0
Chapter:  Alternative Vehicle Concepts The chapter gives an overview of working-principles and concepts of alternative dri...
Contents <ul><li>1.   Introduction: European and US emission-laws. </li></ul><ul><li>2.   Internal combustion engines (ICE...
EURO emission standards Gasoline (emissions ins mg/km) Diesel (emissions in mg/km) Source:  Aigle/Krien/Marz 2007, 19 Part...
EURO emission standards:  Nitrogen- Oxides and Particles <ul><ul><li>NOx and Particles are health hazards. </li></ul></ul>...
California's Low-Emission-Act <ul><ul><li>California has the world-wide strongest emission law. </li></ul></ul><ul><ul><li...
Overview Fuels <ul><ul><li>Fuels on the left-side are used in diesel-engines. (diesel-ICE). </li></ul></ul><ul><ul><li>Fue...
Internal Combustion Engines (ICE) Principle <ul><li>Invention in the 1876: </li></ul><ul><ul><li>First four-stroke cycle e...
A Example: DaimlerChrysler BlueTec. The cleanest Diesel ever known? <ul><ul><li>Diesel engine V6. </li></ul></ul><ul><ul><...
The Hydrogen ICE – A conventional drive with a new fuel <ul><ul><li>The design of a H2-Engine is similar to a petrol. </li...
Rotation-Engine: Principle <ul><li>First engine in 1954: </li></ul><ul><ul><li>Felix Wankel. </li></ul></ul><ul><li>First ...
A Example: Mazda's RX-8 Hydrogen RE The last “sign of life” of Wankel´s engine? <ul><ul><li>Two rotary engines. </li></ul>...
Hybrid Cars <ul><li>Invention in 1902:   </li></ul><ul><ul><li>Ferdinand Porsche. </li></ul></ul><ul><li>First mass-produc...
Hybrid Cars:  Principles and concepts <ul><li>Different forms of Hybrid-cars: </li></ul><ul><ul><li>Micro-Hybrids: electri...
Parallel and serial hybrids <ul><ul><li>In a parallel system the ICE and the electric motor can transmit the power to the ...
An example: Toyota Prius A success-story made in Japan <ul><ul><li>Combustion-engine: 4-Cylinder Otto-engine: </li></ul></...
Electric Vehicles <ul><ul><li>First electric car in 1881: </li></ul></ul><ul><ul><ul><li>Gustav Trouve. </li></ul></ul></u...
Overview Traction-Batteries <ul><ul><li>Lead acid-Batteries </li></ul></ul><ul><ul><ul><li>Common technology, but energy-d...
A example: Mitsubishi Lancer Evolution: Li-Ion Batteries and in-wheel motors <ul><ul><li>Four synchronic in-wheel motors. ...
The Tesla Roadster <ul><ul><li>6831 rechargeable Li-Ion batteries are used in the Tesla.  </li></ul></ul><ul><ul><li>Time ...
Fuel Cell Cars Part 1 Part 2 Part 3 Part 4 Part 5
History of H2-Vehicles <ul><ul><li>1807: First H2-ICE by Francois Isaac de Rivaz. </li></ul></ul><ul><ul><li>1839: Discove...
Introduction: FC-Vehicles Types of fuel cells Source: Jörissen/Garche 200,17. Own additions Part 1 Part 2 Part 3 Part 4 Pa...
Introduction: Characteristics of fuel cell types <100°C Up to 1000°C Platinum metal 4-5.0 H 2 C n H m 40-50% 50-60% Reform...
Which type for which application ? <ul><li>Continuous loads </li></ul><ul><ul><li>CHP-Unit for industrial use </li></ul></...
Concepts of fuel cell vehicles <ul><ul><li>DaimlerChrysler developed a prototype (Necar5) with a methanol on-board reforme...
Main components of a H2-FCV 1: Electrical Engine. 2: Fuel-Cell System. 3: High-Pressure vessels. 4: High-voltage Battery. ...
Energy flow in a Fuel Cell Vehicle <ul><ul><li>In a fuel car the chemical energy of H2 is converted into electrical energy...
