Business Intelligence Promise: Smarter, more fact-baseddecision-makingas aneverydayroutine HowtomaximizeBIstakeholdersatisfactionandacceleratetimetocompletion… 1. BreakdownstakeholderrequirementsgatheringsessionstoresultinconciseDataStories 2. Completeapotentiallyshippableincrement(PSI)inall,ornearlyall,Sprints 3. WitheachPSI,bereadyandabletore-prioritizeaftereverySprint.
  29. 29. LinkedIn.com / In / DanielUpton

×