Ayuda matriz2
Upcoming SlideShare
Loading in...5
×
 

Ayuda matriz2

on

  • 1,115 views

 

Statistics

Views

Total Views
1,115
Views on SlideShare
1,115
Embed Views
0

Actions

Likes
0
Downloads
37
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Ayuda matriz2 Ayuda matriz2 Document Transcript

  • UNIVERSIDAD CESAR VALLEJO ESCUELA DE POST GRADO PROYECTOEL SOFTWARE EDUCATIVO CLIP 3.0 EN DESARROLLO DE CAPA-CIDADES EN EL AREA DE MATEMATICA EN LOS ALUMNOSDE DEL1º GRADO DE SECUNDARIA DE LA INSTITUCIÓN EDUCATIVA Nº6024 “JOSÉ MARIA ARGUEDAS” – UGEL Nº 01, SAN JUAN DE MIRA-FLORES. PARA OPTAR EL TITULO DE: SEGUNDA ESPECIALIDAD EN INFORMATICA EDUCATIVA AUTOR: Lic. MARTÍNEZ SÁNCHEZ, Edgar Fernando ASESOR LIC. JOSÉ LUIS SOLÍS TOSCANO LIMA – PERÚ 2011
  • I. GENERALIDADES 1.1. Titulo EL SOFTWARE EDUCATIVO CLIP 3.0 EN DESARROLLO DE CAPACIDADES EN EL AREA DE MATEMATICA EN LOS ALUMNOSDE DEL 1º GRADO DE SECUNDARIA DE LA INSTITUCIÓN EDUCATIVA Nº 6024 “JOSÉ MARIA ARGUEDAS” – UGEL Nº 01, SAN JUAN DE MIRAFLORES. 1.2. Autor: Lic. MARTÍNEZ SÁNCHEZ, Edgar Fernando 1.3. Asesor: Lic. SOLÍS TOSCANO, José Luis 1.4. Tipo de investigación: descriptiva 1.5. Localidad: Tablada de Lurín – Villa María del Triunfo 1.6. Duración del proyecto: 3 meses
  • II: PLAN DE INVESTIGACION2.1. Planteamiento del Problema El acelerado desarrollo de la ciencia y la técnica en las últimas décadas ha pro- vocado en la educación cambios significativos entre sus componentes; al do- cente se le plantean nuevos diseños didácticos, métodos, modelos, herramien- tas y procesos instruccionales para mejorar la enseñanza, modificar la forma tradicional de enseñar por otra más novedosa basada en la construcción del conocimiento por parte del alumno; a las instituciones educativas, la sociedad les demanda mayores cambios e innovaciones de acuerdo con los avances de la informática y la electrónica que enmarcan la aparición de la sociedad del co- nocimiento. Es por tanto necesario pensar el proceso de enseñanza aprendizaje desde perspectivas nuevas que permitan la incorporación de nuevos medios didácti- cos, qué estén de acuerdo con el desarrollo científico y tecnológico actual. Software educativo CLIP3.0 Interactiva en el aula de clase, ya proporciona una serie de funcionalidades que facilitan el desarrollo de las capacidades del área de matemática. Además de las ventajas que posee al ser manipulado por el alumno es suma- mente sencillo y sin complicaciones, el no tener que utilizar la tiza, mas bien la utilización dl ordenador , las facilidades para retocar y mover textos, y otras ventajas, el contenido de los software educativos CLIP3.0 puede almacenarse en el disco y utilizarse en una sesión posterior. También puede enviarse por e- mail. Por supuesto, puede imprimirse y repartirse en papel entre los estudian- tes. Con el software educativo CLIP3.O interactiva resulta más fácil escribir, com- binar y mover imágenes, subrayar… desde la propia pantalla, sin necesidad de dirigirse al ordenador.Desarrollar las capacidades en el área de matemática de los alumnos del primer gra-do de educación secundaria de la I.E.N° 6024 “Jose Maria Arguedas” – UGEL01
  • 2.2. Formulación del Problema ¿Cuál es la influencia del Software Educativo CLIP 3.0 en el desarrollo de capa- cidades del Área de Matemática en los alumnos del 1° secundaria de la Institu- ción Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01?2.3. Justificación Nuestra investigación se justifica en el hecho de que como docentes de las dife- rentes áreas de permanecer indiferentes ante la problemática observada. Por tal razón, nuestro estudio pretende constituirse en un aporte en este campo, ya que en nuestro país no hemos encontrado investigaciones que hayan intentado iden- tificar los factores que predisponen a la hora de desarrollar las capacidades en el área de matemática con el uso de los software educativo en las aulas de in- novación pedagógica, por lo menos de la forma de hacer de cómo desarrollarlos con los estudiantes del primer grado de secundaria, luego de haber encontrado las causas de este problema, se proponga una solución para enfrentarlo. Como ya lo mencionamos anteriormente, con nuestro estudio no solo vamos a determinar los factores que subyacen a la problemática observada sino que, además, pretendemos proponer un método para enfrentar el problema, para conseguir que los estudiantes mejoren su capacidad con la utilización de las TIC en el aula de innovación pedagógica y el uso de los software educativos. Hoy en día no se puede negar que las TIC forman parte del quehacer educativo, convirtiéndose no sólo en una ventaja para quien la utiliza, sino también en una necesidad. Sin embargo, el docente debe seleccionar con criterio los recursos informáticos: software educativo, material audiovisual, multimedia, apletts, Inter- net (Web sites, WebQuest, bloggs, etc.) adecuados para reforzar los aprendiza- jes. De igual modo, el momento y la forma de utilizar este recurso tecnológico requiere de mucha pericia, que el docente irá perfeccionando con una adecuada capacitación y con la práctica.
  • 2.4. Limitaciones Consideramos Que para realizar la investigación nos hemos encontrado con diversas limitaciones: 1. El tiempo para la realización de una profunda investigación es limitada. 2. El apoyo de los profesores del área para la aplicación del instrumento de medición fue limitado. Factor tiempo.-- Por las obligaciones como docentes de aula nos limita el de- sarrollo de nuestro proyecto de investigación para buscar bibliografías. Como al- ternativa de solución me organizaba de tal manera que me daba el tiempo ne- cesario para la ejecución de mi proyecto. Factor Económico.- Me encontré con una limitación para cubrir los gastos que demanda mi investigación como sala virtual (internet), tipeos, impresiones, co- pias, pasajes, etc. superándolo gracias a la perseverancia de mi inquietud de conocer y solucionar los problemas que aquejan a nuestros estudiantes.2.5. Antecedentes 2.5.1. Tesis: Balbín Bastidas, Ana María. En su trabajo de investigación: Facto- res relacionados con el uso de la computadora como recurso de la práctica edu- cativa de los docentes capacitados por el Programa Huascarán, afirma que se han visto las mejoras en el aprendizaje que se derivan del uso de herramientas de modelización basadas en las TIC (Tecnologías de la Información y la Comu- nicación). Muestra algunos resultados de su aplicación para la obtención de da- tos experimentales con sensores y con vídeos, las simulaciones con mini aplica- ciones o apletts, y las hojas de cálculo. 2.5.2. Tesis: Albert Gras-Martí, Marisa Cano-Villalba, Yuri Milachay, Vicent So- ler-Selva, Julio Santos Benito). En su trabajo de investigación: Aprovechamiento de recursos TIC para mejorar el aprendizaje de los lenguajes de las Ciencias: Investigaciones didácticas en el aula: afirman que los estudios detallados de las respuestas de los alumnos en test pre y post aplicación de la herramienta co- rrespondiente, así como comparaciones entre los resultados de diversos cursos que el uso de estas herramientas promueven y facilitan la comprensión de los
  • distintos lenguajes de la ciencia: el lenguaje icónico, algebraico, tabular, formal,etc.2.5.3. Tesis: Edith Ruth Aliaga Vilchez. En su trabajo de investigación: “uso delsoftware matemático como medio de Asesoría y reforzamiento de las matemáti-cas a alumnas del Segundo grado de educación secundaria del colegio Merce-des Indacochea del distrito de Barranco: afirma que el uso de los software comoestrategia de enseñanza de las matemáticas es indispensable y la utilización deun software por parte de los alumnos incrementa notablemente su rendimiento.El aprendizaje de las matemáticas en alumnas cuyas edades se encuentran enel rango superior al promedio, es más rápido, debido a las experiencias tantocognitivas como emocional.Realizada el 14 de Julio del 2004 en la universidad Nacional Federico Villarreal –Lima.2.5.4 Tesis: Juana Zavala Martínez. En su trabajo de investigación: “la compu-tadora como material didáctico para la enseñanza de la matemática”. Afirma queentre los componentes educativos, la computadora se incorpora como un pode-roso medio que adquiere sentido con las diversas mediciones del maestro; prin-cipalmente la mediación cognitiva y la mediación cognitiva.La potencia de la computadora ayuda a promover la intuición matemática y elentendimiento del escolar. Ya que este recurso didáctico que ayuda al alumno asentir la conformidad con el curso.Los sitios que localizamos en la red, relativos a educación matemática, son ex-tranjeros especialmente norteamericanos, y la presentación de los contenidos, lohacen con este corte tradicional con el que hemos convivido durante décadas.Aun en nuestro país no hay colegios que ya estén utilizando la computadora enla clase de matemática pero tenemos la referencia de otros colegios extranjerosque usan este recurso didáctico teniendo resultados favorables. Por lo pronto seha estudiado las actitudes de los alumnos hacia la computadora y todas las res-puestas han sido positivas. En el caso concreto de la educación en los nivelesde educación secundaria, todavía no se utiliza la computadora como recursosdidácticos para la enseñanza de la matemática el cual forma parte del tedio aeste curso por parte del alumno.
