Collecting Community Wisdom: Integrating Social Search & Social Navigation Jill Freyne, Rosta Farzan, Peter Brusilovsky, B...
Motivations <ul><li>Information Overload Problem </li></ul><ul><li>Potential in harnessing user activity patterns to drive...
Social Browsing <ul><li>Form of Social Navigation </li></ul><ul><li>Visualizes usage paths in a digital environment </li><...
KnowlegeSea II <ul><li>Footprint based support </li></ul><ul><ul><li>Monitors students as they browse the collection </li>...
Social Search <ul><li>Collaborative Web search </li></ul><ul><li>Communities of like minded users searching together </li>...
I-SPY <ul><li>Monitors users as they search </li></ul><ul><li>Post Processing Engine </li></ul><ul><li>Re-ranks result lis...
ACM DL <ul><li>ACM DL -  a vast collection of citations and full text from ACM journal and newsletter articles and confere...
Searching
Browsing
Integrated Social Information Access <ul><li>“ Community Wisdom” collected by the search component should be used to suppo...
Components <ul><li>Search Component </li></ul><ul><ul><li>I-SPY Search technology </li></ul></ul><ul><ul><li>Re-rank CACM ...
Search Component Architecture CWS ENGINE CACM  SEARCH ENGINE q q` R M R H R T Hit Matrix q
Browse Component Architecture KNOWLEDGE SEA ENGINE Navigation  (Browsing & Annotation) Records
Integration - Search CACM Search Engine Navigation Engine CWS  Engine Hit Matrix Navigation  (Browsing & Annotation) Recor...
Integration - Browsing Users start with browsing Navigation Engine CWS Engine Search Hit Matrix Navigation  (Browsing & An...
Annotations
Search Support Relevance:  100% Related Queries: Social Navigation Computational Wear Last Selection:  30 mins ago Last Br...
Browsing Support Queries: personalization business customer adaptive web Browse Popularity : 5% Annotation: …………
Browse – Search Cycle
Evaluation <ul><li>Subjects:  30  students enrolled in “Introduction to Multimedia” course </li></ul><ul><li>Task:  Produc...
Review Relevance <ul><li>54 articles returned </li></ul><ul><li>Each examined and assigned relevance score </li></ul><ul><...
Search and Browsing Effort <ul><li>Users in the control group had to do more work to return (less relevant) results. </li>...
So? <ul><li>By adding social support to the CACM DL users found relevant information faster and with less user effort </li...
Subjective Data Analysis <ul><li>Questionnaire </li></ul><ul><ul><li>Designed to capture user opinion on the system </li><...
Searching
Browsing
Conclusions <ul><li>Different community-based information access technologies can be used in an integrated system to reinf...
Future work <ul><li>Larger user study </li></ul><ul><ul><li>Larger, longer term study </li></ul></ul><ul><li>Domain diverg...
Collecting Community Wisdom: Integrating Social Search & Social Navigation Jill Freyne,  Rosta Farzan, Peter Brusilovsky, ...
User Feedback <ul><li>All subjects noticed the social icons </li></ul><ul><li>All subjects often/always drawn to icons </l...
Social Search <ul><li>Monitors users as they search, recording their queries and result selection pairs </li></ul><ul><li>...
Search and Browsing Efforts <ul><li>58% of users did not look beyond result page 1 </li></ul><ul><li>88% did not look beyo...
 
Upcoming SlideShare
Loading in...5
×

Jill Freyne - Collecting community wisdom: integrating social search and social navigation

2,590

Published on

WebCamp presentation on an augmented search aided by previous searches by social connections.

Published in: Technology, Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,590
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Jill Freyne - Collecting community wisdom: integrating social search and social navigation

