• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Text mining, machine learning, NLP and all that (in 10 minutes)
 

Text mining, machine learning, NLP and all that (in 10 minutes)

on

  • 562 views

Byron C Wallace, from #CochraneTech Symposium, Québec 2013

Byron C Wallace, from #CochraneTech Symposium, Québec 2013

Statistics

Views

Total Views
562
Views on SlideShare
562
Embed Views
0

Actions

Likes
0
Downloads
5
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Text mining, machine learning, NLP and all that (in 10 minutes) Text mining, machine learning, NLP and all that (in 10 minutes) Presentation Transcript

    • text mining, machine learning, NLP and all that (in 10 minutes) Byron C Wallace Brown Center for Evidence Based Medicine #CochraneTech
    • why do we need this stuff? [Bastian et al, PLoS Medicine 2010]
    • why do we need this stuff? [Bastian et al, PLoS Medicine 2010]
    • PubMed growth [http://altmetrics.org/wp-content/uploads/2010/10/medline-articles-by-year-lg.png]
    • PubMed ? 2 search database 1 formulate question, protocol & query 4 extract data treatment outcome ba c d 3 screen retrieved citations Studies AIMS1988 ASSET1988 Aber1976 Amery1969 Anderson1983 Bassand1986 Bett1973 Bossaert1987 Brunelli1988 Buchalter1987 Croydon1987 Dewar1963 Durand1987 ECSG−11979 ECSG−21988 EWP1971 Fletcher1959 GISSI1986 Gormsen1973 Guerci1987 Heikinheim1971 ISAM1986 ISISPilot1987 ISIS−21988 Ikram1986 Julian1987 Khaja1983 Leiboff1984 Maublant1988 Meinertz1988 NHFAustra1988 Olson1986 Raizner1985 Rentrop1984 Sainsous1986 Schreiber1986 Simoons1985 TICO1988 Topol1987 WWICSK1983 WWIVSK1988 White1987 Overall (I^2=19% , P=0.147) 0 0.01 0.02 0.04 0.08 0.190.270.38 0.76 1.91 3.82 7.65 18.26 OddsRatio(logscale) 5 synthesize extracted data what can we automate
    • PubMed ? 2 search database 1 formulate question, protocol & query 4 extract data treatment outcome ba c d 3 screen retrieved citations Studies AIMS1988 ASSET1988 Aber1976 Amery1969 Anderson1983 Bassand1986 Bett1973 Bossaert1987 Brunelli1988 Buchalter1987 Croydon1987 Dewar1963 Durand1987 ECSG−11979 ECSG−21988 EWP1971 Fletcher1959 GISSI1986 Gormsen1973 Guerci1987 Heikinheim1971 ISAM1986 ISISPilot1987 ISIS−21988 Ikram1986 Julian1987 Khaja1983 Leiboff1984 Maublant1988 Meinertz1988 NHFAustra1988 Olson1986 Raizner1985 Rentrop1984 Sainsous1986 Schreiber1986 Simoons1985 TICO1988 Topol1987 WWICSK1983 WWIVSK1988 White1987 Overall (I^2=19% , P=0.147) 0 0.01 0.02 0.04 0.08 0.190.270.38 0.76 1.91 3.82 7.65 18.26 OddsRatio(logscale) 5 synthesize extracted data what can we automate
    • what can we automate?
    • learner unlabeled data U expert labeled data L predictive model abstracts from PubMed search doctor conducting review manually screened abstracts SVM how does this work?
    • SVMs o x o o o o o o o o x x x x x x xx x xx x support vectors margino
    • bag of words1.2 Supervised M achine Learn I am a Nigerian prince writing to you about an inheritance... ... dinner about prince call ... work nigerian yesterday office inheritance ... ... 0 1 1 0 ... 0 1 0 0 1 ... Figure 1.4: The (binary) Bag-of-Words (BoW) representation.
    • special considerations for the case of systematic reviews • class imbalance – far fewer relevant than irrelevant abstracts – asymmetric costs sensitivity more important than specificity • reviewer time is scarce and expensive – better models, fewer labels: active learning and dual supervision
    • how do we do? “Towards Modernizing the Systematic Review Pipeline: Efficient Updating via Data Mining” Genetics in Medicine 2012
    • PubMed ? 2 search database 1 formulate question, protocol & query 4 extract data treatment outcome ba c d 3 screen retrieved citations Studies AIMS1988 ASSET1988 Aber1976 Amery1969 Anderson1983 Bassand1986 Bett1973 Bossaert1987 Brunelli1988 Buchalter1987 Croydon1987 Dewar1963 Durand1987 ECSG−11979 ECSG−21988 EWP1971 Fletcher1959 GISSI1986 Gormsen1973 Guerci1987 Heikinheim1971 ISAM1986 ISISPilot1987 ISIS−21988 Ikram1986 Julian1987 Khaja1983 Leiboff1984 Maublant1988 Meinertz1988 NHFAustra1988 Olson1986 Raizner1985 Rentrop1984 Sainsous1986 Schreiber1986 Simoons1985 TICO1988 Topol1987 WWICSK1983 WWIVSK1988 White1987 Overall (I^2=19% , P=0.147) 0 0.01 0.02 0.04 0.08 0.190.270.38 0.76 1.91 3.82 7.65 18.26 OddsRatio(logscale) 5 synthesize extracted data beyond citation screening
    • PubMed ? 2 search database 1 formulate question, protocol & query 4 extract data treatment outcome ba c d 3 screen retrieved citations Studies AIMS1988 ASSET1988 Aber1976 Amery1969 Anderson1983 Bassand1986 Bett1973 Bossaert1987 Brunelli1988 Buchalter1987 Croydon1987 Dewar1963 Durand1987 ECSG−11979 ECSG−21988 EWP1971 Fletcher1959 GISSI1986 Gormsen1973 Guerci1987 Heikinheim1971 ISAM1986 ISISPilot1987 ISIS−21988 Ikram1986 Julian1987 Khaja1983 Leiboff1984 Maublant1988 Meinertz1988 NHFAustra1988 Olson1986 Raizner1985 Rentrop1984 Sainsous1986 Schreiber1986 Simoons1985 TICO1988 Topol1987 WWICSK1983 WWIVSK1988 White1987 Overall (I^2=19% , P=0.147) 0 0.01 0.02 0.04 0.08 0.190.270.38 0.76 1.91 3.82 7.65 18.26 OddsRatio(logscale) 5 synthesize extracted data beyond citation screening
    • Questions? byron_wallace@brown.edu http://www.cebm.brown.edu/software www.cebm.brown.edu/byron