  • 2.5.5 Tesis: Efraín Serafín Mamani Ticona y Roció Quispe Cutipa en su trabajo de investigación “La influencia de la enseñanza virtual del aprendizaje de los alumnos del quinto Grado de la especialidad de electrónica de las Instituciones Educativas Secundarias Técnicas “Gran Unidad escolar San Carlos” , “Industrial Nº 32 de la ciudad de Puno”. Afirma y concluye: 1.- La enseñanza virtual en la especialidad de electrónica influye directamente en los educandos ya que posibilita un mejor aprendizaje de diferentes conteni- dos curriculares, principalmente utilizando los procesos educativos electrónicos por parte de los profesores hacia los educandos y es muy importante para su formación integral como persona. 2.- Utilizando las computadoras en el aula virtual, ayuda mejorar el nivel de en- señanza y aprendizaje de los alumnos, ya que les gusta utilizar computadoras en el desarrollo de sus sesiones de aprendizaje significativo, así como en reali- zar sus diversas prácticas utilizando diferentes programas educativos electróni- cos. 3.- Es ventajoso la utilización de las computadoras en el aula virtual ya que co- adyuva a una mejor enseñanza de los alumnos, les posibilita un mejor aprendi- zaje y pone a la altura de las grandes metrópolis la enseñanza virtual así mejo- rando la calidad de la educación técnica, cuyo objetivo es la de formar alumnos con una sólida base científica, tecnológica y humanista. Puno – Perú 2007.2.6. Preguntas de investigación ¿Cómo influye la aplicación del Software Educativo CLIP 3.0 en el desarrollo de las capacidades de razonamiento y demostración en los alumnos del 1º de Secundaria de la Institución Educativa Nº 6024 1º de secundaria “José María Arguedas” – UGEL Nº 01? ¿Cómo influye la aplicación de las Aulas de Innovación Pedagógica en el de- sarrollo de las capacidades de comunicación matemática en los alumnos del 1º de secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01
  • ¿Cómo influye la aplicación de las Aulas de Innovación Pedagógica en el desa- rrollo de las capacidades de resolución de problemas en los alumnos del 1º de secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01?2.7. Objetivos de la Investigación 2.7.1 Objetivo General Determinar si la aplicación del Software Educativo CLIP 3.0 mejora el desarrollo de capacidades en el área de matemática en los alumnos del 1º de secundaria de la Institución Educativa Nº 6024 “José María Ar- guedas” – UGEL Nº 01. 2.7.2. Objetivo Específicos Determinar si la aplicación del Software Educativo CLIP 3.0 mejora el desarrollo de la capacidad de razonamiento y demostración en los alumnos del 1º de Secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01 . Determinar si la aplicación del Software Educativo CLIP 3.0 mejora el desarrollo de la capacidad de comunicación matemática en los estu- diantes del 1º de secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01 Determinar si la aplicación del Software Educativo CLIP 3.0 mejora el desarrollo de la capacidad de resolución de problemas en los estu- diantes del 1º de secundaria de la Institución Educativa Nº 6024 “José María Arguedas” – UGEL Nº 01
  • 2.8. Marco Teórico 2.8.1. Conceptualización de los Software Educativo Podríamos definir el término software educativo como “programas de computa- dora para la educación”. Hay muchas definiciones entre las que destacamos la de:  Pere Marqués (1996), “son los programas de computadoras creados con la finalidad específica de ser utilizados como medio didáctico, es decir, para facilitar los procesos de enseñanza y de aprendizaje”.  Begoña Gros (1997), “cualquier producto realizado con una finali- dad educativa”.  Ceja MENA (2000), “son aquellos programas creados con la finali- dad específica de ser utilizados como medio didáctico; es decir, para faci- litar los procesos de enseñanza y de aprendizaje, tanto en su modalidad tradicional presencial, como en la flexible y a distancia”. Estas definiciones engloban todos los programas que han sido elaborados con fines didácticos, desde los tradicionales programas basados en los modelos conductistas de la enseñanza, los programas de Enseñanza Asistida por Computadora, hasta los programas de Enseñanza Inteligen- te Asistida por Computadora, que, utilizando técnicas propias del campo de los Sistemas Expertos y de la Inteligencia Artificial, pretendiendo imi- tar la labor tutorial personalizada que realizan los profesores/as y presentan modelos de representación del conocimiento en consonancia con los procesos cognitivos que desarrollan los alumnos/as. Los software educativos pueden tratar las diferentes materias de for- mas muy diversas y ofrecer un entorno de trabajo más o menos sensible a las circunstancias de los alumnos/as y más o menos rico en posibilidades de interacción; pero todos comparten cinco ca- racterísticas esenciales según Ríos y Ruíz (1998): 2.8.2. Clasificación de los Software Educativos El software educativo a pesar de tener unos rasgos esenciales básicos y una estructura general común se presentan con unas características muy diversas. Se han elaborado múltiples tipologías que clasifican los programas didácticos a partir de diferentes criterios.
  • Uno de estos criterios según Marqués (1996) se basa en la consideración del tratamiento de los errores que cometen los estudiantes, distinguiendo:  Programas tutoriales directivos, que hacen preguntas a los estudian- tes y controlan en todo momento su actividad. La computadora adop- ta el papel de juez poseedor de la verdad y examina al alumno/a. Se producen errores cuando la respuesta del alumno/a está en des- acuerdo con la que el ordenador tiene como correcta. En los pro- gramas más tradicionales el error lleva implícita la noción de fracaso. Programas no directivos, en los que la computadora adopta el papel de un la- boratorio o instrumento a disposición de la iniciativa de un alumno/a que pre- gunta y tiene una libertad de acción sólo limitada por las normas del pro- grama. La computadora no juzga las acciones del alumno/a, se limita a proce- sar los datos que éste introduce y a mostrar las consecuencias de sus acciones sobre un entorno. Objetivamente no se producen errores, sólo desacuerdos entre los efectos esperados por el alumno/a y los efectos reales de sus acciones sobre el entorno. Otra clasificación interesante de los software es la dada por Poole (1999) que atiende a la posibilidad de modificar los con- tenidos y distingue entre software Cerrados (que no pueden modificarse) y software abiertos, que proporcionan un esqueleto, una estructura, sobre la cual los alumnos/as y los profesores/as pueden añadir el contenido que les interese. De esta manera se facilita su adecuación a los diversos contextos educativos y permite un mejor tratamiento de la diversidad de los estudiantes. No obstante, de todas las clasificaciones la que posiblemente propor- ciona categorías más claras y útiles a los profesores/as es la de Galvis (1996) que tiene en cuenta el grado de control del programa sobre la actividad de los alumnos/as y la estructura de su algoritmo, y que se presenta a continuación: 1. Programas tutoriales: Son programas que en mayor o menor medida dirigen, tutorizan, el trabajo de los alumnos/as. Pretenden que, a partir de unas informaciones y mediante la realización de ciertas actividades pre- vistas de antemano, los estudiantes pongan en juego determinadas capa- cidades y aprendan o refuercen unos conocimientos y/o habilidades. . A partir de la estructura de su algoritmo, se distinguen cuatro categorías:  Programas lineales, que presentan al alumno/a una secuencia de información y/o ejercicios (siempre la
  • misma o determinada aleatoriamente) con indepen- dencia de la corrección o incorrección de sus respues- tas.  Programas ramificados, basados inicialmente también en modelos conductistas, siguen recorridos pe- dagógicos diferentes según el juicio que hace el orde- nador sobre la corrección de las respuestas de los alum- nos/as o según su decisión de profundizar más en ciertos temas. Entornos tutoriales. En general están inspirados en modelos pedagógicos cognitivistas, y proporcionan a los alumnos/as una serie de herramientas de búsqueda y de proceso de la información que pueden utilizar libremente para construir la respuesta a las preguntas del programa. Sistemas tutoriales expertos, como los Sistemas Tuto- res Inteligentes, que, elaborados con las técnicas de la2. Bases de datos: Proporcionan unos datos organizados, en un entornoestático, según determinados criterios, y facilitan su exploración y consultaselectiva. Se pueden emplear en múltiples actividades como por ejemplo:seleccionar datos relevantes para resolver problemas, analizar y relacionardatos, extraer conclusiones, comprobar hipótesis. Las bases de datospueden tener una estructura jerárquica (si existen unos elementossubordinantes de los que dependen otros subordinados, como los or-ganigramas), relacional (si están organizadas mediante unas fichas o re-gistros con una misma estructura y rango) o documental (si utiliza des-criptores y su finalidad es almacenar grandes volúmenes de información do-cumental: revistas, periódicos, etc). En cualquier caso, según la forma de ac-ceder a la información se pueden distinguir dos tipos:  Bases de datos convencionales. Tienen la in- formación almacenada en ficheros, mapas o gráficos, que el usuario puede recorrer según su criterio para recopilar in- formación..  Bases de datos tipo sistema experto. Son bases de datos muy especializadas que recopilan toda la informa- ción existente de un tema concreto y además asesoran
  • al usuario cuando accede buscando determinadas res- puestas.3. Simuladores: Presentan un modelo o entorno dinámico (generalmente travésde gráficos o animaciones interactivas) y facilitan su exploración y modificación alos alumnos/as, que pueden realizar aprendizajes inductivos o deductivos mediantela observación y la manipulación de la estructurasubyacente; de esta manera pueden descubrir los elementos del modelo, sus in-terrelaciones, y pueden tomar decisiones y adquirir experiencia directa delantede unas situaciones que frecuentemente resultarían difícilmente accesibles ala realidad (control de una central nuclear, contracción del tiempo, pilotajede un avión...). También se pueden considerar simulaciones ciertos video-juegos que, al margen de otras consideraciones sobre los valores que incorpo-ran (generalmente no muy positivos) facilitan el desarrollo de los reflejos, la per-cepción visual y la coordinación psicomotriz en general, además de estimular lacapacidad de interpretación y de reacción ante un medio concreto. En cualquiercaso, posibilitan un aprendizaje significativo por descubrimiento y la investigación delos estudiantes/experimentadores puede realizarse en tiempo real o en tiempo ace-lerado, según el simulador.  Modelos físico-matemáticos: Presentan de manera numérica o gráfica una realidad que tiene unas leyes representadas por un sistema de ecuaciones determinis- tas. Se incluyen aquí los programas-laboratorio, algunos trazadores de funciones y los programas que mediante un convertidor analógico-digital captan datos analógicos de un fenómeno externo al ordenador y presentan en pantalla un modelo del fenómeno estudiado o informaciones y gráfi- cos que van asociados. Estos programas a veces son utilizados por profesores/as delante de la clase a manera de pizarra electrónica, como demostración o para ilustrar un concepto, facilitando así la transmisión de infor- mación a los alumnos/as, que después podrán repasar el tema in- teractuando con el programa.  Entornos sociales: Presentan una realidad regida por unas leyes no del todo deterministas. Se incluyen aquí los juegos de estrategia y de aventura, que exigen una estrate-
