a presentation


Published on

1 Like
  • Be the first to comment

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

a presentation

  1. 1. The Internet: Reflections on What’s Coming Lawrence C. Kingsland III, Ph.D. Assistant Director for Applied Informatics National Library of Medicine
  2. 3. Road Map <ul><li>The Internet is … </li></ul><ul><li>Nuts and bolts </li></ul><ul><li>Web 2.0 </li></ul><ul><li>Semantic Web </li></ul><ul><li>Wireless </li></ul><ul><li>New Tech </li></ul>
  3. 4. The Internet <ul><li>The Internet is … </li></ul><ul><li>A network of networks </li></ul><ul><li>World’s largest distributed computing system </li></ul><ul><li>10-15,000 public and private ISPs and 50 top-tier “backbone” providers </li></ul>
  4. 5. The Internet <ul><li>Five-layer pyramid </li></ul><ul><li>Top layer: network access points (NAPs) </li></ul><ul><ul><li>conduit between national service providers (NSPs) and ISPs </li></ul></ul><ul><li>Second layer: peering centers </li></ul><ul><ul><li>customers of the NSPs; operate the “public Internet backbone” </li></ul></ul><ul><ul><li>by contract, must maintain 99.9% reliability </li></ul></ul>
  5. 6. The Internet <ul><li>Five-layer pyramid </li></ul><ul><li>Third layer: regional networks, backbones </li></ul><ul><ul><li>ISPs operating over a limited area </li></ul></ul><ul><ul><li>ISPs connecting to primary NSPs </li></ul></ul><ul><li>Fourth layer: ISPs that don’t operate their own regional network </li></ul><ul><li>Fifth layer: consumers and business clients </li></ul>
  6. 7. The Internet <ul><li>Doesn’t start in one place and travel straightforwardly to another </li></ul><ul><li>Not same as television, radio or telephone </li></ul><ul><li>Isn’t operated by a central authority </li></ul><ul><li>Doesn’t even have own dedicated channels of operation </li></ul>
  7. 8. Who Runs the Internet? <ul><li>We reject kings, presidents, and voting. We believe in rough consensus and working code. </li></ul><ul><li>Informal motto of the IETF, enunciated by Dave Clark (1992) </li></ul>
  8. 9. Road Map <ul><li>The Internet is … </li></ul><ul><li>Nuts and bolts </li></ul><ul><li>Web 2.0 </li></ul><ul><li>Semantic Web </li></ul><ul><li>Wireless </li></ul><ul><li>New Tech </li></ul>
  9. 10. Protocols: TCP/IP <ul><li>Based on “packet switching” model of communication </li></ul><ul><li>Data broken into datagrams or packets </li></ul><ul><li>Packets sent separately; may arrive along different routes and out of order </li></ul><ul><li>Most widely deployed protocols on Internet </li></ul><ul><li>Designed for robustness in face of network component failure </li></ul>
  10. 11. TCP/IP <ul><li>Internet Protocol (IP) concerned with routing from point A to point B </li></ul><ul><li>Numerical IP addresses (classes A-C) </li></ul><ul><li>Domain Name Service (DNS) used for name resolution </li></ul><ul><li>Routing tables provide routing information </li></ul><ul><li>Transmission Control Protocol (TCP) concerned with error correction </li></ul>
  11. 12. IP Addresses <ul><li>Each machine on the Internet has an IP address so other machines can send packets to it </li></ul><ul><li>In the “old days”, each machine had its own unchanging IP address </li></ul><ul><li>Now, dynamic IP addresses often assigned by the ISP </li></ul>
  12. 13. Host Names; Domain Names <ul><li>IP addresses work well for computers, but not so well for humans </li></ul><ul><li>Early days: each machine had its name (e.g., MIT-AI), and list of names and IP addresses was kept in file called HOSTS.TXT </li></ul><ul><li>How to scale up? </li></ul>
  13. 14. Host Names; Domain Names <ul><li>Distributed database was organized: each organization managed its own IP addresses and names, and that organization’s part of the database was used to look up IP addresses from the names </li></ul><ul><li>Example: gateway.nlm.nih.gov </li></ul><ul><li>Host name on the left ( gateway ); domain name is remainder ( nlm.nih.gov ) </li></ul>