Methanol Fuel Cell Vehicles (NECAR V) <ul><ul><li>Fuel Processor System Specifications </li></ul></ul><ul><ul><li>Fuel: Me...
Flow chart of a Methanol FCV Source: Los Alamos 1999, 16 Part 1 Part 2 Part 3 Part 4 Part 5 B
The fuel cell stack (Ballard) <ul><ul><li>Impressive technical achievements over the last years. </li></ul></ul><ul><ul><l...
Fuel Cell System Xcellsis TM HY-80 Power electronics Cooling pump System module Fuel Cell  (80 kW) Control electronics Par...
Tank-System  for compressed Hydrogen gas (CHG) <ul><ul><li>CGH2: compressed gaseous hydrogen, </li></ul></ul><ul><ul><li>P...
Tank-System  for liquid hydrogen (LH2) <ul><ul><li>Operating temperature of in-between 20 and 30 K and 0.5 to max 1 MPa pr...
A example: DaimlerChryslers f-cell <ul><ul><li>Three-Phase asynchronous motor:  </li></ul></ul><ul><ul><ul><li>Nominal Pow...
GM´s Chevrolet Equinox Fuel Cell <ul><ul><li>Electric traction: </li></ul></ul><ul><ul><ul><li>73 kw 3-Phase asynchronous ...
Comparison of  Efficiency and CO 2 -Emission    Average efficiency (European Drive Cycle):  Efficiencies:  36 %   /   22 ...
Overall efficiency  FC-car (example DC) 100 % l H 2 Data: Lamm 2002   Part 1 Part 2 Part 3 Part 4 Part 5 B 37.7 % overall ...
Fuel Cell Busses <ul><ul><li>DaimlerChryslers “Citaro-Bus”  based on fuel cell technology. </li></ul></ul><ul><ul><li>27 C...
H2 Filling Stations - worldwide Part 1 Part 2 Part 3 Part 4 Part 5 299 filling stations worldwide ! Source: H2stations.org...
H2 Filling Stations – Europe Part 1 Part 2 Part 3 Part 4 Part 5 Source: H2stations.org by LBST (LBST 2007)   B
Sources I <ul><li>Aigle, Thomas; Marz, Lutz (2007a): Automobilität und Innovation. Versuch eine interdisziplinären Systema...
Sources II <ul><li>Lamm, Arnold (2006): PEM-BZ-Systeme für den mobilen Einsatz. Vortrag, DaimlerChrysler Forschungszentrum...
Upcoming SlideShare
Loading in...5
×

Mazda Rotary Engine Chapter 2 Vehicle Concepts En

999

Published on

Experience Mazda Zoom Zoom Lifestyle and Culture by Visiting and joining the Official Mazda Community at http://www.MazdaCommunity.org for additional insight into the Zoom Zoom Lifestyle and special offers for Mazda Community Members.

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
999
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
36
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Chapter 2 Title: Alternative Vehicle ConceptsLevel: Basic, intermediate Requisites: none Overall aim The chapter gives an overview of working-principles and concepts of alterative drives and presents exemplary cars. The focus is on fuel cell vehicles. Content Introduction: European and US emission-laws Internal combustion engines (ICE) Diesel- and gasoline engine Rotary-Engine (Wankel engine) 3. Hybrid-Drives Mild-Hybrids Full-Hybrids Plug-In Hybrids 4. Electrical Drives Batteries Fuel Cells Fuel Cell Vehicles Types and car-concepts Components Efficiency Learning outcomes: The student will be able to: Appreciate the history of the relevant technologies Understand the variety of technologies that are available Understand the potential for this technologies in the future Methodology: Lectures, group work, discussion Schedule 4 one - hour - units
  • Transcript of "Mazda Rotary Engine Chapter 2 Vehicle Concepts En"

    1. 1. Chapter: Alternative Vehicle Concepts The chapter gives an overview of working-principles and concepts of alternative drives and presents exemplary cars. The focus is on fuel cell vehicles.