  • gia cambiante a lo largo del tiempo.4. Constructores: Son programas que tienen un entorno programable.Facilitan a los usuarios unos elementos simples con los cuales puedeconstruir elementos más complejos o entornos. De esta manera potencian el apren-dizaje heurístico y, de acuerdo con las teorías cognitivistas, facilitan a los alumnos/asla construcción de sus propios aprendizajes, que surgirán a través de la reflexiónque realizarán al diseñar programas y comprobar inmediatamente, cuando losejecuten, la relevancia de sus ideas. Se pueden distinguir dos tipos de construc-tores:  Constructores específicos. Ponen a disposición de los estudiantes una serie de mecanismos de actuación (generalmente en forma de órdenes específicas) que les permiten llevar a cabo operaciones de un cierto grado de complejidad mediante la construcción de determina- dos entornos, modelos o estructuras, y de esta manera avanzan en el conocimiento de una disciplina o entorno específico  Lenguajes de programación, como LOGO, PASCAL, BASIC, DELPHY, etc., que ofrecen unos "laboratorios simbólicos" en los que se pueden construir un número ilimi- tado de entornos. Aquí los alumnos/as se convierten en profesores/as de la computadora. :  Proporciona entornos de exploración donde el alum- no/a puede experimentar y comprobar las consecuencias de sus acciones, de manera que va construyendo un marco de referencia, unos esquemas de conocimiento, que facilitarán la posterior adquisición de nuevos conocimientos.  Facilita una actividad formal y compleja, próxima al terreno de la construcción de estrategias de resolución de proble- mas: la programación. A través de ella los alum- nos/as pueden establecer proyectos, tomar decisiones y evaluar los resultados de sus acciones. 5. Programas herramientas: Son programas que proporcionan un entorno instrumental con el cual se facilita la realización de ciertos trabajos ge-
  • nerales de tratamiento de la información: escribir, organizar, calcular, dibu-jar, transmitir, captar datos, etc. A parte de los lenguajes de autor (que tambiénse podrían incluir en el grupo de los programas constructores), los más utiliza-dos son programas de uso general que provienen del mundo laboral y, portanto, quedan fuera de la definición que se ha dado de software educati-vo. No obstante, se han elaborado algunas versiones de estos programas"para niños" que limitan sus posibilidades a cambio de una, no siempre cla-ra, mayor facilidad de uso. De hecho, muchas de estas versiones resultan in-necesarias, ya que el uso de estos programas cada vez resulta más sencilloy cuando los estudiantes necesitan utilizarlos o su uso les resulta funcionalaprenden a manejarlos sin dificultad. Los programas más utilizados de es-te grupo son:  Procesadores de textos. Son programas que, con la ayuda de una impresora, convierten el ordenador en una fabulosa máquina de escribir. En el ámbito educativo debe hacerse una introducción gradual que puede empezar a lo largo de la Ense- ñanza Primaria, y ha de permitir a los alumnos/as familiarizarse con el teclado y con el ordenador en general, y sustituir parcialmente la libreta de redacciones por un disco (donde almacenarán sus trabajos). Al escribir con los procesadores de textos los estudiantes pueden concentrarse en el contenido de las redacciones y de- más trabajos que tengan encomendados despreocupándose por la caligrafía. Además el corrector ortográfico que suelen incorporar les ayu- dará a revisar posibles faltas de ortografía antes de entregar el trabajo. Además de este empleo instrumental, los procesadores de tex- tos permiten realizar múltiples actividades didácticas, por ejemplo:  Ordenar párrafos, versos, estrofas.  Insertar frases y completar textos.  Separar dos poemas...  Gestores de bases de datos. Sirven para generar poten- tes sistemas de archivo ya que permiten almacenar informa- ción de manera organizada y posteriormente recuperarla y
  • modificarla. Entre las muchas actividades con valor educativo que se pue- den realizar están las siguientes:  Revisar una base de datos ya construida para bus- car determinadas informaciones y recuperarlas.  Recoger información, estructurarla y construir una nueva base de datos. Hojas de cálculo. Son programas que convierten el ordenador en una versátil y rápida calculadora programable, facilitan- do la realización de actividades que requieran efectuar muchos cálculos matemáticos. Entre las actividades didácticas que se pueden realizar con las hojas de cálculo están las siguientes:  Aplicar hojas de cálculo ya programadas a la resolución de problemas de diversas asignaturas, evitando así la realización de pesados cálculos y ahorrando un tiempo que se puede dedicar a analizar los resul- tados de los problemas.  Programar una nueva hoja de cálculo, lo que exi- girá previamente adquirir un conocimiento preciso del modelo matemático que tiene que utilizar. Editores gráficos. Se emplean desde un punto de vista instrumental para realizar dibujos, portadas para los trabajos, murales, anuncios, etc. Además constituyen un re- curso idóneo para desarrollar parte del currículum de Educación Artística: dibujo, composición artística, uso del color, etc. Programas de comunicaciones. Son programas que permi- ten que ordenadores lejanos (si disponen de módem) se comu- niquen entre sí a través de las líneas telefónicas y puedan enviarse mensajes y gráficos, programas... Desde una perspecti- va educativa estos sistemas abren un gran abanico de activida- des posibles para los alumnos/as, por ejemplo:  Comunicarse con otros compañeros e intercam- biarse informaciones.  Acceder a bases de datos lejanas para bus-
  • car determinadas informaciones.  Programas de experimentación asistida. A través de varia- dos instrumentos y convertidores analógico-digitales, recogen datos sobre el comportamiento de las variables que inciden en de- terminados fenómenos. Posteriormente con estas informacio- nes se podrán construir tablas y elaborar representaciones gráfi- cas que representen relaciones significativas entre las variables es- tudiadas.  Lenguajes y sistemas de autor. Son programas que facilitan la elaboración de programas tutoriales a los profesores/as que no disponen de grandes conocimientos informáticos. Utilizan unas pocas instrucciones básicas que se pueden aprender en pocas sesiones.2.8.3. Funciones del software educativoEl software educativo, cuando se aplican a la realidad educativa, realizan lasfunciones básicas propias de los medios didácticos en general y además,en algunos casos, según la forma de uso que determina el profesor/a,pueden proporcionar funcionalidades específicas.Por otra parte, como ocurre con otros productos de la actual tecnología educa-tiva, no se puede afirmar que el software educativo por sí mismo sea buenoo malo, todo dependerá del uso que de él se haga, de la manera cómo se uti-lice en cada situación concreta. En última instancia su funcionalidad ylas ventajas e inconvenientes que pueda comportar su uso serán elresultado de las características del material, de su adecuación al contex-to educativo al que se aplica y de la manera en que el profesor/a organice suutilización.Las funciones que pueden realizar los software según Marquès (1996):  Función informativa. La mayoría de los programas a través de sus actividades presentan unos contenidos que proporcionan una información estructuradora de la realidad a los estudiantes. Como todos los medios didácticos, estos materiales representan la realidad y la ordenan. Los programas tutoriales, los simula- dores y, especialmente, las bases de datos, son los programas que realizan más marcadamente una función informativa.  Función instructiva. Todos los software educativos orientan y re-
  • gulan el aprendizaje de los estudiantes ya que, explícita o implícitamente, promueven determinadas actuaciones de los mismos encaminadas a facilitar el logro de unos objetivos educativos específicos. Además condicionan el tipo de aprendizaje que se realiza pues, por ejemplo, pueden disponer un tratamiento global de la información (propio de los medios audiovisuales) o a un tratamiento secuencial (propio de los textos escritos). Con todo, si bien la computadora actúa en general como mediador construcción del conocimiento y el metaconocimiento de los estu- diantes, son los programas tutoriales los que realizan de manera más explícita esta función instructiva, ya que dirigen las actividades de los estudiantes en función de sus respuestas y progresos. Función motivadora. Generalmente los estudiantes se sienten atraídos e interesados por todo el software educativo, ya que los programas suelen incluir elementos para captar la atención de los alumnos/as, mantener su interés y, cuando sea necesario, focali- zarlo hacia los aspectos más importantes de las actividades, por lo tanto, la función motivadora es una delas más características de es- te tipo de materiales didácticos, y resulta extremadamente útil para los profesores/as. Función evaluadora. La interactividad propia de estos materiales, que les permiten responder inmediatamente a las respuestas y acciones de los estudiantes, les hace especialmente adecuados para evaluar el trabajo que se va realizando con ellos. Esta evaluación puede ser de dos tipos:  Implícita, cuando el estudiante detecta sus errores, se evalúa, a partir de las respuestas que le da la computadora.  Explícita, cuando el programa presenta informes valorando la actuación del alumno/a. Este tipo de evaluación sólo la reali- zan los programas que disponen de módulos específicos de eva- luación.  Función investigadora. Los programas no directivos, especial- mente las bases de datos, simuladores y programas constructo- res, ofrecen a los estudiantes interesantes entornos donde inves- tigar: buscar determinadas informaciones, cambiar los valores de
  • las variables de un sistema, etc. Además, tanto estos programas como los programas herramienta, pueden proporcionar al profesorado y estudiantado instrumentos de gran utilidad para el desarrollo de trabajos de investigación que se realicen básicamente al margen de los ordenadores. Función expresiva. Dado que las computadoras son capaces de procesar los símbolos mediante los cuales las personas conocimientos y nos comunicamos, sus posibilidades como ins- trumento expresivo son muy amplias. Desde el ámbito de la informá- tica que estamos tratando, el software educativo, los estudiantes se expresan y se comunican con las computadoras y con otros com- pañeros a través de las actividades de los programas y, espe- cialmente, cuando utilizan lenguajes de programación, proce- sadores de textos, editores de gráficos, etc. Otro aspecto a considerar al respecto es que las computadoras nosuelen admitir la ambigüedad en sus "diálogos" con los estudiantes,de manera que los alumnos/as se ven obligados a cuidar más laprecisión de sus mensajes. o Función metalingüística. Mediante el uso de los sis- temas operativos (, WINDOWS, etc.) y los lenguajes de programación (BASIC, LOGO, etc.) Los estudiantes pueden aprender los lenguajes propios de la informática. o Función lúdica. Trabajar con las computadoras reali- zando actividades educativas es una labor que a menudo tiene unas connotaciones lúdicas y festivas para los estudian- tes. o Función innovadora. Aunque no siempre sus planteamien- tos pedagógicos resulten innovadores, los programas educativos se pueden considerar materiales didácticos con esta función ya que utilizan una tecnología recien- temente incorporada a los centros educativos y, en general, suelen permitir muy diversas formas de uso. Esta versa- tilidad abre amplias posibilidades de experimentación didáctica e innovación educativa en el aula.