  14. 15. Host Names; Domain Names <ul><li>Occasional surprises notwithstanding, Domain Name System works quite well at translating fully qualified domain names into IP addresses -- particularly when you consider the number of machines DNS is dependent on, and that distributed databases were a new idea when DNS was created </li></ul>
  15. 16. Routing <ul><li>Router receives a packet, looks inside it to determine its destination address, then examines its internal routing table to decide where to send the packet </li></ul><ul><li>If the destination is on its own network segment, it delivers the packet </li></ul><ul><li>If not, it sends the packet to its default router (gateway) </li></ul>
  16. 17. Routing <ul><li>Often 12-15 “hops” or more between Internet destinations </li></ul><ul><li>Optimizing routing paths a complex process </li></ul><ul><li>Flexibility is key: must adapt to changing events </li></ul>
  17. 18. Running out of Addresses <ul><li>Currently using IPv4: 32-bit addressing scheme (4+ billion values) </li></ul><ul><li>Not enough: cell phones, refrigerators, yard lights, garage door openers may have IP addresses soon </li></ul><ul><li>Various IETF estimates predict all addresses will be used up in a few years, perhaps even by 2012 (VoIP, sensors/surveillance a factor) </li></ul>
  18. 19. Uneven Distribution <ul><li>There are 3.7 billion usable IP addresses </li></ul><ul><li>About 942 million are currently unused </li></ul><ul><li>U.S. has 52% of all addresses in use (some U.S. universities have larger address space than whole countries) </li></ul><ul><li>U.S. increase in 2008 was 4% </li></ul><ul><li>China increase? 34%! Brazil? 27% </li></ul>
  19. 20. Solution? IPv6 <ul><li>128-bit addresses (IPv4 address space squared twice ) </li></ul><ul><li>Enough address space to assign a unique address to every proton on planet Earth </li></ul><ul><li>Or, 800 addresses for every gram of matter on earth </li></ul><ul><li>Or, 50 octillion addresses for each of the 6.5 billion people on earth </li></ul>
  20. 21. Interesting IPv4/v6 Stories <ul><li>The year in IPv4 addresses : almost 200 million served </li></ul><ul><li>We’re running out of IPv4 addresses . Time for IPv6. Really. </li></ul>
  21. 22. Virtual Private Networks <ul><li>IPSec (Internet Protocol Security) provides </li></ul><ul><li>Authentication of users </li></ul><ul><li>Encryption of data stream </li></ul><ul><li>Integrity of transmission </li></ul><ul><li>Non-repudiation to prove receipt </li></ul><ul><li>VPN offers public network low cost, ease of use with private network security, reliability </li></ul>
  22. 23. Quality of Service <ul><li>End-to-end QoS simply not there yet </li></ul><ul><li>Vendors pretend unlimited bandwidth equates to high quality service </li></ul><ul><li>For voice over IP, virtual private networks, good streaming media, application hosting (consider telesurgery!) </li></ul><ul><li>No guarantees for throughput, packet loss, delay, jitter </li></ul>
  23. 24. Quality of Service <ul><li>Individual service providers could selectively support multiple traffic flows with different QoS requirements within closed networks connecting endpoints they control … </li></ul><ul><li>But no single service provider controls all the Internet’s end points </li></ul><ul><li>Little incentive for providers to get together </li></ul>
  24. 25. Quality of Service <ul><li>DVRN: Dense Virtual Routed Network </li></ul><ul><li>Dynamic routing layer will offer networks-on-demand that support multiple services from multiple providers </li></ul><ul><li>Infrastructure can then consist of any combination of intranet, extranet, virtual private network, outsourced services </li></ul>
