Colafrancesco - Dark Matter Dectection 2

  • 1,286 views
Uploaded on

 

More in: Technology , Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,286
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
6
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. CTICS 2012 Jan 25th, 2012Dark Matter detection (2)Sergio ColafrancescoWits University - DST/NRF SKA Research ChairINAF - OAREmail: Sergio.Colafrancesco@wits.ac.zaEmail Sergio.Colafrancesco@oa-roma.inaf.it 1
  • 2. Outline Multi-epoch The Dark Matter Timeline The present Multi-Scale + M3 Galactic center Galactic structures Galaxy Clusters The Future The DM search challenge 2
  • 3. Viable DM candidates: signals Neutralinos Sterile ν’s Annihilation Radiative decay: line νs → να + γ DM annihilation flux DM decay flux 1 ρ DM ( r ) 2 1 ρ DM ( r )F ∝ 2 2 〈σ V 〉 Astro physics F ∝ 2 〈 Γ rad 〉 DL Mχ DL Mv  dE × [ f ann ( E ; χ )]  Particle physics [ ]  dE  × Eγ ( M v )    dν   dν  3
  • 4. Viable DM candidates: signals Neutralinos Sterile ν’s Annihilation Radiative decay: line νs → να + γ MsInverse Compton scattering π0 MχSynchr. Particle physics Bremsstrahlung 4
  • 5. SUSY neutralino DM 5
  • 6. High frequency X-rays pbremsstrahlung Ha oces Ha ces ICS prr po drr se γ+γ d o se γCMB e± π0 on s niic s c Le Le π± χ pt pt on on χ p Gamma rays iic e± cp (π0 decay) e± pr e± ro γCMB oc cees Gamma rays ssse bremsstrahlung esLow frequency B s ICS Radio emission SZ effect ICS Synchrotron 6
  • 7. Covering the whole e.m. spectrum χχ annihilation products Br Br on e e m t tr fec o m .+ hr .+ IC Ef IC S c IC S+ IC yn S π0 SZ S S 7
  • 8. Leptons: e± equilibrium spectrum ∂ ne ( E , r ) ∂ − ∇ [ D( E )∇ ne ( E , r )] − [ be ( E )ne ( E , r )] = Qe ( E , r ) ∂t ∂EProduction Equilibrium Qe ( E , r ) ne ( E , r ) Diffusion E lossesD( E ) = D0 E γ B − γ be ( E ) = bIC + bsync + bCoul + bbrem 8
  • 9. Solution: complete Mχ 1 ˆ ne ( E , r ) = b( E ) ∫ E dE ′G (r , λ − λ ′ )Qe ( E , r ) NFW04 Galaxy clusters Galaxies (r ′ ) 2   (rn′ + r ) 2   nχ (r ′ ) Rh 2 1 +∞  (r ′ − rn ) 2 ˆ=G [4π ∆ λ ]1/ 2 ∑− ∞ (− 1) n ∫ dr ′  exp − rn r   4∆ λ   − exp −    2 4 ∆ λ   nχ ( r ) n= 0    [Colafrancesco, Profumo & Ullio 2006-2007] 9
  • 10. Energy losses vs. Diffusion 2 E Rhτ loss = τ D = b( E , B, nth ) D( E )B increase nth decrease Rh decrease 10
  • 11. Solution: qualitative Vsource τD ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅ ⋅ Vsource + Vdiffusion τ D + τ loss VD VD Vs Vs τ loss « τ D τ loss » τ D Vsource τ Dne ( E , r ) = [ Qe ( E , r )τ loss ] ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅ ⋅ Vdiffusion τ loss Galaxy clusters Galaxies 11
  • 12. Neutralino DM: SED −8τ π ± ≈ 2.6 ⋅ 10 s Synch. ICS on CMB π0 decay τ 0 ≈ 8.4 ⋅ 10− 17 s π Coma DUAL Mχ=40 GeV Fermi _ bb CTA NuSTAR Secondary products Prompt leptons hadrons . . 10-30-31 ←SKA (1GHz) 12
  • 13. DM - Astrophysical Laboratories GC Leo I dSph NGC3338 Bullet cluster 13
  • 14. The Galactic Center Radio 90 cm 14
  • 15. The Galactic Center Mid-IR 15
  • 16. The Galactic Center X-rays 1-8 keV 16
  • 17. The Galactic Center Multi-νGalactic center region across the spectrum:red: radio 90 cm (VLA); green: mid-infrared; blue: X-ray (1-8 keV; Chandra ACIS-I) 17
  • 18. The Galactic Center: a close upGalactic Center (Survey) Multiwavelength Close-UpA multiwavelength close-up of the recent massive star-forming region near the Galactic center.The color image, plotted also in standard Galactic coordinates, is a composite of 20-cm radiocontinuum (red); 25-µm mid-infrared (green); and 6.4-keV line emission (blue). 18