  • 2.8.4. Las funciones del profesor y los materiales didácticosLos materiales didácticos, se pueden definir como "el conjunto de mediosmateriales que intervienen en el acto didáctico, facilitando los procesosenseñanza y aprendizaje..enseñanza y de aprendizaje". Sus fines centrales persiguen facilitar lacomunicación entre el docente y el estudiante para favorecer a través de laintuición y el razonamiento un acercamiento comprensivo de las ideas a través de lossentidos. (Gómez, 1997). Estos materiales didácticos constituyen la variable de-pendiente del proyecto pedagógico y del entorno de aprendizaje que se trate. La utilización de software educativo como material didáctico, cambia la ma- nera en la cual los profesores estimulan el aprendizaje en sus clases; cam- bia el tipo de interacción entre alumnos y docentes y por lo tanto cambia el rol y las funciones del profesor. En la Tabla se presenta un resumen de dichas funciones según Squires y McDouglas (1997): FUNCION CARACTERISTICAS Como proveedor de recursos Muchas veces el profesor tiene que adaptar los materiales de un cierto paquete educativo a las características de la clase y a los fines que él plantea en ese momento Como organizador Cuando se usan computadoras, hay muchas formas de organizar su uso en el aula y variando de acuerdo a los diferentes esti- los docentes. También se debe tener en cuenta la graduación del tiempo de in- teracción con las máquinas, ya que es en los diálogos en clase donde se produce gran parte del aprendizaje Como tutor Hay profesores que usan un software para centrar las ac-
  • tividades. El profesor trabaja con un sólo alumno o un grupo pequeño, realizando actividades de tutoría como: razonar y buscar modelos o respuestas. Como investigador A nivel áulico, el uso de soft- ware puede dar a los profeso- res ideas sobre los proceso de aprendizaje y de las dificultades de sus alumnos. En este papel de investigadores, los docentes, usan al software como una herramienta diagnóstica Como facilitador Esta es la responsabilidad prin- cipal del docente, como facilita- dores del aprendizaje de los estudiantes y la que no debe olvidarse, con la aparición de las demás funciones que sur- gen con la introducción del uso de las computadoras en el aulaEntre las actividades de comprensión o "procesos de pensamiento" que losalumnos pueden desarrollar al interactuar con los programas educativos, sepueden mencionar: Explicar relaciones causa efecto.  Formular conclusiones válidas.  Describir limitaciones de los datos.   Confrontar conocimientos nuevos con previos.   Clasificar y seleccionar información.   Producir, organizar y expresar ideas.   Elaborar mapas conceptuales (teniendo en cuenta la recon- ciliación integradora y la diferenciación progresiva)   Integrar el aprendizaje en diferentes áreas.   Inferir correctamente.
  •   Defender un punto de vista y fundamentar criterios.   Resolver problemas elaborando estrategias metacognitivas.La comprensión, implica el compromiso reflexivo del alumno con el contenido deenseñanza y la habilidad para articular significativamente el material comunicadopor acciones de guía (Callaos, 1993).Entre los objetivos de los programas educativos se pueden mencionar: 1. Crear expectativas en el estudiante y estimular la planificación de su aprendizaje. 2. Dirigir la atención del estudiante y permitir que inicie su aprendizaje por diferentes caminos de acceso. (tiene gran importancia desde lo cognitivo). 3. Asegurar situaciones de aprendizaje significativo. 4. Aprovechar la posibilidad de usar imágenes, animaciones, simulaciones y sonidos. 5. Desarrollar y hacer consciente el uso de diferentes estrategias: − De procesamiento de la información. − De producción y uso de la información. − De recreación de la información. 6. Estimular la generalización y transferencia de lo aprendido. 7. Ofrecer situaciones de resolución de problemas. 8. Proveer retroalimentación constante e informar acerca de los progresos en el aprendizaje. (Escudero, 1992).Alessi y Trollip (1991), consideran que existe una motivación extrínsecaindependiente del programa utilizado, y una intrínseca inherente en lainstrucción y recomiendan criterios para su promoción, como el uso de juegos,de exploración, de desafíos, incentivación de la curiosidad del estudiante,teniendo en cuenta un balance entre la motivación y el control del programa.De la motivación permitiendo crear desafíos, curiosidad, control y fantasía ycon un diseño motivacional que mantenga la atención a través delmismo. Los estudiantes deben poder ver la utilidad de resolución de problemas.Ausubel (1968) sostiene que el papel de la motivación en el aprendizaje es unode los problemas más controvertidos de los teóricos de la psicología, y que aúnlas posiciones son muy encontradas. En la Tabla se pueden ver la clasificaciónde los diferentes tipos de motivación dadas por Galindo (2000).
  • Intresica Es la que proviene del interior del sujeto por su compromiso con la tarea Relacionada con el yo Se relaciona con la auto estima, con el no percibirse inferior a los demás Centrada en la valoración social Se relaciona con la satisfacción afectiva que produce la acepta- ción, aprobación Extrínseca Centrada en recompensas exter- nas, se relaciona con premios y/o castigosLa motivación intrínseca es superior a la extrínseca y para lograrla, quizás lamanera más eficaz es mediante el entusiasmo propio del docente por lo quehace.Para ello se debe considerar la creación de nuevos intereses en los alumnoscomo uno de los objetivos de la intervención pedagógica, teniendo en cuenta lasnecesidades fisiológicas, de supervivencia, de seguridad, de amor, depertenencia, de aceptación, de autoestima, de autorrealización.La organización en bloques y sub-bloques se realizará de tal forma que permitande navegación en sentido horizontal, vertical y transversal y deberán estar deacuerdo a las diferentes estrategias de búsqueda que se preparen desde algunade las visiones de los diferentes paradigmas educativos.Esta organización será acorde con el diseño de las pantallas más adecuadoen cada caso, para la presentación de los contenidos.Gallego y Alonso (1997), ofrecen una guía metodológica para el diseñopedagógico de la interface de navegación, destacando la necesidad de undiseño adecuado tanto de la organización de los contenidos como de lasestrategias de enseñanza y de aprendizaje. Esta interface es fundamental, yaque es el sistema de recursos mediante el cual el usuario interactúa con elsistema informático. Estos recursos implican tener en cuenta aspectos técnicos,de funcionamiento de la interface y también los cognitivos y emocionalesresultantes de la interacción usuario-computadora.La interface es el elemento clave de comunicación o aspecto fundamental dediseño y presentación de los contenidos. Actualmente, se diseñan interfaces
  • orientadas al usuario, lo más cercanas posible al lenguaje humano, incluyendoel modo de presentar la información en la pantalla y las funcionalidadesbrindadas al usuario para interactuar con el programa.Según Gallego y Alonso (1997), las características principales de una interfaceorientada al usuario deben ser:  Homogeneidad: requiere de una interface con funciones claras para moverse de en el programa, incluyendo un mapa general.   Versatilidad: que pueda incorporar nuevas funciones específicas.   Adaptabilidad: deberá ofrecer modalidades de navegación de acuerdo al contenido, los destinatarios y el nivel de profundidad.   Multimodalidad: con integración de modalidades de comunicación necesaria para cada concepto.   Multidimensionalidad: para los diseños hipermediales.   Agilidad: para que la interacción sea dinámica.   Transparencia: cuanto más natural sea, será más fácil para el usuario acceder a los contenidos.   Interactividad: darle al usuario un papel protagónico.   Conectividad: para utilizar redes.Respecto de las funciones, la interface debe tener una triple funcionalidad:utilidades, navegación e información.En su artículo sobre los agentes de interface, Butler(2001) señala comoprincipales características de las mismas: dar respuestas, actuar como agente,competencia y accesibilidad.La metáfora navegacional a aplicar estará condicionada por el tipo de contenido,las características de los destinatarios y el lenguaje o herramienta de autor usadopara desarrollar el software. Las metáforas más utilizadas son las de los menús:cerrados, abiertos o mixtos y las de los iconos; en este caso su utilización esmucho más intuitiva. La metáfora espacial, es aquella que usa la realidad comomodelo, con escenarios que simulan la realidad misma. Un modelo de interfaceespacial son los paisajes de información, este modelo incluye conjuntos dedatos, documentos interactivos, recorridos guiados, películas y actividades.Como no hay una metáfora ideal de menú principal de usuario, se trata decon caminos de aprendizaje múltiples a elección del alumno, los estilos deaprendizaje pueden convertirse en un elemento más a tener en cuenta en eldiseño didáctico (Alonso, 1992).
