IIR 2013 - 4th Italian Information Retrieval Workshop                            Pisa (Italy), 17.01.2013 Cataldo Musto, F...
exponential growth                    of the available musicC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Dist...
Some stats                 28,000,000 songs available on iTunes Store (*)                         around 31,000 hours of m...
Information OverloadC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: explo...
what music should I listen to?C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked D...
solution                            personalization.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distribution...
solution  personalized music playlistsC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. ...
Is this something new?                                                                                                  No...
Amazon.com                                                                    RecommendationsC. Musto, F. Narducci, G. Sem...
Genius @iTunes                                                         RecommendationsC. Musto, F. Narducci, G. Semeraro, ...
RecommendationsC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting...
All the state of the art                platforms share an               important drawback.C. Musto, F. Narducci, G. Seme...
training is a bottleneck.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: ...
need for                                                                          explicit                                ...
social media provide information about user preferencesC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distribut...
example      user preferences in music from FacebookC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distribution...
Our contribution                                                Play.meC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de ...
Play.me                                      personalized music playlists        • Goal          • To provide users with p...
Play.me                                                       architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. ...
Play.me                                                       architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. ...
Play.me                                                    pre-processing    • Crawling from Last.fm     • Public API     ...
Play.me                                                    pre-processing                          Sigur Ròs tag cloud fro...
Play.me                                                       architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. ...
Play.me                                 data extraction from FacebookC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Ge...
Play.me                                 data extraction from Facebook           explicit preferencesC. Musto, F. Narducci,...
Play.me                                 data extraction from Facebook          implicit preferencesC. Musto, F. Narducci, ...
Play.me                                                       architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. ...
Play.me                                                       enrichment    • Rationale     • Given a set of explicit pref...
Play.me                                             enrichment example                                                    ...
Play.me                                                       architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. ...
Play.me                                                             playlistMost popular songs of the artists extracted fr...
let’s go                                                                                          deeperC. Musto, F. Nardu...
Play.me                                                       enrichment    • Comparison of two approaches         •      ...
Play.me                   enrichment based on Distributional Models         • Content-based strategy          • Each artis...
distributional models                                                                   “meaning                          ...
distributional models insightby analyzing large corpus of textual data it is possibleto infer information about the usage ...
distributional models                             term/context matrix (WordSpace)                             c1          ...
distributional models                                    beer vs. glass: good overlap                             c1      ...
distributional models                                     beer vs. spoon: no overlap                             c1       ...
distributional models                                rock vs. post rock = good overlap                                    ...
distributional models                                     rock vs. classical = no overlap                                 ...
representation of documents (*)   can be inferred by combining the representation of   the terms (**) occurring in the doc...
distributional models                               term/context matrix (DocSpace)                                      c1...
Play.me                   enrichment based on Distributional Models                                                  Coldp...
Play.me                   enrichment based on Distributional Models                          input: vector space represent...
Linked Open Data CloudC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exp...
Linked Open Data Cloud                                                                            Structured              ...
Play.me                              enrichment based on Linked Data                           Coldplay play Alternative R...
Play.me                                                        RDF triple                 Relationships are explictly enco...
Play.me                              enrichment based on Linked Data         • Linked Open Data Cloud         • Each artis...
Play.me                              enrichment based on Linked Data                                         input: SPARQL...
recap                                               enrichment process    input: artist                                   ...
experimental        evaluation.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked ...
experimental design   • Experiment    • Which one is the enrichment technique that              can provide users with the...
experimental design                                                             settings      • 30 users           • Heter...
experimental setup               Given a playlist, each user can freely express her own                  feedback (like/di...
experimental setup  Experiment repeated three times (one run with Linked Data enrichment, another     one with Distributio...
experimental setup                         Users were unaware of the adopted configuration.C. Musto, F. Narducci, G. Semera...
experimental design                                                             results                       76,3      80...
experimental design                                                             results                       76,3      80...
experimental design                                                             results                       76,3      80...
experimental design                                                             results                       76,3      80...
conclusions.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting cr...
both enrichment techniques                     overcome the baselineC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gem...
distributional models                          overcome linked dataC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemm...
future research.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploitin...
merging different                           enrichment techniquesC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis...
evaluation with user-based metrics                                (serendipity, novelty, unexpectedness)C. Musto, F. Nardu...
modeling context.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiti...
questions?C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crow...
Upcoming SlideShare
Loading in...5
×