  • 19. Galactic Center demography Crowded, active environment HESS CTA Fermi (1GeV) EGRET source Central Black HoleX-ray source SNR Sgr A East non-thermal filaments (radio) 19
  • 20. The GC region DM challengeGondolo 1998Gondolo & Silk 1999…Cesarini et al. 2003…De Boer et al. 2005…Hooper et al. 2008…Borriello et al. 2008Regis & Ullio 2008Crocker et al. 2010 Sgr-A SED in quiescent radio + X-ray stage [Regis & Ullio 2008] 20
  • 21. The GC region DM challenge: limitsConstraints from radio + γ-rays• Radio: constrain to ~ GeV-TeV mass• γ-rays: constrain to ≤ GeV mass• ν’s : constrain to > 10 TeV mass Borriello et al. 2008 Radio + EGRET [Crocker et al. 2010] Radio + HESS [Regis & Ullio 2008] 21
  • 22. The GC region DM challenge: limitsFermi-LAT results on the diffuse γ-ray emission improves DM limits → by a factor ~ 20-50 [Abazajian et al. 2010]Caveats• modelling of diffuse foregrounds (Galactic, Extra-Galactic)• unresolved point-like sources (PSR, MCs, AGNs, Starburst gal., Clusters, GRBs,..)• data analysis techniques (Likelihood vs. photon counts) 22
  • 23. The GC region DM challenge: HESS Search for a DM annihilation signal from the Galactic Center halo with H.E.S.S. (arXiv:1103.3266v) Thermal Dark Matter 23
  • 24. The GC region DM challengeStrongest constraints from SKA + CTA• Radio: constrain to ~ GeV-TeV mass• γ-rays: constrain to ~ GeV-TeV mass VLA• ν’s : constrain to > 10 TeV mass T G RE io +E Rad ES S o +H R adi S H ES + K AT M eer SKA CTA P1 C TA -28 A + SK P2 A SK -29 24
  • 25. The GC region DM challenge: uncertaintiesB-field at GC• from 4 to 1000 µG• > 50µG (radio + γ-rays) [Crocker et al. 2010]DiffusionDM density profileDM dynamics at GCDM vs. BHAstrophysical sources [Regis & Ullio 2008]Stationary & Transient 25
  • 26. The GC HazeRadio emission due to secondary e±is spatially extended (ν-dependent) Radio halo (haze) RH size decreases with increasing νICS emission due to secondary e±is spatially extended (ν-dependent) IC halo (haze) ICH size decreases with increasing νThe angular size for the equilibrium n.density of high-E e± is much broaderthan the γ-ray flux from π0 decays π0 halo (haze) = DM source πH size smaller than RH / ICH size 26
  • 27. WMAP vs. Fermi hazeCosmic ray electrons interactingwith the Galactic magnetic fieldcosmic ray electrons interactingwith the ISRF to produce ICS 27
  • 28. GC hazes: puzzles or certaintiesDark Matter- DM (W±,bb) is not the origin of Fermi haze- DM (e±) can fit the Fermi haze with a boost factor ~ 100 DM prediction Fermi data → multi-ν problems Galprop (Dobler et al. 2009)ms Pulsars- 50 % energy conversion in e±- 30,000 msP in GC- msP not resolved in radio and gamma. → Haze of unresolved [Malyshev et al. 2010] point-like sources 28
  • 29. msP around the GC [Wang 2005] 29
  • 30. Galaxy DM sub-halos: radio emission VLA obs. DM 16 0.16 1.610-4 1.610-7 mJyRadio emission from DM clumps • Angular power spectrum Cll(l+1)- Strong diffusion effects → typical scale: λmax(E,B)- Degeneracy of ne and B-field • Break ne – B degeneracy- B-field uncertainty → SZE (@30 GHz) observations [Baltz & Wai 2004, …Borriello et al. 2008… Colafrancesco et al. 2012] 30