  • Las funciones de navegación permiten saber al usuario dónde está en cada momento, de dónde viene y a dónde puede ir. Los modelos de organización de la información para estructurar los contenidos de las aplica- ciones educativas son muy diversos. Dunlop(2001) plantea una estructura multidimensional que permite al usuario acceder a la información sobre la base de distintos intereseLa metodología recomendada por Gallego y Alonso (1997), para aplicar la inter- face al ámbito educativo y la formación, se basa en los siguientes principios:   Ofrecer al usuario la posibilidad de que se sienta protagonista.   Presentar los contenidos de forma atractiva y de fácil manejo.   Combinar diferentes metáforas de navegación interactivas.   Prever diversas funcionalidades de la interface de navegación en función del tipo de contenido, del destinatario y de los niveles de profundidad previstos.   Considerar las normas de calidad en el diseño. Las principales especifi- caciones de una interface de aprendizaje son:   Facilidad de manejo.   Ayudas alternativas.2.8.5. Desarrollo de capacidades2.8.5.1. Condiciones para el desarrollo de las capacidades.Desde los años ochenta – de manera cada vez más creciente – existe un inusitadointerés por enseñar a pensar, como una de las metas más genuinas de la educación.Numerosos países han ido acumulando experiencias y conocimientos al respecto y,gracias al avance de la investigación psicopedagógica en torno al desarrollo de lascapacidades, hoy es posible orientar los esfuerzos de la educación en lograr las aspi-raciones de muchas veces reclamada por la sociedad. “Sin embargo, algunos creen que enseñar a pensar es una cuestión de moda y que como toda moda, esta también es pasajera, avaladas por la experiencia de que han visto pasar varias veces “lo ultimo” en educación; pero en contra esta idea se puede señalar el interés que existe desde hace veinticinco años, por redireccionar la educación en este sentido y no en vano se habla de un cambio de paradigma educativo. Es evidente que siempre ha habido un interés por hacer que los estudiantes aprendan a pensar, pero hoy en día, dadas las condiciones generadas por los
  • fenómenos socio – económicos que estamos viviendo, esta necesidad se ha hecho mas patente. Basta con referirnos a tres hechos de nuestra rea- lidad:1.- EL Cambio en las exigencias para acceder al empleo y sostenerlo, reclaman quelas personas posean mas capacidades que conocimientos específicos. Es algo verifi-cable el hecho de que las personas con mas capacidades, accedan a mejores emple-os y progresan mejor en ellos que las personas que no las poseen, y dado que laspersonas cambian hoy en día mas rápidamente de empleo, son las capacidades lasque permiten mayor versatilidad.2.- Las necesidades de reivindicación social para grandes mayorías – hoy en día –excluidas del bienestar del bienestar y de una mejor calidad de vida, pasan necesa-riamente por hacer de estas, personas mas hábiles y mas pensantes, que puedansustraerse de lideres egoístas y dictatoriales que subordinan inclusive la paz a la quetodos tienen derecho, por su propio beneficio personal o de sus grupos afines.3.- La puesta en marcha de un currículo por capacidades en la Educación Secundariade nuestro país, no es pues una cuestión de estar a la moda de la educación y tam-poco es una cuestión sencilla, ya que implica un cambio de cultura pedagógica y, eso,no es una empresa fácil; de alli que el poner en funcionamiento esta propuesta de-manda una serie de condiciones, que modifiquen progresivamente una serie de acto-res y de procesos pedagógicos.2.8.5.2. El cambio en los Docentes.Es sabido que los educadores junto con los educandos y los padres de familia son losagentes pedagógicos directos en el escenario educativo de la educación Básica. Eneste sentido, el cambio educacional atañe en primer lugar a los docentes y a la ense-ñanza. “Para fomentar el desarrollo de capacidades en los alumnos, se requiere igualmente docentes que posean las capacidades, los conocimientos y las actitudes para procurar un aprendizaje para la comprensión; o lo que es lo mismo, se requieren docentes con las capacidades básicas para hacer el aprendizaje y la enseñanza, en consecuencia, sean efectivos. Como es sabido, los docentes ponen el tono emocional a la clase, dise- ñan las estrategias didácticas, implementan y administran las actividades de aprendizaje, monitorean y evalúan el progreso de los alumnos”.
  • a. El clima emocional de la clase depende que el docente posea y utilice en lapráctica, las siguientes condiciones y características:- Entusiasmo, para interesarse e involucrarse en el proceso de aprendizaje de susalumnos.- Modelización; los docentes comunican muchas cosas no solo por lo que dicen, si-no, fundamentalmente, por lo que hacen y como lo hacen.- Calidez y Empatía, lo que alude a la disposición del docente por demostrar que seinteresa por los alumnos como personas y no aprehendientes.- Expectativas positivas, que son inferencias que los docentes hacen acerca de laconducta futura o de los logros académicos de sus alumnos. Es obvio que, estar con-vencidos de que todos los alumnos pueden aprender, es una variable clave en losdocentes que obtienen logros altos en sus estudiantes.b. la comunicación, es otro aspecto básico en el comportamiento docente, que influ-ye notablemente en la aproximación del alumno y en su involucramiento en el procesode su aprendizaje. Las condiciones a observar en ella, son las siguientes:- Terminología precisa, significa que los docentes deben sintetizar las ideas clara-mente y eliminar términos vagos e imprecisos; lo cual requiere un buen conocimientode lo que hay que enseñar.- Discurso conectado, significa que cada clase o sesión debe estructurarse en tornoa un asunto preciso, que conduzca al estudiante a un propósito definido, sin divaga-ciones ni dudas.- Señales de transición, constituidas por formulas verbales introducidas en el trata-miento del tema para dar pistas de que concluye una idea y se esta pasando a otra.- El énfasis, que alerta a los estudiantes acerca de aspectos importantes de tema declase y que requieren ser conservados en la memoria de largo plazo.c. El diseño de estrategias didácticasTiene como propósito establecer una necesaria coherencia entre la intencionalidaddocente y las actividades o acciones para conseguirla. El problema clave en este as-pecto es responder eficientemente a interrogantes como ¿Qué van a aprender losalumnos? Y ¿Cómo hacer para que aprendan?.Aunque esta idea sobre la coherencia entre lo que el docente desea conseguir y laforma como lograrlo pared de sentido común, es sorprendente la falta de dicha co-herencia en numerosas situaciones de docentes; de allí que en la sección cuarta deeste documento se trate de un detalle este asunto, por ser de vital importancia en eldesarrollo de capacidades, así como de las actividades de aprendizaje.
  • d. El monitoreo y la evaluaciónConsisten en el chequeo o verificación constante de la conducta verbal y no verbal,para obtener evidencias del progreso de los alumnos en el desarrollo de sus procesoscognitivos de aprendizaje.El cierre y revisión final de la clase es un buen momento para verificar el nivel decomprensión al que han llegado los alumnos acerca del asunto y propósito del mismo,sobre todo cuando se realiza mediante preguntas para reconstruir el proceso viven-ciado y las actividades realizadas (metacognitivas). En esto el docente debe poseerhabilidades para preguntar.2.8.5.3 las capacidades y los contenidosCon respecto al desarrollo de las capacidades se han planteado tres posibilidades:a) Enseñar contenidos,b) Desarrollar capacidades y tener como medios a los contenidos, yc) Desarrollar capacidades independientemente de los contenidos.Muchos profesores de secundaria se centran únicamente en los contenidos de susáreas curriculares, porque asumen que esa es su única responsabilidad. Creen quelos buenos estudiantes desarrollan sus capacidades cognitivas sin necesidades deenseñanza ex profesa, en ese sentido, por parte de los docentes.Por otro lado, cuando se investigan las diferencias entre buenos y malos estudiantesde igual nivel de inteligencia, estas diferencias radican, justamente, en el uso de lascapacidades y estrategias para aprender. Los buenos estudiantes tienen concienciade sus capacidades y las aplican con éxito a sus tareas de aprender algo; tambiénmantiene un buen control sobre los factores que intervienen en su aprendizaje, esdecir, que manejen procesos metacognitivos.Otros profesores desarrollan capacidades pero no comparten con sus alumnos a ma-nera como la mente humana las procesa y esto, motivacionalmente, es importante.Creer en el valor de las capacidades tampoco es suficiente, si no se las conecta conla comprensión de la importancia de su aprendizaje. Sin embargo, pareciera que lacreencia común es que los estudiantes capaces aprenderán por si mismos a usar suscapacidades, si es que tienen una base adecuada de conocimientos.Los estudiantes deben pensar, transformar y contextualizar lo que se le enseña, asicomo criticar y contrastar el conocimiento nuevo adquirido con el que tenían anterior-mente, para poder construir nuevos andamiajes conceptuales o sea, nuevas estructu-ras de conocimientos.
  • “Es importante que en el desarrollo de las capacidades se suscite una disposición fuerte para utilizarlas. Todos los especialistas aconsejan que en el desarrollo las capacidades los alumnos deben aprender como usar- las, por que es util hacerlo y cuando se deben usar. Conviene desarrollar situaciones que les demuestren a los educandos la conveniencia de usar- las y los efectos que logran con ello”.La tercera cuestión sobre si las capacidades deben aprenderse y enseñarse separa-das o en forma independiente de los contenidos, la respuesta apuntar a que la deci-sión ideal es desarrollar capacidades y considerar como medios a los contenidos. Esbueno entonces, que la enseñanza de las capacidades este incorporada en el currícu-lo, tal como se ha optado en el DCB de Educación Secundaria y que los conocimien-tos, sean, en verdad, los medios mas eficientes para lograrlas.2.8.5.4 la enseñanza de las capacidadesSegún Beltran2, a quien seguiremos en toda esta parte, el desarrollo de capacidadesdeberá tener en cuenta todo lo que la investigación psicológica cognitiva ya ha esta-blecido al respecto, por medio de los diversos programas que se han desarrolladopara el caso. Los puntos comunes en los que coinciden estos diversos programasson: descripción de las situaciones de aplicación, modelado, práctica guiada, prácticaindependiente, generalización y evaluación. De acuerdo a estas ideas el programa eldesarrollo de las capacidades podría tener la siguiente secuencia:1) Introducción – Planteamiento- Explorar el conocimiento previo de los alumnos sobre las capacidades a desarrollar.- Considerar el nivel de desarrollo que tienen los alumnos sobre la capacidad paraajustar la complejidad del material a usarse.- Dividir la capacidad en las capacidades específicas o procesos implicados.- Introducir la capacidad.- Presentar visualmente alguna metáfora que ilustre el sentido de la estrategia o elnúcleo de la misma.- Especificar los propósitos del desarrollo de la capacidad.2) Enseñanza- Comunicar a los alumnos lo que van a aprender.- Valorar la utilidad de la capacidad, motivar.- Explicar detenidamente la capacidad, y señalar como, cuando y donde usar las ca-pacidades.