    2. 2. Contents <ul><li>1. Introduction: European and US emission-laws. </li></ul><ul><li>2. Internal combustion engines (ICE). </li></ul><ul><ul><li>Diesel- and gasoline engine. </li></ul></ul><ul><ul><li>Rotary-Engine (Wankel engine). </li></ul></ul><ul><li>3. Hybrid-Drives. </li></ul><ul><ul><li>Mild-Hybrids. </li></ul></ul><ul><ul><li>Full-Hybrids. </li></ul></ul><ul><ul><li>Plug-In Hybrids. </li></ul></ul><ul><li>4. Electrical Drives. </li></ul><ul><ul><li>Batteries. </li></ul></ul><ul><ul><li>Fuel Cells. </li></ul></ul><ul><li>5. Fuel Cell Vehicles. </li></ul><ul><ul><li>Types and car-concepts. </li></ul></ul><ul><ul><li>Components. </li></ul></ul><ul><ul><li>Efficiency. </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5
    3. 3. EURO emission standards Gasoline (emissions ins mg/km) Diesel (emissions in mg/km) Source: Aigle/Krien/Marz 2007, 19 Part 1 Part 2 Part 3 Part 4 Part 5 Source: Aigle/Krien/Marz 2007, 19 I
    4. 4. EURO emission standards: Nitrogen- Oxides and Particles <ul><ul><li>NOx and Particles are health hazards. </li></ul></ul><ul><ul><li>Especially nano particles (PM) are suspected to be dangerous. </li></ul></ul><ul><ul><li>Diesel-engines emit much more NOx and PM than gasoline-engines. </li></ul></ul><ul><ul><li>Particle-Filters and NOx-exhaust after-treatments are necessary for a “clean” diesel. </li></ul></ul><ul><ul><li>Restrictions for older diesel-cars in urban areas. (EU particular matter directive) </li></ul></ul>Nitrogen Oxides Particles Source: Aigle/Krien/Marz 2007,72 Source: Aigle/Krien/Marz 2007,77 Part 1 Part 2 Part 3 Part 4 Part 5 B
    5. 5. California's Low-Emission-Act <ul><ul><li>California has the world-wide strongest emission law. </li></ul></ul><ul><ul><li>California claims a 4% market-share of Zero Emission Vehicles (ZEV). </li></ul></ul><ul><ul><li>Hybrids and natural gas cars can be credited. </li></ul></ul><ul><ul><li>ZEV are only Fuel Cell- and Battery cars. </li></ul></ul><ul><ul><li>Note 1: There's no limit for CO2. </li></ul></ul><ul><ul><li>Note 2: The production of a fuel produces emissions ! </li></ul></ul>LEV - Low Emission Vehicle ULEV - Ultra Low E. V SULEV - Super Ultra Low E. V. EZEV - Equivalent Zero E. V. PZEV1 - Partial Zero E. V. ZEV - Zero Emission Vehicle Data: Aigle/Krien/Marz 2007, 24 own Illustration Part 1 Part 2 Part 3 Part 4 Part 5 B
    6. 6. Overview Fuels <ul><ul><li>Fuels on the left-side are used in diesel-engines. (diesel-ICE). </li></ul></ul><ul><ul><li>Fuels on the right side are compatible to gasoline-engines (Otto-ICE). </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5 Source: Aigle/Krien/Marz 2007, 43 B
    7. 7. Internal Combustion Engines (ICE) Principle <ul><li>Invention in the 1876: </li></ul><ul><ul><li>First four-stroke cycle engine developed by Nikolaus August Otto. </li></ul></ul><ul><li>First automobile in 1886: </li></ul><ul><ul><li>Developed by Gottfried Daimler and Carl Benz. </li></ul></ul><ul><li>Four-stroke principle: </li></ul><ul><ul><li>Intake. </li></ul></ul><ul><ul><li>Compression. </li></ul></ul><ul><ul><li>Ignition. </li></ul></ul><ul><ul><li>Exhaust. </li></ul></ul><ul><li>Engine-Types: </li></ul><ul><ul><li>Diesel engine (self-ignition). </li></ul></ul><ul><ul><li>Otto engine . </li></ul></ul>Nikolaus Otto Rudolph Diesel Source: Wikipedia 2007 Part 1 Part 2 Part 3 Part 4 Part 5 B Source: WBZU 2007 Exhaust gases Exhaust valve Piston Cylinder Connecting rod Crankshaft Rotating direction Intake valve Sparking Plug fuel-air mixture Piston rings