  25. 26. Quality of Service <ul><li>DVRN virtual routers use multiple policies to control, manage several networks simultaneously </li></ul><ul><li>Static, table-based rules replaced by packet-level application quality of service (AQS) </li></ul><ul><li>AQS senses packet’s contents, picks level of service based on that application and network policy, gathers stats for billing </li></ul>
  26. 27. Escalating Need <ul><li>Yankee Group estimates new wireless technologies alone will connect a billion cell phones, laptops, personal organizers to the Internet worldwide over next three years </li></ul><ul><li>Increased demand for streaming video (HD coming), music, massively multiplayer online games, etc., brings need for … </li></ul>
  27. 28. Unlimited Bandwidth <ul><li>Progress pretty amazing </li></ul><ul><li>Dense Wave Division Multiplexing (DWDM): multiple streams of data traffic transmitted as different light frequencies on the fiber to increase density </li></ul><ul><li>Problem? Dispersion of the laser beam on an optical fiber causes beam to lose intensity with distance traveled </li></ul>
  28. 29. Unlimited Bandwidth <ul><li>Optical switching and routing (need terabit/sec routers) </li></ul><ul><li>In lab, 160 data streams (channels) per fiber at 80 Gbits/sec/channel </li></ul><ul><li>Put half the people in the world at each end of six cables and hand everyone a telephone </li></ul><ul><li>Lightwaves switched using “micro-mirrors” </li></ul>
  29. 33. Photonic Switches Critical <ul><li>Theoretical limit about 100 Tbits/sec/fiber (20 billion one-page emails) </li></ul><ul><li>Eliminate cumbersome electronic switching in the city-to-city fiber-optic backbones </li></ul><ul><li>“ Digital wrapper” the optical equivalent of a packet header </li></ul><ul><li>Microphotonics “the next revolutionary network technology” (Intel, Sept 2006) </li></ul>
  30. 35. Photonic Switching <ul><li>Helpful tutorial on optical switches by International Engineering Consortium </li></ul><ul><li>Early example of optical switching demo in Boston at GlobalComm May 2006 </li></ul><ul><li>IBM nanophotonic switch announced March 2008 </li></ul>
  31. 36. New Cisco Network Switch <ul><li>Nexus 7000, announced late Jan 2008 </li></ul><ul><li>15 Terabits/sec </li></ul><ul><li>Transfer all 90,000 Netflix movies in 38.4 seconds </li></ul><ul><li>Send a 2-Mpixel image to every person on earth in 28 minutes </li></ul>
  32. 37. Road Map <ul><li>The Internet is … </li></ul><ul><li>Nuts and bolts </li></ul><ul><li>Web 2.0 </li></ul><ul><li>Semantic Web </li></ul><ul><li>Wireless </li></ul><ul><li>New Tech </li></ul>
  33. 38. Web 2.0 <ul><li>Amazing video clip by Michael Wesch, St. George, Kansas </li></ul><ul><li>The Machine is Us/ ing Us </li></ul>
  34. 39. Road Map <ul><li>The Internet is … </li></ul><ul><li>Nuts and bolts </li></ul><ul><li>Web 2.0 </li></ul><ul><li>Semantic Web </li></ul><ul><li>Wireless </li></ul><ul><li>New Tech </li></ul>
  35. 40. Semantic Web <ul><li>The Devil’s Dictionary (2.0) </li></ul><ul><li>Semantic Web, proper noun </li></ul><ul><ul><li>An attempt to apply the Dewey Decimal system to an orgy </li></ul></ul><ul><ul><li>Copyright 2003 Greg Knauss, with apologies to Ambrose Bierce </li></ul></ul>
  36. 41. Semantic Web <ul><li>Most of the Web’s content today is designed for humans to read, not for computer programs to manipulate meaningfully </li></ul><ul><li>Computers parse Web pages for layout and routine processing just fine, but in general, have no reliable way to process the semantics </li></ul>
  37. 42. Semantic Web <ul><li>“I have a dream for the Web in which computers become capable of analyzing all the data on the Web – the content, links, and transactions between people and computers.” </li></ul>