  • 31. Galaxy DM sub-halos: γ-raysPossibility to detect single or a population of CAVEATSDM clumps via their π0 decay γ-ray emission. Galactic diffuse emission plus its fluctuations (spatial + spectral) Foreground removal - Galaxy - Blazars - Galaxies - Starburst galaxies - Galaxy clusters - Pulsars - SNRs - MCs Variability Spectral separation [DM simulation Kuhlen et al. arXiv:0704.0944] Clustering properties … 31
  • 32. The Gamma-ray skyFermi all-sky survey Angular power spectrum Blazars [Ando 2005] Variability l(l+1)Cl/2π DM 1 10 102 103 multipole 32
  • 33. Dwarf Spheroidal Galaxies: DM halosSmall-size, dynamically un-relaxed… but few good cases ! 33
  • 34. The darkest galaxies in the universe Segue 1 dwarf galaxy → M/LV ~ 3400 M/L 34
  • 35. Dwarf galaxies & DM: Fermi MSUGRA MSSM [Fermi-LAT collaboration 2010]Assumptions- NFW profile- No boost factor (no substructures) 35
  • 36. The Dwarf Galaxies DM challenge Vsource τDSub-galactic size systems ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅ ⋅- R ~ kpc Vsource + Vdiffusion τ D + τ loss- No gas- Little dust VD- No Crs- 1 (or 2) stellar populations Vs- M/L ~ 500 - 3500 τ loss » τ D+ Ideal systems to probe DM Vsource τ D+ Clean multi-ν features ne ( E , r ) = [ Qe ( E , r )τ loss ] ⋅ ⋅ Vdiffusion τ lossbut… Iν- Strong diffusion effects- Low signals r 36
  • 37. Dwarf Sph. galaxies & DM constraints σv VD I (ν ) ∝ B ⊗ De ⊗ n ( Ee ,ν , r ) 2 2 e Mχ VS γ De = D0 ( Ee / B) Spectrum B χ Brightness 37
  • 38. ATCA → MeerKAT → SKA ATCA MeerKAT SKAATCA MeerKAT SKA 38
  • 39. Dark Matter search @ radio 121.5 hr @ ATCA to observe 6 dwarf galaxies [S.C. et al. 2011] Constraints on DM parameter spaceSegue-3 Carina Fermi 2yr ATCA 121hr MeerKAT SKA-P1 39
  • 40. Expectations: the HXR rangeNormalization fixed by the lack of HXR and radio profiles are differentdetection in ATCA (F1.3GHz < 10µJy) HXR and –ray profiles are similar σV=4 10-28 cm3/s Draco σV=4 10-28 cm3/s 0.1µG π0 ICS Synch 1µG no diff diff ATCA NuSTAR DUAL 40
  • 41. SZE from DM annihilationInverse Compton Scattering ∆ TCMB of CMB photons ≈ g ( x; M χ ) ⋅ ∫ d ⋅ Peby secondary DM electrons TCMB DM halo SKA-P2 (0.1-45 GHz) MeerKAT (0.7-30 GHz)• Measure radio (low ν) & ICS emission (high ν) from DM halos• Disentangle electron population and B-field → Fradio/FICS = UB/UCMB 41•
  • 42. Gamma-ray Radio XMM CTA SKA P1 SKA P2 42
  • 43. Galaxy clusters: the largest DM labs.Large-size, dynamically stable… but co-spatial DM+baryon … except one! 43
  • 44. The cluster 1ES0657-556Gas clump A) Gas clump B)T = 14 keV T = 6 keV DM clump B) M = 6 1013 MDM clump A)M = 1015 M 44
  • 45. Normal clusters of galaxies Coma A2163 A2255 A2319 45
  • 46. Multi-ν expectations from DM [Colafrancesco, Profumo & Ullio 2006] 46
  • 47. Neutralino DM: ICS of CMB (SZE) 47
  • 48. The SZ effect Thermal I0(x) I(x) Irel(x) Relativistic ∆ν kT thermal NR e - ≈ 4 e2 ν me c ∆ν 4 relativistic e- ≈ γ 2 ν 3 48
  • 49. SZE in DM halos SZthA structure with:• Hot gas SZwarm• Warm gas• Rel. Plasma• DM• (Vr ≈ 0) SZrel SZDM 49
  • 50. SZE in DM halos SZthA structure with:• Hot gas SZwarm• Warm gas•• DM• (Vr ≈ 0) SZDM 50
  • 51. SZE in DM halos [Colafrancesco 2004, A&A, 422, L23]A structure with:•••• DM• (Vr ≈ 0) SZDM Pure DM halo 51
  • 52. The cluster 1ES0657-556Gas clump A) Gas clump B)T = 14 keV T = 6 keV DM clump B) M = 6 1013 MDM clump A)M = 1015 M 52
  • 53. SZE in 1ES0657-556 gas SZE DM SZE 53
  • 54. Isolating SZDM at ∼223 GHz [Colafrancesco et al. 2007] Neutralino mass (ν=223 GHz)Frequency (Mχ= 20 GeV) 54
  • 55. Neutralino DM: radio emission 55