    8. 8. A Example: DaimlerChrysler BlueTec. The cleanest Diesel ever known? <ul><ul><li>Diesel engine V6. </li></ul></ul><ul><ul><li>Displacement: 2987 ccm. </li></ul></ul><ul><ul><li>Maximal output: 154 kW. </li></ul></ul><ul><ul><li>Maximal torque: 526 Nm. </li></ul></ul><ul><ul><li>Fuel consumption: 7,0 Litre/km. </li></ul></ul><ul><ul><li>Cruising range: 1200 km. </li></ul></ul><ul><ul><li>Top-Speed: 250 km/h. </li></ul></ul><ul><ul><li>Performance: 0-100 km/h: 6.6 sec. </li></ul></ul><ul><ul><li>NOx exhaust aftertreatment (DeNOx). </li></ul></ul><ul><ul><li>Costs: 39.780 EUR. </li></ul></ul>Mercedes E320 Bluetec Introduction US-market in 2007, (Permission in 45 States) Part 1 Part 2 Part 3 Part 4 Part 5 Discussion: Future of Diesel-engines? Established Technology versus alternative drives B
    9. 9. The Hydrogen ICE – A conventional drive with a new fuel <ul><ul><li>The design of a H2-Engine is similar to a petrol. </li></ul></ul><ul><ul><li>Differences result from the specifics of hydrogen and constructive measurements are necessary to avoid backfires. </li></ul></ul><ul><ul><li>Cars with a H2-ICE are rated as PZEV in California. </li></ul></ul><ul><ul><li>NOx-Emissions occur because nitrogen is in the combustion gas. </li></ul></ul><ul><ul><li>The H2-ICE is less efficient than fuel cells. </li></ul></ul><ul><ul><li>BMW plans to test 100 cars with a H2-ICE in 2008 (Hybrogen7). </li></ul></ul>Hydrogen7 from BMW Source: BMW 2006 Part 1 Part 2 Part 3 Part 4 Part 5 Discussion: Most car manufacturer consider hydrogen in combination with fuel cells as the concept for the future. Why does BMW focuses on the H2-ICE ? B
    10. 10. Rotation-Engine: Principle <ul><li>First engine in 1954: </li></ul><ul><ul><li>Felix Wankel. </li></ul></ul><ul><li>First adoption: </li></ul><ul><ul><li>Audi Ro80 (until 1977). </li></ul></ul><ul><li>Four-stroke principle: </li></ul><ul><ul><li>But: A rotary piston is used instead of a linear piston. </li></ul></ul><ul><li>Main-advantage: </li></ul><ul><ul><li>compact design. </li></ul></ul>Felix Wankel Source: HyCar 2006 Part 1 Part 2 Part 3 Part 4 Part 5 Air-Intake Exhaust gases Eccentric shaft Electrical connected H2-injector nozzle B