  38. 43. Semantic Web <ul><li>“A ‘Semantic Web’, which should make this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to machines. The ‘intelligent agents’ people have touted for ages will finally materialize.” </li></ul><ul><li>Tim Berners-Lee, 1999 </li></ul>
  39. 44. Semantic Web <ul><li>Semantic Web will bring structure to the meaningful content of Web pages, creating an environment where software agents roaming from page to page can carry out sophisticated tasks for users </li></ul>
  40. 45. Semantic Web <ul><li>Semantic Web involves publishing content data in RDF (Resource Description Framework), a language specifically for data, so it can be manipulated and combined like data files on a local computer </li></ul>
  41. 46. Semantic Web <ul><li>RDF, Web Ontology Language (OWL), and Extensible Markup Language (XML) are combined to provide descriptions that supplement or replace the content of Web documents </li></ul>
  42. 47. Semantic Web <ul><li>Content can now manifest as descriptive data stored in Web-accessible databases (think: catalog), or as markup within documents -- particularly in Extensible HTML, XHTML interspersed with XML, with layout/rendering clues stored separately </li></ul>
  43. 48. Semantic Web <ul><li>More information here: </li></ul><ul><li>Tim Berners-Lee Scientific American article </li></ul><ul><li>W3C introduction </li></ul><ul><li>Wikipedia article </li></ul>
  44. 49. Road Map <ul><li>The Internet is … </li></ul><ul><li>Nuts and bolts </li></ul><ul><li>Web 2.0 </li></ul><ul><li>Semantic Web </li></ul><ul><li>Wireless </li></ul><ul><li>New Tech </li></ul>
  45. 50. Digital Spread Spectrum <ul><li>Began with secure digital communications for the military </li></ul><ul><li>Many commercial, industrial applications (wireless LANs, integrated bar code scanner/palmtop/radio modem devices for warehousing, etc., etc.) </li></ul><ul><li>Resists jamming; hard to intercept </li></ul><ul><li>Invented by German lady scientist in WW II </li></ul>
  46. 51. Digital Spread Spectrum <ul><li>Signals distributed over a wide range of frequencies, then collected onto their original frequency at the receiver </li></ul><ul><li>Signals are noise-like, hard to intercept </li></ul><ul><li>Frequency-hopping: order in which frequencies are occupied is a function of a code sequence, and rate of hopping is a function of the information rate </li></ul>
  47. 52. Bluetooth <ul><li>IEEE standard 802.15.3 for wireless personal area networks (PANs) </li></ul><ul><li>Based on low-cost short-range radio link, built into 9x9 mm microchip </li></ul><ul><li>No cables! Connect computers, printers, PDAs, cell phones, earbuds, fax machines, keyboards, joysticks </li></ul><ul><li>Gaining acceptance in industrial settings </li></ul>
  48. 53. Bluetooth <ul><li>Smart tire transmits low pressure message to driver’s Bluetooth phone </li></ul><ul><li>Auto broadcasts fault reports to dealer’s diagnostic system </li></ul><ul><li>Cordless inventory scanner broadcasts to belt pack </li></ul><ul><li>Remote controlled camera </li></ul>
  49. 54. Bluetooth <ul><li>Over one billion devices shipped </li></ul><ul><li>13 million more every week </li></ul><ul><li>Bluetooth 2.1 began shipping last Fall </li></ul><ul><li>Devices pair in only three clicks </li></ul><ul><li>Encrypted data transfer </li></ul><ul><li>Lower power consumption (5x batt life) </li></ul>
  50. 55. Bluetooth 3.0 <ul><li>Bluetooth 3.0 standard launched April 21 </li></ul><ul><li>Pairs low-power frequency hopping radio system of Bluetooth 2.1 with high-speed transfers using 802.11 standards </li></ul><ul><li>Throughput about 24 Mbps when using 802.11 protocol </li></ul><ul><li>Best of both worlds for personal area networks? </li></ul>