  • - Ilustrar la capacidad con algunos ejemplos.3) Modelado- Ejecutar la capacidad a la vista de los alumnos.- Promover la enseñanza reciproca, disponer que los alumnos, por turno, hagan lasveces de profesor, y que repitan las ejecuciones que hizo este.4) Practica guiada- Organizar la práctica guiada: los alumnos desarrollan una actividad de realización odesempeño, bajo la orientación y supervisión del profesor; ya sea en forma individualo grupal.Verbalizar el conocimiento de la capacidad y sus componentes y/o procesos implica-dos.- Ofrecer retroalimentación a las verbalizaciones de los alumnos para reafirmar elaprendizaje obtenido.5) Practica independiente- Promover la practica independiente. En este caso los alumnos realizan una serie deactividades semejantes a la práctica guiada, pero con independencia del docente.Pueden ser tareas de selección inducidas, de elección entre alternativas, etc., peroque guarden alguna semejanza con las realizadas en la práctica guiada .la finalidades internalizar la capacidad aprendida y pasar del control externo (del profesor) al au-tocontrol (del propio alumno).6) Generalizaciones y transferenciaAdemás de que se enfatiza la generalización durante toda la secuencia de aprendiza-je, la generalización es un momento crítico de secuencia del - Activación. Se danoportunidades de practicar con nuevos materiales y en distintos contextos.- Adaptación: se sugiere la modificación y combinación de la capacidad con otras ca-pacidades para satisfacer diferentes demandas de desempeño en el contexto o situa-ciones concretas.- Mantenimiento: uso de prácticas o de pruebas periódicas para determinar si el alum-no sigue aplicando la capacidad.Ofrecer a los alumnos las oportunidades de aplicar y transferir la capacidad aprendi-da, a distintas situaciones y contextos en el área curricular o en la combinación deellas.7) Evaluación- Evaluar el dominio y la destreza alcanzados en la aplicación de la capacidad.- La eficacia del aprendizaje de capacidades esta regida por estos cuatro principios:
  • . Especificidad: la eficacia de las capacidades depende de su congruencia con lospropósitos formulados para el aprendizaje, es decir, el impacto de la capacidad de-pende de su ajuste con las exigencias predeterminadas.. Generatividad: la ejecución de una capacidad es tanto mas eficiente cuanto mas exi-ge reformular y elaborar la información.. Control ejecutivo: tiene tres funciones: valorar la necesidad de la capacidad, selec-cionarla y verificar la eficacia.. Eficacia personal; esta se proyecta en tres dimensiones: los alumnos pueden evitaraprendizajes desafiantes (participación), o emplear menos del tiempo necesario parala tarea (persistencia), o dejar de hacer el esfuerzo mental requerido (intensidad).El aprendizaje eficiente, entonces, implica: - Utilizar capacidades congruentes con los propósitos educativos. - Estimar la necesidad de las capacidades, seleccionarlas y valorar la calidad de su ejecución. - Promover un adecuado sentido de eficacia personal que permita seleccionar, aplicar y regular las capacidades pertinentes con los propósitos del aprendiza- je.Como ya se sugirió, entre los métodos, estrategias o técnicas de enseñanza de lascapacidades se priorizan:. El modeladoImplica la realización de la capacidad por parte del docente o de un experto, de talforma que los estudiantes observen y construyan un patrón conceptual de que proce-sos o actividades se requieren poner en juego para emplearla. Las ventajes principa-les del modelado son: Ver soluciones a situaciones planteadas. Integrar lo que sucede con el porque suceden. Hacer visibles u ostensibles partes o fases de un proceso que no se ven normal-mente.. El entrenamiento.Consiste en observar a los estudiantes mientras realizan o resuelven una tarea propiadel desarrollo de capacidades y en ofrecerles sugerencias, orientaciones, soportes,retroalimentación, modelado, recuerdo para aproximar su actuación del docente o ex-perto.Las ventajas del entrenamiento- Suministra ayuda dirigida en situaciones concretas de dificultad del aprendizaje.
  • - Atiende y apoya los momentos críticos de la ejecución.- Brinda la ayuda justa o ala medida de las dificultades que confrontan los estudiantes.- Otorga nuevas perspectivas para la ejecución.. El andamiajeImplica el apoyo que el profesor suministra para ayudar al estudiante en aquellosmomentos que este no puede, por si solo, realizar la tarea, lo que requiere el esfuerzocooperativo por parte del docente, que realiza la tarea que el alumno no puede com-pletar o consumar. Un requisito básico es que el docente sepa diagnosticar cuando elalumno esta limitado para la parte de ejecución que le resulta dificultosa.Las ventajas del andamiaje son: - Permite graduar los niveles de ayuda que requiere el alumno. - Permite que el alumno continué con el esfuerzo de mantenerse y concluir la ta- rea. - Facilita la internalizacion y el autocontrol. - Favorece el máximo respeto a la personalidad e independencia del alumno.. La articulación:Implica el uso de cualquier método, técnica o estrategia, para conseguir que los estu-diantes articulen su conocimiento con el razonamiento y procesos cognitivos y meta-cognitivos, en la solución o realización de una tarea cualquiera.La articulación tiene estas ventajas: - Hacer explicita la relación de la obtención del conocimiento con los procesos mentales implicados para ello. - Hacer el conocimiento mas distinguible y disponible para su uso en otras apli- caciones. - Comparar y contrastar capacidades para la articulación en diversos contextos y situaciones. - Promover la visión de perspectivas alternativas y multifunciónales de las capa- cidades y a la magnitud de sus adaptaciones y variaciones.. La exploración:Consiste en el uso de una estrategia que establece metas generales y en animarlespara que ellos mismos establezcan metas especificas o submetas de acuerdo a susintereses y motivaciones, o también a redefinir las metas generales que se establecie-ron a medida que se percatan de algo mas interesante a perseguir.La exploración tiene estas ventajas: - Aprender a establecer metas alcanzables.
  • - Aprender a formular hipótesis plausibles y probarlos. - Aprender a hacer descubrimientos por si mismos. - Aprender a conocerse a si mismos de manera mas profunda. “Es claro, asimismo, que todas estas demandas exigen nuevos roles al do- cente, orientadas a pasar de su condición de transmisor del conocimiento a otro de mediador de las experiencias o situaciones de aprendizaje, que per- miten al alumno convertirse en el actor principal del proceso educativo”.2.8.5.5 El cambio en las Instituciones EducativasEl cambio de la concepción curricular hacia el desarrollo de las capacidades comoasunto nuclear, requiere del acondicionamiento de la Institución Educativa para en-frentar esta intencionalidad pedagógica. Los profesores deben tener en cuenta queello va a significar sobre todo adoptar una cultura institucionalizada que potencie elclima escolar, en donde prime el “enseñar a pensar” y el “enseñar a aprender”, asicomo procedimientos de evaluación renovados para verificar lo aprendido. Para llevaresta práctica esta nueva orientación curricular se mencionan las siguientes reflexio-nes:. El trabajo en equipo. “El “enseñar a pensar” no es un propósito que se puede al-canzar si los docentes de la Institución Educativa no están dispuestos a trabajar enequipo. No se trata de los profesores del área de matemática se dediquen a enseñarel pensamiento resolutivo y que los profesores de comunicación desarrollen las capa-cidades comunicacionales, o que los docentes de ciencias sociales se encarguen deincentivar el pensamiento critico y, los de ciencia, tecnología y ambiente las capacida-des inductivo – deductiva a los estudiantes. Todos los docentes de todas las áreascurriculares tienen que trabajar sinergicamente para procurar el desarrollo de las ca-pacidades fundamentales en los educandos. Poco se lograra si los profesores de ca-da área, unilateralmente se dedican a trabajar solo “las capacidades” que considerande “exclusividad” de su área. Es bueno hacer notar que tanto en las “capacidadesfundamentales”, como en las “capacidades específicas” están implicadas todas lasáreas.. Educar para aprender a pensar. Es necesario que el profesorado explique a losalumnos porque es conveniente el desarrollo de capacidades y que significan estaspara el aprendizaje y la obtención del conocimiento. Es importante, igualmente, quelos alumnos comprendan que el desarrollo de sus capacidades es un asunto demáxima importancia para su desarrollo personal integral y que ello les ayudara para
  • enfrentarse con éxito a nuevas exigencias de la empleabilidad en el futuro. Ellos de-berán adquirir conciencia que el aprender a pensar por si mismos es el fin más genui-no de la educación que reciben.. Educar para aprender a aprender. Asumir con responsabilidad el desarrollo de uncurrículo basado en capacidades demanda que los profesores no solo se familiaricencon la terminología de los currículos con orientación cognitiva, sino que sus preocu-paciones didácticos deben orientarse a la resolución de interrogante fundamental de¿Cómo hacer para aprender y seguir aprendiendo? Y ¿Cómo desarrollar las capaci-dades fundamentales del pensamiento critico, la toma de decisiones y la resolución deproblemas?; asi como, la de ¿Cómo articular el desarrollo de capacidades con loscontenidos del área y los valores y actitudes previstos en el DCNNo es suficiente que la mención de las capacidades se encuentre solo en la progra-mación curricular anual, sino que también deben tenerse en cuenta en la preparaciónde las unidades didácticas y en las sesiones de aprendizaje de cada día. “En relación a este ul-timo aspecto sobre la evolución, prieto y Pérez* sugieren determinados indica-dores que pueden permitir verificar si existe progreso, en Institución Educativaen el desarrollo de las capacidades. Estos han sido tomados de Feuerstein yHoffman y, según detallan las autoras, esta escala permite incluso verificar tan-to el progreso individual como colectivo de los estudiantes”.2.8.5.6 CAPACIDADES DEL AREA DE MATEMATICAORGANIZACIÓN DEL CURRICULOAREAS CURRICULARESEl diseño curricular básico esta organizado por aéreas curriculares. Un área curriculararticula e integra las capacidades, conocimientos y actitudes, de acuerdo a los crite-rios pedagógicos y epistemológicos. Todas las aéreas curriculares, en mayor o menorintensidad, responden a las variadas relaciones que establece la persona consigomismo, con, os demás, con su entorno y con el mundo del trabajo. Consecuentemen-te cada área organiza un conjunto de aprendizajes orientados al logro de determina-dos propósitos.4.2 CAPACIDADESLas capacidades son potencialmente inherentes a la persona y que esta pueda des-arrollarse a lo largo de toda la vida, dando lugar a la determinación de los logros edu-