Distributional Models vs. Linked Data: leveraging crowdsourcing to personalize music playlists

434

Published on

Italian Information Retrieval 2013 - Workshop (http://iir2013.isti.cnr.it) - Distributional Models vs. Linked Data: leveraging crowdsourcing to personalize music playlists

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
434
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
11
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Distributional Models vs. Linked Data: leveraging crowdsourcing to personalize music playlists

  1. 1. IIR 2013 - 4th Italian Information Retrieval Workshop Pisa (Italy), 17.01.2013 Cataldo Musto, Fedelucio Narducci, Giovanni Semeraro, Pasquale Lops, Marco de GemmisDistributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists
  2. 2. exponential growth of the available musicC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  3. 3. Some stats 28,000,000 songs available on iTunes Store (*) around 31,000 hours of music a typical user spends 1.5 hours for day listening to music = 56 years to listen to the whole iTunes Library (*) http://www.digitalmusicnews.com/permalink/2012/120425itunesC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  4. 4. Information OverloadC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  5. 5. what music should I listen to?C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  6. 6. solution personalization.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  7. 7. solution personalized music playlistsC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  8. 8. Is this something new? No.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  9. 9. Amazon.com RecommendationsC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  10. 10. Genius @iTunes RecommendationsC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  11. 11. RecommendationsC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  12. 12. All the state of the art platforms share an important drawback.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  13. 13. training is a bottleneck.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  14. 14. need for explicit information about user interests.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  15. 15. social media provide information about user preferencesC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  16. 16. example user preferences in music from FacebookC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  17. 17. Our contribution Play.meC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  18. 18. Play.me personalized music playlists • Goal • To provide users with personalized music playlists • Insights • Extraction of explicit user preferences from Facebook • Playlist creation by enriching explicit user preferences. • New artists are added to those explicitly extracted from Facebook • Comparison of two enrichment techniquesC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  19. 19. Play.me architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  20. 20. Play.me architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  21. 21. Play.me pre-processing • Crawling from Last.fm • Public API • Content-based features • Name of the artist + Social tags • Noise processing • Information locally storedC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  22. 22. Play.me pre-processing Sigur Ròs tag cloud from Last.fmC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  23. 23. Play.me architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  24. 24. Play.me data extraction from FacebookC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  25. 25. Play.me data extraction from Facebook explicit preferencesC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  26. 26. Play.me data extraction from Facebook implicit preferencesC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  27. 27. Play.me architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  28. 28. Play.me enrichment • Rationale • Given a set of explicit preferences extracted from Facebook • Play.me enrichs this set • Extraction of artists similar to those the user explicity likesC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  29. 29. Play.me enrichment example Coldplay extracted from Facebook enrichment radiohead red hot chili peppers kings of leonC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  30. 30. Play.me architectureC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  31. 31. Play.me playlistMost popular songs of the artists extracted from Last.fm (as well as those added through the enrichment) are proposed to the user.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  32. 32. let’s go deeperC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  33. 33. Play.me enrichment • Comparison of two approaches • Content-based strategy • Distributional Models • Linked DataC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  34. 34. Play.me enrichment based on Distributional Models • Content-based strategy • Each artist is modeled through a set of tags • Each artist is represented as a point in a semantic geometrical space • Distributional Models • Similarity calculations to extract the most similar artists.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  35. 35. distributional models “meaning is its use” L.Wittgenstein (Austrian philosopher)C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  36. 36. distributional models insightby analyzing large corpus of textual data it is possibleto infer information about the usage (about the meaning)of the terms. exampleC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  37. 37. distributional models term/context matrix (WordSpace) c1 c2 c3 c4 c5 c6 c7 c8 c9 t1 ✔ ✔ ✔ ✔ t2 ✔ ✔ ✔ ✔ t3 ✔ ✔ ✔ t4 ✔ ✔ ✔ ✔C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  38. 