  51. 56. 802.egad.goodgrief <ul><li>AKA WiFi et al. </li></ul><ul><li>Not a Bluetooth competitor (Bluetooth not designed as high-speed network connection) </li></ul><ul><li>802.11b dead spectrum walking </li></ul><ul><li>802.11g in common use </li></ul><ul><li>802.11a faster, but flash in the pan </li></ul><ul><li>802.11n coming on like gangbusters, will take over </li></ul>
  52. 57. 802.11b, g <ul><li>11b: 11 Mbits/sec in 2.4 GHz band </li></ul><ul><li>Utterly insecure - WEP (Wired Equivalent Privacy) easily broken by passive attacks </li></ul><ul><li>Pringles can great for “ war driving ” </li></ul><ul><li>How about a cantenna ? </li></ul><ul><li>11g: up to 54 Mbits/sec in 2.4 GHz band </li></ul><ul><li>Uses Advanced Encryption Standard (AES) </li></ul>
  53. 58. 802.11n <ul><li>100 Mbits/sec minimum throughput </li></ul><ul><li>MIMO (multiple input multiple output antenna technology) a significant advance </li></ul><ul><li>Qualcomm yesterday (yes, June 4, 2009) announced 4X4 MIMO 802.11n chipset with peak data rates of 600 Mbps! </li></ul><ul><li>Wonderful for simultaneous HDTV video, voice, data throughout your house </li></ul>
  54. 59. But Wait, There’s More! <ul><li>801.11i ratified 2004, improves security </li></ul><ul><li>Replaced WEP with WPA/WPA2 (Wi-Fi Protected Access), uses chip-based Advanced Encryption Standard (AES) </li></ul><ul><li>802.11e adds Quality of Service features, multimedia support (think VoIP) </li></ul><ul><li>802.11v coming, to manage and optimize wireless networks </li></ul>
  55. 60. Wireless LTE <ul><li>Keep an eye on wireless LTE (Long Term Evolution) – likely to dominate </li></ul><ul><li>Potential for 100 Mbps downloads, 50 Mbps uploads </li></ul><ul><li>Up to 200 simultaneous users per 5 MHz slice of spectrum </li></ul><ul><li>For cutting through the alphabet soup: palowireless and Wi-Fi Planet </li></ul>
  56. 61. WiMax <ul><li>May change the rural world </li></ul><ul><li>Kingdom of Tonga (South Pacific) – wireless broadband to 42 islands covering 270,000 square miles! </li></ul><ul><li>Island in the middle of the Amazon - wireless broadband to a healthcare clinic, two schools, a community center, and a university </li></ul><ul><li>Holy grail? Roaming! </li></ul><ul><li>Makes mobile wideband a reality ( Clearwire ) </li></ul>
  57. 62. Ultrawideband <ul><li>Short range: low power, high throughput, better security </li></ul><ul><li>Tiny bursts of information </li></ul><ul><li>Large swath of frequencies </li></ul><ul><li>Extremely short-duration pulses </li></ul><ul><li>Looks like faint background noise to other receivers </li></ul><ul><li>Useful information here </li></ul>
  58. 63. Ultrawideband <ul><li>Could have been big, but caught in IEEE standard wrangling, overtaken by 802.11n </li></ul><ul><li>Excels at multimedia audio/video connectivity for handheld devices </li></ul><ul><li>Speed/power ratio (bits moved/battery consumed) very high </li></ul><ul><li>Think: wireless from HD digital camcorder to plasma TV </li></ul>
  59. 64. Femtocell <ul><li>Smallest unit of a cellular network (acts like a miniature cellular base station) </li></ul><ul><li>Grabs your carrier’s cellular signal and boosts it for indoor use, routing it through your house’s broadband connection </li></ul><ul><li>Result is stronger, clearer, more reliable signal inside the house </li></ul><ul><li>Carriers can offload traffic from their main networks, build fewer cell towers </li></ul>
  60. 65. Road Map <ul><li>The Internet is … </li></ul><ul><li>Nuts and bolts </li></ul><ul><li>Web 2.0 </li></ul><ul><li>Semantic Web </li></ul><ul><li>Wireless </li></ul><ul><li>New Tech </li></ul>
  61. 66. OLED Displays <ul><li>Organic Light Emitting Diodes </li></ul><ul><li>Series of organic thin films between two conductors </li></ul><ul><li>Bright light emitted when current applied </li></ul><ul><li>Can be constructed on plastic or metallic foil substrate: thus, flexible! </li></ul><ul><li>Lighter weight, brighter image, wider viewing angle, broader operating temps </li></ul>