    11. 11. A Example: Mazda's RX-8 Hydrogen RE The last “sign of life” of Wankel´s engine? <ul><ul><li>Two rotary engines. </li></ul></ul><ul><ul><li>Bivalent: Gasoline and Hydrogen (CGH2). </li></ul></ul><ul><ul><li>Displacement: 2x654ccm (1.308ccm). </li></ul></ul><ul><ul><li>Maximal Output engine: </li></ul></ul><ul><ul><ul><li>Max. Output gasoline: 154 kW. </li></ul></ul></ul><ul><ul><ul><li>Max Output Hydrogen: 80 kW. </li></ul></ul></ul><ul><ul><li>Torque. </li></ul></ul><ul><ul><ul><li>gasoline: 222 Nm. </li></ul></ul></ul><ul><ul><ul><li>Hydrogen:140 Nm. </li></ul></ul></ul><ul><ul><li>Tank: </li></ul></ul><ul><ul><ul><li>Hydrogen: 110 Litre (@350 bar). </li></ul></ul></ul><ul><ul><ul><li>Tank gasoline 61 Litre. </li></ul></ul></ul><ul><ul><li>Cruising Range: </li></ul></ul><ul><ul><ul><li>Hydrogen. 100 km. </li></ul></ul></ul><ul><ul><ul><li>Gasoline: 549 km. </li></ul></ul></ul><ul><ul><li>Top-Speed 170 km/h (H2 mode). </li></ul></ul><ul><ul><li>Curb-weight: 1460 kg. </li></ul></ul><ul><ul><li>Price: concept car. </li></ul></ul>Mazda-RX8 Source: Mazda 2006 Part 1 Part 2 Part 3 Part 4 Part 5 B
    12. 12. Hybrid Cars <ul><li>Invention in 1902: </li></ul><ul><ul><li>Ferdinand Porsche. </li></ul></ul><ul><li>First mass-production vehicle </li></ul><ul><li>in 1997 </li></ul><ul><ul><li>Toyota Prius. </li></ul></ul><ul><li>Today: </li></ul><ul><ul><li>Toyota sold several hundred-thousands cars of the “Prius II” worldwide. Mainly in the US and Japan (see figure). </li></ul></ul><ul><ul><li>Most car-manufacturer develop hybrid-cars today. </li></ul></ul><ul><li>Basic idea: </li></ul><ul><ul><li>Support of the combustion engine by a electrical engine. </li></ul></ul><ul><ul><li>Storage of electrical energy in batteries, e.g. breaking energy. </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5 Source: Manager-Magazin 2005 B
    13. 13. Hybrid Cars: Principles and concepts <ul><li>Different forms of Hybrid-cars: </li></ul><ul><ul><li>Micro-Hybrids: electric start&stop automatic. </li></ul></ul><ul><ul><li>Mild-Hybrids: recuperation of braking energy. </li></ul></ul><ul><ul><li>Full-Hybrids can drive in an electrical mode. </li></ul></ul><ul><li>Different structure of drive: </li></ul><ul><ul><li>Parallel Hybrids. </li></ul></ul><ul><ul><li>Serial Hybrids. </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5 Source: Aigle/Marz 2007, 65 B
    14. 14. Parallel and serial hybrids <ul><ul><li>In a parallel system the ICE and the electric motor can transmit the power to the transmission. </li></ul></ul><ul><ul><ul><li>Main advantage: Both drives can be used simultaneously. </li></ul></ul></ul><ul><ul><li>In a serial hybrid the ICE runs as generator to produce electrical power. Only the electrical motor conducts the transmission. </li></ul></ul><ul><ul><ul><li>Main advantage: The ICE can always run wit good efficiency. </li></ul></ul></ul><ul><ul><li>In mixed-systems, so called serial-parallel systems, both advantages can be combined. </li></ul></ul>Source: Bady 2000 Part 1 Part 2 Part 3 Part 4 Part 5 B
    15. 15. An example: Toyota Prius A success-story made in Japan <ul><ul><li>Combustion-engine: 4-Cylinder Otto-engine: </li></ul></ul><ul><ul><ul><li>Displacement::1497 ccm. </li></ul></ul></ul><ul><ul><ul><li>Nominal Power: 57 kW. </li></ul></ul></ul><ul><ul><ul><li>Nominal Torque: 115 Nm (@ 4000 U/min). </li></ul></ul></ul><ul><ul><li>Electrical-Engine: Synchron AC engine: </li></ul></ul><ul><ul><ul><li>Nominal Power: 50 kW. </li></ul></ul></ul><ul><ul><ul><li>Nominal