  • cativos. Ellas se cimientan en la interrelación de procesos cognitivos, socio-afectivos ymotores.CAPACIDADES FUNDAMENTALESSon capacidades fundamentales aquellas que se caracterizan por su alto grado decomplejidad, y sintetizan las grandes intencionalidades del currículo. Son las siguien-tes.Pensamiento creativoEs la capacidad de proponer formas originales de actuación, superando las rutas co-nocidas o los cánones preestablecidos; no se ajusta a esquemas rígidos de acciónesta capacidad se caracteriza por:  La divergencia  La fluidez  La flexibilidad  La originalidad  La profundidad del pensamientoPensamiento criticoEs la capacidades para actuar y conducirse en forma reflexiva, elaborando conclusio-nes propias y en forma argumentativa. Este pensamiento puede realizarse de diferen-tes formas como:  Confirmación de conclusiones con hechos  Identificación de tendencias, indicios, estereotipos y prototipos  Identificación de supuestos implícitos  Reconocimiento de generalizaciones y subgeneralizaciones  Identificación de información relevante e irrelevante.Toma de decisionesEs la capacidad para optar, entre varias alternativas, por la mas coherente y oportuno,discriminando los riesgos e implicancias de dicha elección. Se caracteriza por:  Ser proactivo  Orientado hacia el logro de objetivos  Implicar una complementariedad entre las capacidades analítico- sintética e hipotético-deductiva.  Arribar a conclusiones reversibles.Solución de problemasEs la capacidad para encontrar respuestas, alternativas pertinentes y oportunas antesituaciones difíciles o de conflicto. Se caracteriza por:
  •  Realizar transferencias multidireccionales.  Hallarse estrictamente contextualizada.  Tener una orientación divergente.  Implicar la capacidad metacognitivo.CAPACIDADES DE AREA DE MATEMATICARazonamiento y demostraciónEl trabajo matemático que realizan los estudiantes, especialmente en el nivel de edu-cación secundaria, debe permitirles desarrollar su habilidad para razonar y realizardemostraciones. Esto, en síntesis, significa la capacidad para elaborar y comprobarconjeturas, formulas, contraejemplos, elaborar argumentos lógicos y manejarlos ade-cuadamente con la intención de, por ejemplo, mostrar la verdad de un enunciado, juz-gar la validez de un argumento emitido por el mismo o por otra persona, construir ar-gumentos validos etc.Comunicación matemáticaUna de las facultades propias del ser humano es la comunicarse con sus congéneres.La comunicación se realiza Haciendo uso de un código, en pocas palabras, es unconjunto de símbolos establecidos convencionalmente, los cuales van a ser codifica-dos durante la emisión y decodificados durante la recepción. Pues bien el lenguajematemático, que emplea este código, permite expresar ideas diversas, formulasenunciados, leyes y principios, y realizar generalizaciones; asimismo, permite re-flexionar y clarificar conceptos y relaciones entre objetos. el uso y manejo de signos,símbolos y términos para recibir y emitir información matemática, debe ser enfatizadapara el desarrollo de esta capacidad.Resolución de problemasLa capacidad de resolución de problemas es de suma importancia, no solo para lamatemática sino fundamentalmente porque posibilita el desarrollo de multiples capa-cidades. Se entiende que un problema es una situación en la que, de partida, “no sesabe que hacer”., t que resolverlo es, en esencia, organizar un sistema de ideas y ac-ciones que muestren una ruta por la cual se puede enfrentar la situación y alcanzar elresultado. La matemática debe desarrollar, en los estudiantes, la capacidad para plan-tear y resolver problemas, si se quiere contar en el futuro con ciudadanos productivos 2.9 Hipótesis 2.9.1. Hipótesis General
  • La aplicación del software educativo CLIP3.0 mejora el desarrollo de capacida- des en el área de matemática en los alumnos del 1º de Secundaria de la Ins- titución Educativa Nº 6024 – UGEL Nº 01. 2.9.2. Hipótesis especificas HE1. La aplicación del software educativo CLIP3.0 mejora el desarrollo de la capacidad de razonamiento y demostración en los estudiantes del 1º de secundaria de la Institución Educativa Nº 6024 – UGEL Nº 01. HE2. . La aplicación del software educativo CLIP3.0 mejora el desarro- llo de la capacidad de comunicación matemática en los alumnos del 1º de secundaria de la Institución Educativa Nº 6024 – UGEL Nº 01. HE3. . La aplicación del software educativo CLIP3.0 mejora el desarro- llo de la capacidad de resolución de problemas en los estudiantes del 1º de secundaria de la Institución Educativa Nº 6024 – UGEL Nº 012.10. Variables 2.10.1. Variable Independiente Software Educativo CLIP3.0 2.10.2. Variable dependiente Desarrollo de capacidades en el área de matemáticaIII. METODOLOGIA 3.1. Tipo de estudio Tipo de investigación Cuasiexperimental Enfoque Cuantitativo De acuerdo a Hernández (2003) los diseños cuasiexperimentales manipulan deliberadamente al menos una variable independiente para obser- var su efecto y relación con una o más variables dependientes, sólo que difie- ren de los experimentos en el grado de confiabilidad que se pueda tener so-
  • bre la equivalencia inicial en los grupos, puesto que son grupos intactos. De acuerdo a (Weiss, 2001) los diseños cuasiexperimentales tienen una forma y una lógica propias y este tipo de diseño requiere que se proceda tan rigurosamente como en el caso de los diseños experimentales. 3.2. Diseño del estudio DISEÑO: Cuasi experimental con pre prueba - pos prueba y grupos intactos (uno de ellos de control). En este estudio se aplicó el diseño cuasi experimental que de acuerdo a Hernández y otros (2003), señalan lo siguiente: “Los diseños cuasiexperimentales también manipulan deliberadamente, al menos, una variable independiente para observar su efecto y relación con una o más variables independientes, sólo que difieren de los experimen- tos verdaderos en el grado de seguridad o confiabilidad que pueda tenerse sobre la equivalencia inicial de los grupos. En los diseños cuasiexperimentales los sujetos no se asignan al azar a los grupos ni se emparejan, sino que dichos grupos ya estaban formados antes del experimento: son grupos intactos (la razón por la que surgen y la ma- nera como se formaron fueron independientes o aparte del experimento)”. (p.256) DIAGRAMA: GE O1 X O2 GC O3 Z O4Significado de los símbolos: X = Clase con uso del software CLIP3.0 Z = Clase tradicional GE = Grupo experimental GC = Grupos de control3.3. Población y muestra 3.3.1. Población CUADRO: Población del estudio
  • Institución Educativa Total Total Estudiantes Docentes I.E. Nº 6024 “JOSÉ MARIA AR- 120 10 GUEDAS”FUENTE: Institución Educativa Nº 6024 “José María Arguedas”, UGEL N 01S.J.M.3.3.2. Muestra Para determinar el tamaño de la muestra con el margen de error del 0,05 y nivel de confiabilidad de la muestra del 95% Donde z es el promedio de de la desviación normal 1,96 E margen de error es 0,05 P es la probabilidad del margen de error 0,05 q es el es la confiabilidad de la muestra 0,95 Aplicando la formula se determina que la muestra es 59,82 y redondeando es 60 CUADRO: Muestra del estudio Institución Educativa Total de Estudiantes Docentes I.E. Nº 6024 “JOSE Grupo Control 30 Gru- 10 MARIA ARGUEDAS” po experimental 30FUENTE: Institución Educativa Nº 6024 “José María Arguedas”, UGEL N 01S.J.M.3.4. Método de investigación
  • Es el descriptivo. Donde se describen los hechos como son observados. (Hernández, Fernández y Baptista 2003).3.5. Técnicas e instrumentos de recolección de datos Cuasi Experimental 3.5.1. Técnicas e Instrumentos de Recolección de Datos . 1. Técnica e Instrumento: Para la variable independiente, lista de cotejo a los Alumnos y Docente. Para la variable independiente, prueba escrita 2. Técnica de procesamiento de datos, y su instrumento las tablas de procesamiento de datos para tabular, y procesar los resultados de la prueba escrita a los alumnos. 3. Técnica de Opinión de expertos y su instrumento el informe de juicio de expertos, aplicado a 3 magísteres o doctores en educación, para validar la encuesta y cuestionario3.6. Métodos de análisis de datos CUADRO: Formulas estadísticas a usarN° ESTADIGRA- FORMULAS ESTADISTI- SIMBOLOS FOS CAS  MEDIA ARIT- X = Media aritmética METICA DE X = Valor central o pun-1 DATOS AGRU- to medio de cada clase. X    f .x PADOS n f = Frecuencia en ca- da clase.  f .X =Sumatoria de los productos de las frecuen- cias en cada clase multi-
  • plicada por el punto me- dio de ésta. n = Número total de frecuencias. DESVIACIÓN s = Desviación estándar2 ESTANDAR  fX  2 muestral  fX 2  n s MUESTRAL n 1 X = Punto medio de una PARA DATOS clase AGRUPADOS f = Frecuencia de clase n = Número total de observaciones en la muestra.3 Coeficiente de n XY   X  Y r = Coeficiente de corre- r n X 2   ( X ) 2 n Y 2  ( Y ) 2  correlación de lación Pearson n = Numero de observa- ciones x = primera variable y = segunda variableIV. REFERENCIAS BIBLIOGRAFICAS Y ANEXOSBIBLIOGRAFÍA1. Joyanes Aguilar, "La gestión del Conocimiento en la Comunicación: Un enfoqueTecnológico y de Gestión de Contenidos (Libro de Actas del Foro Comunicación-Complutense) 2002: Ayto Madrid: U. Complutense2. Joyanes Aguilar, "Historia de la Sociedad de la Información. Hacia la sociedad delConocimiento" en R-evolución tecnológica. U. de Alicante: Alicante, 20033. Villegas, J. José. Síntesis diacrónica del sistema tutorial de la uned. Revista inter-americana de Desarrollo Educativo. Num. 105 OEA 1989.Washington, E.U.
  • 4. CIE (2001) Conferencia Internacional de Educación "La educación para todo, paraaprender a vivir juntos", Ginebra 5-8 septiembre 2001, 5-8 de septiembre 2001 Sego-via, M.Nuevas tecnologías aplicadas a la formación. Anced Force 1993 .5. Escudero, J. M. La planificación de la enseñanza. Universidad de Santiago deCompostela. 1972, España.6. Fernández, J. Autodidactismo en la educación permanente a distancia. uned 1988.Costa Rica.7. Armengol, C. Miguel. Concepción, justificación y viabilidad de los sistemas de edu-cación superior a distancia en América Latina. La educación a distancia en AméricaLatina. una 1974, Venezuela.8. Sarramona, J. Tecnología educativa. Una valoración crítica. ceac 1990, Barcelona.9 Cabero, J. (2000). Nuevas tecnologías aplicadas a la educación. Madrid: SíntesisEducación.10. Fernández Morante, C. (2002). Los medios audiovisuales, informáticos y nuevastecnologías en los centros educativos gallegos: Presencia y usos. Tesis Doctoral, Uni-versidad de Santiago de Compostela.11. Mena, B. y otros (1998). Aplicaciones educativas de las nuevas tecnologías: inter-net, infografía, y animación. Salamanca: Anthema ediciones.12. Pérez Pérez, R. (1998). Nuevas tecnologías y nuevos modelos de enseñanza. EnSevillano, M.L. (Coord.). Nuevas tecnologías, medios de comunicación y educación.Formación inicial y permanente del profesorado, (pp. 105-150). Madrid: CCS.13. Rodríguez Gómez y otros (1996). Metodología de la investigación cualitativa.