  62. 67. Flat, Flexible, Wireless Power Source <ul><li>“Power-transmission sheet” - electrical components deposited onto plastic using inkjet printer and “electronic ink” </li></ul><ul><li>Finished product is 1mm thick and 21 cm square, but sheets large enough to cover floors could be created </li></ul><ul><li>Sheet delivers about 40 watts of wireless power at 81% efficiency </li></ul>
  63. 68. Smart Labels (RFID tags) <ul><li>Microchip transmitters can be as small as a grain of salt </li></ul><ul><li>Passive (no battery) or active (self-powered) </li></ul><ul><li>Embedded in clothing lables (Benetton) </li></ul><ul><li>In each euro note since end of 2005 </li></ul><ul><li>Self-listing contents of shipping containers </li></ul><ul><li>VeriChip used in Katrina morgue </li></ul>
  64. 69. Smart Labels (RFID tags) <ul><li>In live fish in Singapore aquarium </li></ul><ul><li>Embedded in current US passports </li></ul><ul><li>Tracking wandering Alzheimer patients </li></ul><ul><li>Big item labeling push by Wal*Mart </li></ul><ul><li>E- ZPass for road, bridge tolls </li></ul><ul><li>Amusement parks, recreation facilities </li></ul>
  65. 70. Smarter Labels? H-P Memory Spot <ul><li>Announced July 2006 </li></ul><ul><li>Size of tomato seed or small grain of rice </li></ul><ul><li>Chip contains memory, modem, antenna, microprocessor, 2 mm sq </li></ul><ul><li>512 KB memory now; 2 GB coming </li></ul><ul><li>Read and write at speeds up to 10 Mbits/sec </li></ul><ul><li>Many, many uses </li></ul>
  66. 71. Talking Prescription Bottle <ul><li>MedivoxRx on the market now </li></ul><ul><li>Disposable talking bottle provides audible label information </li></ul><ul><li>Makes information about their medications more accessible to people who are elderly, visually or cognitively impaired, illiterate, or speak a different language </li></ul>
  67. 72. Web-connected GlowCap <ul><li>Internet-connected pill bottle cap </li></ul><ul><li>Glows and plays a tune to remind you when it’s time to take your medicine </li></ul><ul><li>Tracks number of times the bottle cap has been opened, inferring that you’ve taken the medicine (sends the data to a database hosted by Vitality, the mfr) </li></ul><ul><li>GlowCap article in Fortune </li></ul>
  68. 73. Nike + iPod Sport Kit <ul><li>Elegant high-tech runner’s aid </li></ul><ul><li>Gyroscopically enabled instrument the size of a pebble measures your pace from a pocket inside the shoe </li></ul><ul><li>Streams data to a wireless receiver on the iPod: distance, pace, time, calories burned </li></ul><ul><li>Docking the iPod uploads data to a server </li></ul>
  69. 74. Robotic Cable Inspection System <ul><li>Semi-autonomous mobile robotic platform to inspect underground distribution cables </li></ul><ul><li>Determines fault type, fault extent, and cable aging status </li></ul><ul><li>Infrared thermal analysis; acoustic partial discharge analysis </li></ul><ul><li>Failure tracking, collision avoidance, path planning </li></ul>
  70. 75. Robotics Unleashed <ul><li>i-Swarm robotic ants </li></ul><ul><li>Exploring caves with hopping microbots </li></ul><ul><li>Swarm-bots project: self-assembling artifacts </li></ul><ul><li>Swarm-bots pulling a child </li></ul><ul><li>New communications tools for search-and-rescue robots </li></ul>
  71. 76. Smart Bandage <ul><li>University of Rochester </li></ul><ul><li>Silicon sensor can tell Gram-positive from Gram-negative bacteria </li></ul><ul><li>Molecule on dressing binds with lipid A molecule to make subtle color change </li></ul><ul><li>Combine with tiny transmitter to broadcast news of infection to computer </li></ul><ul><li>“ Digital plaster ” from Imperial College, UK </li></ul>