  • 56. Clusters of galaxies Integrated spectrum Brightness distribution (30 MHz-5 GHz) (@ 1.4 GHz)I (ν ) ∝ B ⊗ De ⊗ ne2 ( Ee ,ν , r ) σ v B S (ν ) ∝ B ⊗ De ⊗ ne2 ( Ee ,ν , r ) σ v Coma χ su b-h alo s [Colafrancesco, Profumo & Ullio 2006] 56
  • 57. Galaxy clusters: DM challenge Baryons + Cosmic RaysDark MatterDM only CRs only 57
  • 58. Neutralino DM: X-ray emission 58
  • 59. A Dark TemptationExplain HXR in cluster as DM annihilation signalsA3627 More than 20 clusters with Hard X-ray excess at E> 20 keV (Swift-BAT data, BeppoSAX data) Equally fit with: - Two temperature (thermal) plasma - Thermal plasma + non-thermal power-law AGN emission or ICS from DM / CR interactionOPHIUCHUS 59
  • 60. Hard X-ray excess Consequence[Colafrancesco & Marchegiani 2009] 60
  • 61. DM & heating DM models that fit the HXR flux of galaxy clusters produce also an excess heating of the gas.Heating ICS DM annih. heating Th. Brem. cooling [Colafrancesco & Marchegiani 2009] 61
  • 62. Dark temptations never go away... Normalized to F(E> 0.1 GeV) Possible detection for texp> 4Msec [Jeltema & Profumo arXiv:1108.1407] 62
  • 63. HXR – Gamma vs. HXR - Radio Normalized to F(ν=1.4GHz) GeV experiments are far from With known B=5µG DM signal detectionsσV=7·10-21 cm3/s σV=10-25 cm3/s 5µG 5µG 1µG 1µG 0.2µG 0.2µGHXR – Radio correlation provides stronger constraints on DM(MeerKAT/SKA vs. NuSTAR/DUAL combined obs. @ Wits University) 63
  • 64. DM signal profiles: HXR-Radio-gamma A2163 Hydra σV=7·10-21 cm3/s σV=10-25 cm3/s Sπ0(1 GeV) Sπ0(1 GeV) SICS(50 keV) Ssynch(1.4 GHz) SICS(50 keV) Ssynch(1.4 GHz) B=5 µG B=1 µG NuSTAR DUAL NuSTAR DUALThere is a spatial signature of DM signals visible in the HXRs Clear HXR-radio correlations at large angular scales (> 1 arcmin) No clear HXR-gamma correlation at all angular scales 64
  • 65. DM & γ-rays: Fermi limitsNeutralino upper limits from 2 recent preprints:Q.Yuan et al. 2010 (arXiv:1002.0197)Fermi-LAT collaboration 2010 (arXiv:1002.2239) no substructures substructures … but very optimistic upper limits (no CRs, no AGNs, no gal.,65…)
  • 66. DM models & non-thermal phenomenaComa Coma Coma CTA CTA CTA SKA SKA SKA 66
  • 67. Astrophysics vs. Underground DM search [arXiv:1109.0702] 67
  • 68. CRs (and γ-rays) from Perseus RGs Chandra FERMI SHALOM MAGIC 68
  • 69. Modelling the Perseus clusterRG (3C84)Mini RHSy 1.5 NGC1275Blazar Blazar core 1 2 3 [Colafrancesco et al. 2010]] 69
  • 70. DM @ γ-rays: disentangling CRs, AGN, DM Possibility to detect γ-rays from Perseus • in low-states of the central AGN • in the outer parts of the cluster (>780kpc) Perseus + NGC1275[Colafrancesco & Marchegiani 2010][Abdo et al.+S.C. 2009] heating high DM low 70
  • 71. Overall contraints to DM scenarios 71
  • 72. Exploring DM universesDirectDetectionTechniquesp-χ cross-section Neutralino χ mass 72
  • 73. Exploring DM universes Direct Detection Techniques p-χ cross-section 9 orders of mag. indirect detection cross-section usually not shown Neutralino χ mass 73
  • 74. Exploring DM universes Direct DetectionUnderground detectors SKA CTA Fermi Astrophysics Indirect Detection 74
  • 75. Exploring DM universesDirect DM detectors + Astrophysics LHC + AstrophysicsDetection SKA SKA CTA Fermi Indirect Detection 75
  • 76. Sterile neutrino DM 76
  • 77. Sterile neutrino DM: lineDark Matter Hot gas expectation νs → να + γ 77
  • 78. Sterile neutrinos: limits d ed lu E xcExcluded by Ly-α Bullet cluster [Watson et al. 2006 (astro-ph/0605424)] [Colafrancesco 2007] 78