  • ANEXOS ENCUESTA Encuesta a los estudiantes del Quinto de secundaria de la InstituciónEducativa Nº 6024 “José Maria Arguedas” – UGEL Nº 01, San Juan de Mi- raflores.OBJETIVO.- Determinar el impacto del uso del Aula de Innovación Pedagógi-ca en el desarrollo de las capacidades en los estudiantes del 5º de secunda-ria.Le agradeceremos responder marcando con (x), o complementando dondeconviene, a este breve y sencillo cuestionario; que tiene como propósito obte-ner datos que ayuden a explicar el impacto del aula de innovación en el desa-rrollo de las capacidades TIC.GENERALIDADES.- Informantes Estudiantes del 5º de secundaria de la Insti-tución Educativa Edad a) 15- 16  b) 17 – 18  Sexo a) Masculino  b) Femenino TEMA: Aula de innovación pedagógica y desarrollo de capacidades TIC.1. ¿Lugar de mayor uso del Internet? En la casa En el colegio En la cabina de Internet Otro lugar No usa computadora2. ¿Persona que enseña el uso del Internet? El profesor en el colegio Mi familia Yo mismo Otros No uso Internet3. ¿Principales actividades que realizan? Buscar información
  •  Comunicarse (E-mail y Chat) Escribir trabajos del colegio4. ¿Capacidad Adquisición de Información?Marque una o mas casillas dentro del recuadro (x) Navegar por Internet Entrar a la Web Proyecto Huascarán Entrar sección estudiantes Web Huascarán Entrar a otras paginas Web educativas Perú Entrar a otras Web educativas de otros países Realizar búsquedas sencillas para tareas Realizar búsquedas avanzadas Realizar búsquedas en otros idiomas Usar varios buscadores para las tareas Evaluar información científica Crear favoritos en la computadora Organizar favoritos por temas educativos Guardar archivos para las tareas Elaborar documentos con información obtenida5. ¿Capacidad Trabajo en Equipo?Marque una o mas casillas dentro del recuadro (x) Crear mi correo electrónico Escribir y enviar correos a mis compañeros Enviar archivos adjuntos de mis tareas Crear una lista de correos electrónicos Entrar al Chat Conversar por Chat con mis compañeros Entrar a un foro virtual Participar en un foro virtual Crear un foro de discusión Crear mi weblog Participar en weblog grupales
  •  Publicar en wikipedia Participar en proyecto colaborativo Participar en la pagina Web de los colegios6 ¿Capacidad estrategias de aprendizaje?Marque una o mas casillas dentro del recuadro (x) Elaborar tareas en Word Elaborar tareas escolares en Excel Elaborar tareas escolares en Power Point Elaborar mapas conceptuales Elaborar mapas mentales Utilizar los juegos educativos Escuchar radio educativa por Internet Crear una base de datos de las tareas Bajar libros y otros archivos digitales Hacer resúmenes con la información Utilizar diccionario electrónico Hacer presentaciones proyectos colaborativos Reelaborar textos encontrados Elaborar una pagina Web GRACIAS POR SU PARTICIPACION - Guía de entrevista - Guía de Análisis documental
  • ENCUESTAEncuesta a los estudiantes del Quinto de secundaria de la Institución Educativa Nº 6024 “José Mar- ía Arguedas” – UGEL Nº 01, San Juan de Miraflores.OBJETIVO.- Determinar si los estudiantes del 5º de secundaria poseen conocimientos básicos de computación y Internet antesde ingresar al Aula de Innovación Pedagógica en el desarrollo de las capacidades TIC.Le agradeceremos responder marcando con (x), o complementando donde conviene, a este breve y sencillo cuestionario; que tienecomo propósito obtener datos que ayuden a explicar el impacto del aula de innovación en el desarrollo de las capacidades tTema: CONOCIMIENTO BÁSICO DE COMPUTADORAS Y INTERNET1 ¿Tiene acceso a una computadora? Desde su casa Desde el colegio Desde ambos lugares (casa y colegio) Desde una cabina de Internet No tengo acceso a computadora2 ¿Desde donde tiene acceso a Internet? Desde casa Desde el colegio Desde ambos lugares (casa y colegio) Desde una cabina de Internet No tengo acceso al Internet3 ¿Cómo se siente, en general, con el uso de computadoras? Muy cómodo Cómodo Tengo algunos problemas Muy incómodo4 ¿Está usted familiarizado con Internet? Sí Un poco No
  • 5 ¿Cómo se siente con el uso de Internet? Muy cómodo Cómodo Tengo algunos problemas Muy incómodo6 ¿Qué herramientas de Internet conoce? Indique su nivel de conocimiento muy bajo bajo normal alto muy altoCorreo electrónicoListas de correoPáginas Web de organismosPáginas Web de empresasPáginas Web con noticiasCapacitaciones a distanciaCursos a distanciaCompras en el InternetForos de discusiónChatPortales de búsquedaMensajeríaDescargasVideoconferenciaPizarra electrónica
  • 7 ¿Qué herramientas de Internet usa habitualmente? Indique la frecuencia de uso. nunca alguna vez mensualmente semanalmente diariamenteCorreo electrónicoListas de correoPáginas web de organismosPáginas web de empresasPáginas web con noticiasCapacitaciones a distanciaCursos a distanciaCompras en el InternetForos de discusiónChatPortales de búsquedaMensajeríaDescargasVideoconferenciaPizarra electrónica8 ¿Qué programas usa con mayor frecuencia? Procesador de textos (ejemplo: Word) Presentaciones (ejemplo: Power Point) Base de Datos (ejemplo: Access) Hoja de cálculo (ejemplo: Excel) Editor de página web (ejemplo: Microsoft Front Page, Dreamweaver) Programación de software (ejemplo: ASP, PHP, Visual Basic)Otro, especifique
  • 9 ¿Desde cuando accede a Internet? Hace un mes no más de tres meses Seis meses 1 año 2 años más de dos años10¿Indique su sexo? Hombre Mujer
  • MATRIZ DE CONSISTENCIATITULO: EL AULA DE INNOVACIÓN PEDAGÓGICA Y DESARROLLO DE CAPACIDADES EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICA-CIÓN - TIC EN LOS ESTUDIANTES DEL QUINTO SECUNDARIA DE LA INSTITUCIÓN EDUCATIVA Nº 6024 “JOSÉ MARIA ARGUEDAS” – UGEL Nº 01,SAN JUAN DE MIRAFLORES.PROBLEMAS OBJETIVOS HIPÓTESIS VARIABLES METODOLOGÍAProblema Principal Hipótesis General Tipo Objetivo General La aplicación del Soft- Variable Indepen- Correlacionad ¿Cómo influye el diente ware Educativo Software Educativo Nivel Software Educativo Determinar si la aplica- CLIP3.0 mejora el de- CLIP 3.0 Descriptiva - correlacio- CLIP3.0 en el desa- ción del Software Educa- sarrollo de capacida- Variable Dependiente nal rrollo de capacidades tivo CLIP3.0 mejora el des en el área de ma- Desarrollo de capaci- Diseño de la Investi- del área de matemáti- desarrollo de capacida- dades en el área de temática en los estu- matemática gación ca en los alumnos des en el área de ma- diantes del 1º de Se- Descriptivo - del 1° secundaria de temática en los alumnos cundaria de la Institu- correlacional la Institución Educa- del 1 º de secundaria de ción Educativa Nº Población tiva Nº 6024 “José la Institución Educativa 6024 – UGEL Nº 01. I.E Nº 6024 María Arguedas” – Nº 6024 “José María Muestra UGEL Nº 01? Arguedas” – UGEL Nº Hipótesis especificas RepresentativaProblemas Secunda- 01.rios HE1. La aplicación de Técnicas Objetivo Específicos . Determinar si la los software educativo Encuesta ¿Cómo influye la aplicación del softwa- CLIP3.0 mejora el de- Instrumentos aplicación del Softwa- re educativo CLIP3.0 sarrollo de la capaci- Cuestionario re Educativo CLIP3.0 mejora el desarrollo dad de razonamiento
  • en el desarrollo de las de la capacidad de y demostración encapacidades de ra- razonamiento y de- los alumnos del 1º dezonamiento y de- mostración en los secundaria de la Insti-mostración en los alumnos del 1º de tución Educativa Nºalumnos del 1º de Secundaria de la Ins- 6024 – UGEL Nº 01Secundaria de la Ins- titución Educativa Nºtitución Educativa Nº 6024 “José María Ar- HE2. . La aplicación6024 1º de se- guedas” – UGEL Nº del software educativocundaria “José María 01 CLIP3.0 mejora el de-Arguedas” – UGEL Nº sarrollo de la capaci-01? . Determinar si la dad de comunicación aplicación de las matemática en los¿Cómo influye la software educativo alumnos del 1º de se-aplicación del softwa- CLIP3.0mejora el de- cundaria de la Institu-re educativo CLIP3.0 sarrollo de la capaci- ción Educativa Nºen el desarrollo de las dad de comunica- 6024 – UGEL Nº 01capacidades de co- ción matemática enmunicación ma- los alumnos del 1º de HE3. . La aplicacióntemática en los secundaria de la Ins- del software educativoalumnos del 1º de titución Educativa Nº CLIP3.0 mejora el de-secundaria de la Ins- 6024 “José María Ar- sarrollo de la capaci-titución Educativa Nº guedas” – UGEL Nº dad de resolución de6024 “José María Ar- 01 problemas en los
  • guedas” – UGEL Nº alumnos del 1º de01 Determinar si la apli- secundaria de la Insti- cación del software tución Educativa Nº¿Cómo influye la apli- educativo CLIP3.0 6024 – UGEL Nº 01cación del software mejora el desarrolloeducativo CLIP3.0 en de la capacidad deel desarrollo de las resolución de pro-capacidades de re- blemas en los alum-solución de proble- nos del 1º de secun-mas en los alumnos daria de la Institucióndel 1º de secundaria Educativa Nº 6024de la Institución Edu- “José María Argue-cativa Nº 6024 “José das” – UGEL Nº 01María Arguedas” –UGEL Nº 01?