Torque: 400 Nm (@ 1200 U/min). </li></ul></ul></ul><ul><ul><li>Battery: Ni-MH. </li></ul></ul><ul><ul><li>Fuel consumption: 4,3 Litre. </li></ul></ul><ul><ul><li>Cruising range: 1050 km. </li></ul></ul><ul><ul><li>Tank: 45 Litre. </li></ul></ul><ul><ul><li>Top speed:: 170 km/h. </li></ul></ul><ul><ul><li>Performance 0-100km/h: 10,9 sec. </li></ul></ul><ul><ul><li>Curb-weight: 1400 kg. </li></ul></ul><ul><ul><li>CO2-Emissions: 104 g/km. </li></ul></ul><ul><ul><li>Price: 24.070 € </li></ul></ul>Source: Toyota 2006 Part 1 Part 2 Part 3 Part 4 Part 5 Toyota Prius B
    16. 16. Electric Vehicles <ul><ul><li>First electric car in 1881: </li></ul></ul><ul><ul><ul><li>Gustav Trouve. </li></ul></ul></ul><ul><ul><li>An electric vehicle was the first car that reached a Top-Speed of 100 km/h in 1889. </li></ul></ul><ul><ul><li>Battery-Types: </li></ul></ul><ul><ul><ul><li>Lead acid battery. </li></ul></ul></ul><ul><ul><ul><li>New battery types. </li></ul></ul></ul><ul><ul><li>Type of electrical motors: </li></ul></ul><ul><ul><ul><li>Direct current (dc). </li></ul></ul></ul><ul><ul><ul><li>Alternating current (ac). </li></ul></ul></ul><ul><ul><li>Electrical motors have high efficiencies and a good torque at lower revolutions. </li></ul></ul>Electric Vehicle von Trouve Source: Elektroauto-Tipp 2006 Part 1 Part 1 Part 2 Part 3 Part 4 Part 5 B
    17. 17. Overview Traction-Batteries <ul><ul><li>Lead acid-Batteries </li></ul></ul><ul><ul><ul><li>Common technology, but energy-density is too low. </li></ul></ul></ul><ul><ul><ul><li>Limited cruising range, batteries are too heavy. </li></ul></ul></ul><ul><ul><ul><li>Cars only play a role in certain niches (e.g. as city car). </li></ul></ul></ul><ul><ul><li>New battery-technologies </li></ul></ul><ul><ul><ul><li>Nickel-cadmium, Nickel-Metal Hydride, Lithium-Ion. </li></ul></ul></ul><ul><ul><ul><li>Only energy-density of Lithium-Ion batteries are sufficient to reach adequate cruising ranges. The electrical car comes out of the niche. </li></ul></ul></ul><ul><ul><ul><li>Problems: Costs, safety and life-time. </li></ul></ul></ul>Source: Aigle/Marz 2006, 77 Part 1 Part 2 Part 3 Part 4 Part 5 I
    18. 18. A example: Mitsubishi Lancer Evolution: Li-Ion Batteries and in-wheel motors <ul><ul><li>Four synchronic in-wheel motors. </li></ul></ul><ul><ul><li>Max. Power: 50 kW. </li></ul></ul><ul><ul><li>Max. Torque: 518 Nm. </li></ul></ul><ul><ul><li>Batteries: Li-on. </li></ul></ul><ul><ul><ul><li>Capacity 95 AH. </li></ul></ul></ul><ul><ul><ul><li>Off-load Voltage: 336V. </li></ul></ul></ul><ul><ul><ul><li>Nominal energy: 32 kWh. </li></ul></ul></ul><ul><ul><li>Cruising range: 250 km. </li></ul></ul><ul><ul><li>Top-Speed: 180 km/h. </li></ul></ul><ul><ul><li>Curb-Wight:1590 kg. </li></ul></ul><ul><ul><li>CO2-Emissions: 0 (local). </li></ul></ul><ul><ul><li>Price: Prototype. </li></ul></ul><ul><ul><li>Series-Production planned in 2010. </li></ul></ul>Mitsubishi Lancer Evolution Source: Mitsubishi 2005 Part 1 Part 2 Part 3 Part 4 Part 5 B