38. distributional models beer vs. glass: good overlap c1 c2 c3 c4 c5 c6 c7 c8 c9 t1 ✔ ✔ ✔ ✔ t2 ✔ ✔ ✔ ✔ t3 ✔ ✔ ✔ t4 ✔ ✔ ✔ ✔C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  39. 39. distributional models beer vs. spoon: no overlap c1 c2 c3 c4 c5 c6 c7 c8 c9 t1 ✔ ✔ ✔ ✔ t2 ✔ ✔ ✔ ✔ t3 ✔ ✔ ✔ t4 ✔ ✔ ✔ ✔C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  40. 40. distributional models rock vs. post rock = good overlap c1 c2 c3 c4 c5 c6 rock ✔ ✔ ✔ post rock ✔ ✔ jazz ✔ classical ✔ ✔ ✔C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  41. 41. distributional models rock vs. classical = no overlap c1 c2 c3 c4 c5 c6 rock ✔ ✔ ✔ post rock ✔ ✔ jazz ✔ classical ✔ ✔ ✔C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  42. 42. representation of documents (*) can be inferred by combining the representation of the terms (**) occurring in the document. (*) documents = artists (**) terms = tagsC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  43. 43. distributional models term/context matrix (DocSpace) c1 c2 c3 c4 c5 c6 c7 c8 c9 t2 ✔ ✔ ✔ ✔ t3 ✔ ✔ ✔ d1 ✔ ✔ ✔ ✔ ✔C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  44. 44. Play.me enrichment based on Distributional Models Coldplay Radiohead Kings of Leon Lady GagaC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  45. 45. Play.me enrichment based on Distributional Models input: vector space representation output: artists with the highest cosine similarity radiohead the killers kings of leonC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  46. 46. Linked Open Data CloudC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  47. 47. Linked Open Data Cloud Structured (RDF) representation of the information stored in Wikipedia.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  48. 48. Play.me enrichment based on Linked Data Coldplay play Alternative RockC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  49. 49. Play.me RDF triple Relationships are explictly encoded in RDF.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  50. 50. Play.me enrichment based on Linked Data • Linked Open Data Cloud • Each artist is mapped on a DBpedia node. • univocal URI • Relationship between artists (nodes) are explicitly encoded • e.g. genre, artist category, etc. • Use of SPARQL to extract artists (nodes) that share the same featuresC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  51. 51. Play.me enrichment based on Linked Data input: SPARQL query output: artists sharing the same properties radiohead the smiths the verveC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  52. 52. recap enrichment process input: artist output: similar artists coldplay the smiths Linked Data radiohead the verve kings of leon Distributional Models radioheadC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  53. 53. experimental evaluation.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  54. 54. experimental design • Experiment • Which one is the enrichment technique that can provide users with the best playlists ?C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  55. 55. experimental design settings • 30 users • Heterogeneous musical knowledge • Last.fm crawl: 228,878 artists • Extraction & Recommendation step • 325 artists extracted • 11 per user, on averageC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  56. 56. experimental setup Given a playlist, each user can freely express her own feedback (like/dislike) on the proposed tracks.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  57. 57. experimental setup Experiment repeated three times (one run with Linked Data enrichment, another one with Distributional Models, one with a simple baseline based on popularity).C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  58. 58. experimental setup Users were unaware of the adopted configuration.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  59. 59. experimental design results 76,3 80 75,2 Linked Data Distributional Models Baseline (Popularity) 73,75 69,7 67,5 65,9 64,6 61,25 63,2 58 58 58 55 n=1 n=2 n=3 n = number of artists added for each extracted artistC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  60. 60. experimental design results 76,3 80 75,2 Linked Data Distributional Models Baseline (Popularity) 73,75 69,7 67,5 65,9 64,6 61,25 63,2 58 58 58 55 n=1 n=2 n=3 distributional models overcome linked dataC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  61. 61. experimental design results 76,3 80 75,2 Linked Data Distributional Models Baseline (Popularity) 73,75 69,7 67,5 65,9 64,6 61,25 63,2 58 58 58 55 n=1 n=2 n=3precision in distributional models drops down more rapidlyC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  62. 62. experimental design results 76,3 80 75,2 Linked Data Distributional Models Baseline (Popularity) 73,75 69,7 67,5 65,9 64,6 61,25 63,2 58 58 58 55 n=1 n=2 n=3 good results for baseline, as well (poor music knowledge?)C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  63. 63. conclusions.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  64. 64. both enrichment techniques overcome the baselineC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  65. 65. distributional models overcome linked dataC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  66. 66. future research.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  67. 67. merging different enrichment techniquesC. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  68. 68. evaluation with user-based metrics (serendipity, novelty, unexpectedness)C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  69. 69. modeling context.C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  70. 70. questions?C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×