  1. 1. Collecting Community Wisdom: Integrating Social Search & Social Navigation Jill Freyne, Rosta Farzan, Peter Brusilovsky, Barry Smyth & Maurice Coyle University College Dublin & University of Pittsburgh
  2. 2. Motivations <ul><li>Information Overload Problem </li></ul><ul><li>Potential in harnessing user activity patterns to drive social information access tools </li></ul><ul><li>Independence of social systems </li></ul><ul><ul><li>Eurekster, Del.icio.us, Shadows, I-SPY, MySpace, ebay,….. </li></ul></ul>
  3. 3. Social Browsing <ul><li>Form of Social Navigation </li></ul><ul><li>Visualizes usage paths in a digital environment </li></ul><ul><li>KnowlegeSea II Brusilovsky et al. AH 2004 </li></ul><ul><ul><li>Information access system for class mates providing access to open corpus textbooks </li></ul></ul><ul><ul><li>Supports information access through visualization, search, annotation and browsing </li></ul></ul>
  4. 4. KnowlegeSea II <ul><li>Footprint based support </li></ul><ul><ul><li>Monitors students as they browse the collection </li></ul></ul><ul><li>Annotation based support </li></ul><ul><ul><li>Allows students to leave specific traces on parts of the system </li></ul></ul>
  5. 5. Social Search <ul><li>Collaborative Web search </li></ul><ul><li>Communities of like minded users searching together </li></ul><ul><li>I-SPY Smyth et al. UMUAI 2004 </li></ul><ul><ul><li>Social search engine where communities of searchers can benefit from each others wisdom in terms of search queries and result selections </li></ul></ul>
  6. 6. I-SPY <ul><li>Monitors users as they search </li></ul><ul><li>Post Processing Engine </li></ul><ul><li>Re-ranks result lists from underlying search engines to reflect community preferences </li></ul>
  7. 7. ACM DL <ul><li>ACM DL - a vast collection of citations and full text from ACM journal and newsletter articles and conference proceedings . </li></ul><ul><li>2 access strategies </li></ul><ul><ul><li>Browsing – through archive lists, tables of contents </li></ul></ul><ul><ul><li>Searching – basic and advanced search features </li></ul></ul>
  8. 8. Searching
  9. 9. Browsing
  10. 10. Integrated Social Information Access <ul><li>“ Community Wisdom” collected by the search component should be used to support navigation in the browsing component and vice versa </li></ul><ul><li>Social Search and Social Browsing should be seamlessly integrated at the interface level </li></ul><ul><li>Social Support in the form of icons/cues </li></ul>
  11. 11. Components <ul><li>Search Component </li></ul><ul><ul><li>I-SPY Search technology </li></ul></ul><ul><ul><li>Re-rank CACM result-list and add search icons </li></ul></ul><ul><li>Browsing Component </li></ul><ul><ul><li>Knowledge Sea II social navigation technology </li></ul></ul><ul><ul><li>Provide footprint and annotation support and add browse icons </li></ul></ul>
  12. 12. Search Component Architecture CWS ENGINE CACM SEARCH ENGINE q q` R M R H R T Hit Matrix q
  13. 13. Browse Component Architecture KNOWLEDGE SEA ENGINE Navigation (Browsing & Annotation) Records
  14. 14. Integration - Search CACM Search Engine Navigation Engine CWS Engine Hit Matrix Navigation (Browsing & Annotation) Records Result Set Re-ranked result With social search icons Re-ranked result With social search and social navigation icons Users start with search
  15. 15. Integration - Browsing Users start with browsing Navigation Engine CWS Engine Search Hit Matrix Navigation (Browsing & Annotation) Records Adding social search icons Adding social navigation icons Back to search Query based navigation
  16. 16. Annotations
  17. 17. Search Support Relevance: 100% Related Queries: Social Navigation Computational Wear Last Selection: 30 mins ago Last Browse: 1 day ago Last Annotation: 1 day ago Browse Popularity 30% Annotations: Relevant to previous work by Dourish and Chalmers in Social Navigation
  18. 18. Browsing Support Queries: personalization business customer adaptive web Browse Popularity : 5% Annotation: …………
  19. 19. Browse – Search Cycle
  20. 20. Evaluation <ul><li>Subjects: 30 students enrolled in “Introduction to Multimedia” course </li></ul><ul><li>Task: Produce a literature review on the topic of “the social web” in 1 hour using the ACM social site </li></ul><ul><li>Groups: </li></ul><ul><ul><li>Control group - no social support (15 users) </li></ul></ul><ul><ul><li>Experimental Group - all social support enabled (15 users) </li></ul></ul>
  21. 21. Review Relevance <ul><li>54 articles returned </li></ul><ul><li>Each examined and assigned relevance score </li></ul><ul><li>22.4% relative increase in very relevant papers </li></ul>
  22. 22. Search and Browsing Effort <ul><li>Users in the control group had to do more work to return (less relevant) results. </li></ul>1.26 1.56 Ave selected result page 7.0 12.53 # links browsed 2.37 2.33 Query length 9.13 13.2 # queries Exp Ctrl
  23. 23. So? <ul><li>By adding social support to the CACM DL users found relevant information faster and with less user effort </li></ul>
  24. 24. Subjective Data Analysis <ul><li>Questionnaire </li></ul><ul><ul><li>Designed to capture user opinion on the system </li></ul></ul><ul><li>70% of the exp group found social ACM system useful for task </li></ul><ul><li>40% of ctrl group reported the same </li></ul>
  25. 25. Searching
  26. 26. Browsing
  27. 27. Conclusions <ul><li>Different community-based information access technologies can be used in an integrated system to reinforce each other and provide unique added-value to the users </li></ul><ul><li>Integration of both technologies was achieved through seamless connection from search to browsing and browsing to search </li></ul>
  28. 28. Future work <ul><li>Larger user study </li></ul><ul><ul><li>Larger, longer term study </li></ul></ul><ul><li>Domain divergence </li></ul><ul><ul><li>Introduce social support to other domains </li></ul></ul><ul><ul><ul><li>Multimedia, other academic domains </li></ul></ul></ul>
  29. 29. Collecting Community Wisdom: Integrating Social Search & Social Navigation Jill Freyne, Rosta Farzan, Peter Brusilovsky, Barry Smyth & Maurice Coyle University College Dublin & University of Pittsburgh
  30. 30. User Feedback <ul><li>All subjects noticed the social icons </li></ul><ul><li>All subjects often/always drawn to icons </li></ul><ul><li>Users reported that they found it easier to locate information on the ACM DL site with the icons than without. </li></ul>
  31. 31. Social Search <ul><li>Monitors users as they search, recording their queries and result selection pairs </li></ul><ul><li>Uses past search interaction to re-rank the results of an underlying search engine to reflect the preferences of a community of searchers </li></ul>
  32. 32. Search and Browsing Efforts <ul><li>58% of users did not look beyond result page 1 </li></ul><ul><li>88% did not look beyond result page 3 </li></ul>

×