  72. 77. Gut Check <ul><li>Wireless, remote controlled video-equipped capsule half the size of a grape </li></ul><ul><li>View inside of the GI tract without CT, MRI, endoscopy, surgery </li></ul><ul><li>PillCam by Given Imaging in UK: transmits 50,000 images (two/sec) over eight-hour period </li></ul><ul><li>Philips iPill for electronic drug delivery (“Take this pill and it will call me in the morning.”) </li></ul>
  73. 78. MEMS <ul><li>Microelectromechanical systems </li></ul><ul><li>Minuscule gears, motors, other devices </li></ul><ul><li>Keep an eye on this technology! </li></ul><ul><li>Millipede MEMS storage system from IBM Zurich: terabit/square inch </li></ul><ul><li>Fascinating picture gallery at Sandia Labs </li></ul>
  74. 79. Why Do You Care About MEMS? <ul><li>Example: airbag sensors in your car </li></ul><ul><li>Example: Nintendo Wii controller </li></ul><ul><li>Example: Memjet printer technology </li></ul><ul><li>Really far-out example: DARPA cyborg beetle </li></ul>
  75. 80. Low Power Wireless Sensor Networks (ZigBee) <ul><li>ZigBee standard: 802.15.4 </li></ul><ul><li>Thousands to millions of sensors </li></ul><ul><li>Monitor traffic; weather; troop movements; structural stress in buildings, bridges </li></ul><ul><li>Mite-size sensors called “motes” organize themselves into mesh network </li></ul><ul><li>Very low duty cycle to save battery power </li></ul>
  76. 81. Low Power Wireless Sensor Networks (ZigBee) <ul><li>Sensors can be as small as one cubic mm </li></ul><ul><li>Turn on periodically to listen to one another </li></ul><ul><li>Identify which other devices they can hear </li></ul><ul><li>Allow data to traverse the network, sensor by sensor </li></ul><ul><li>Motes available from Crossbow </li></ul><ul><li>Fascinating application from Berlin Technical University </li></ul>
  77. 82. Low Power Wireless Sensor Networks (ZigBee) <ul><li>Sensor net suspects structural problem on your bridge? Send up Climber ! </li></ul><ul><li>Monitoring environmental changes high up in the forest canopy? Use Treebot . </li></ul><ul><li>Exploring a new planet? Use steerable “ smart dust ” in sensor swarms. Simulations show 50 dust particles can organize into a star formation, even in turbulent wind. </li></ul>
  78. 83. Cloud Computing <ul><li>Began to take off in 2008 </li></ul><ul><li>Architecture in which companies consume technology resources as an Internet service rather than as an owned system </li></ul><ul><li>“Software and platform as a service” </li></ul><ul><li>Interesting article : “Don’t get caught without an exit strategy” </li></ul>
  79. 84. Think: Convergence <ul><li>Power </li></ul><ul><li>Sensors </li></ul><ul><li>Wireless </li></ul><ul><li>Mobility </li></ul><ul><li>Smarts </li></ul>
  80. 85. Think: Convergence <ul><li>Mesh networks, grid computing, RFID, flexible display, LED lighting </li></ul><ul><li>Verichip implantable glucose-sensing RFID microchip </li></ul><ul><li>Intelligent flood monitoring grid ( GumStix ) </li></ul><ul><li>BoGo light </li></ul>
  81. 86. Think: Convergence <ul><li>Miniature lab detects H5N1 bird flu virus in 30 minutes </li></ul><ul><li>Satellites, cell phone, portable spectroscopy for sheep, goat herders in Afghanistan </li></ul><ul><li>Amazon organized users to search for Steve Fossett through Google Earth images </li></ul><ul><li>Early warning system for bridges </li></ul>
  82. 87. Useful Web Sites <ul><li>World Wide Web Consortium (W3C) </li></ul><ul><li>Wi-Fi Planet and FierceBroadbandWireless (wireless) </li></ul><ul><li>Practically Networked (reviews, tutorials) </li></ul><ul><li>Internet Corporation for Assigned Names and Numbers (ICANN) </li></ul><ul><li>Complete animated history of the Internet </li></ul><ul><li>Did you know? ( 2.0 ) ( 3.0 ) </li></ul>
  83. 88. Reflections on What’s Coming <ul><li>This concludes the presentation </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.