  • 79. [Yuksel et al. 2007] [Colafrancesco 2007]DUALNHXM Coma constraints from 20-80 keV emission NEXT nuStar 79
  • 80. Sterile neutrinos and GC linesFact:Excess of the intensity in the 8.7 keV line (at the energy ofthe FeXXVI Lyγ line) in the spectrum of the Galactic Centerobserved by the Suzaku X-ray mission.Not easily explained by standard ionization andrecombination processes.Proposed issue:the origin of this excess is via decays of sterile neutrinos withm ~ 17.4 keV and mixing angle sin2(2θ) =(4.1±2.2)×10−12 [Prokhorov & Silk 2010]But:- possible non-standard ionization and recombination processes 80
  • 81. Other DM options 81
  • 82. Neutralino DM: particlese- e+p p-… 82
  • 83. Pamela and ATICCharge-dependent solar Rapid climb above 10 GeVmodulation important indicates the presence of abelow 5-10 GeV primary source of cosmic ray positrons! Pamela ATIC Astrophysical expectation (secondary production) 83
  • 84. HESS and FermiFermi and HESS do not confirm ATIC: Astrophysics can explain PAMELA:→ consistent with bkgd. expectations - Pulsars - SN remnants - Diffusion effects Fermi Collaboration (2009) [Zhang, Cheng (2001); Hooper et al. (2008) Yuksel et al. (2008); Profumo (2008) Fermi LAT Collaboration (2009)] 84
  • 85. Outline Multi-epoch The Dark Matter Timeline The present Multi-Scale DM search at various astronomical scales • Galactic center • Galactic structures • Galaxy Clusters The Future The DM search challenge 85
  • 86. Neutralino DM: Hidden DM !?!Experimental Frustration • No direct evidence (DAMA vs. other underground experiments) • No photonic signals (only upper limits from Multi-ν analysis) • No particle signal (Pamela → ATIC: embarassing results) What do we really know about dark matter?Pause All solid evidence is gravitational Also solid evidence against strong and EM interactions The anomalies (DAMA, PAMELA, ATIC, …) are not easily explained @ by canonical WIMPs → go beyond MSSM WIMP model A reasonable 1st order guess:Return Dark Matter has no SM gauge interactions, i.e., it is hidden [Kobsarev, Okun, Pomeranchuk (1966); many others] What one seemingly loses: [Feng et al. 2009] Esc Connection to central problems of particle physics Non-gravitational signals 86 The WIMP miracle
  • 87. … some conclusions• Astrophysical (e.m.) search is a crucial probe for the DM nature.• Multi3-4 search in optimal astrophysical laboratories is the key issue but is challenging.• The temptation to explain every astrophysical anomaly as due to DM is pushing DM search towards a fundamentalist approach rather than to search for the its fundamental nature.• The possible lack of DM evidence should be considered positively as the necessity to explore in further details the basic laws of the Universe → Gravity field modification on cosmological scales… 87
  • 88. DM … or Modified Gravity !?! Dark Matter Could MOG explain also the dynamics of the bullet cluster ?J. Moffat says, "If the multi-billion dollar laboratory experiments now underway succeedin directly detecting dark matter, then I will be happy to see Einstein and Newtoniangravity retained. However, if dark matter is not detected and we have to conclude thatit does not exist, then Einstein and Newtonian gravity must be modified to fit theextensive amount of astronomical and cosmological data, such as the bullet cluster,that cannot otherwise be explained. 88
  • 89. DMG 89
  • 90. THANKSfor your attention ! 90