    19. 19. The Tesla Roadster <ul><ul><li>6831 rechargeable Li-Ion batteries are used in the Tesla. </li></ul></ul><ul><ul><li>Time to charge the batteries: 3,5 hours. </li></ul></ul><ul><ul><li>Life-time of the batteries is enough for 100.000 miles. </li></ul></ul>New Performance with Li-Ionen batteries! Source: Umweltbrief 2007 B
    20. 20. Fuel Cell Cars Part 1 Part 2 Part 3 Part 4 Part 5
    21. 21. History of H2-Vehicles <ul><ul><li>1807: First H2-ICE by Francois Isaac de Rivaz. </li></ul></ul><ul><ul><li>1839: Discovery of the functional principle of the fuel cell by Sir William Grove. </li></ul></ul><ul><ul><li>1860: 1-Cylinder gas engine by Jean Joseph Etienne Lenoir. Production of H2 by electrolysis on board the car. </li></ul></ul><ul><ul><li>1875 - 1890: Development of the 4-stroke combustion engine for liquid fuels by Otto, Benz and Daimler. </li></ul></ul><ul><ul><li>1933: Combustion of H2 with on-board reforming of ammonia by Nosk Hybdro. </li></ul></ul><ul><ul><li>1967: First fuel cell driven electric-car by General Motors. </li></ul></ul><ul><ul><li>1970: First fuel cell – battery hybrid vehicle (Austin A40) with an approval for road-service. Karl Kordesch. </li></ul></ul><ul><ul><li>1970-1990: Continuance of the development of the H2-ICE. Especially in Japan by Musashi. </li></ul></ul><ul><ul><li>Since 1990: Systematic development of fuel cell drives by Mercedes-Benz, Toyota, Opel, Audi, Honda und Ford. </li></ul></ul><ul><ul><li>1994: Fuel Cell-Transporter Necar1 by DaimlerChrysler </li></ul></ul><ul><ul><li>Since 2000: Field-tests with FC-Vehicles. </li></ul></ul><ul><ul><li>2003: Field-test with 60 fuel cell driven “A-Klasse” by DaimlerChrysler (worldwide 60 cars). </li></ul></ul><ul><ul><li>2006: German government invests 500 Mio. Euros over 10 year for market introduction of fuel cell vehicles. </li></ul></ul>Part 1 Part 2 Part 3 Part 4 Part 5 B
    22. 22. Introduction: FC-Vehicles Types of fuel cells Source: Jörissen/Garche 200,17. Own additions Part 1 Part 2 Part 3 Part 4 Part 5 I
    23. 23. Introduction: Characteristics of fuel cell types <100°C Up to 1000°C Platinum metal 4-5.0 H 2 C n H m 40-50% 50-60% Reforming System Internal Ref. Seconds Hours Source: own illustration Part 1 Part 2 Part 3 Part 4 Part 5 I high At once Start-Up-Time low high Dynamic low high System complexity high low Cell efficiency less clean clean Gas specification less pure pure Catalyst high low Temperature SOFC MCFC PAFC PEFC / DMFC AFC
    24. 24. Which type for which application ? <ul><li>Continuous loads </li></ul><ul><ul><li>CHP-Unit for industrial use </li></ul></ul><ul><ul><li>Base load plants </li></ul></ul>Golden rule: <ul><li>Dynamic loads </li></ul><ul><ul><li>FC-Vehicles </li></ul></ul><ul><ul><li>Mini CHP-Units. for households </li></ul></ul><ul><ul><li>Portable applications </li></ul></ul><ul><ul><li>Peak shaving, UPS </li></ul></ul>PAFC MCFC SOFC But: Not rule without a exception ! Part 1 Part 2 Part 3 Part 4 Part 5 B PEFC (DMFC)
    25. 25. Concepts of fuel cell vehicles <ul><ul><li>DaimlerChrysler developed a prototype (Necar5) with a methanol on-board reformer. </li></ul></ul><ul><ul><li>Daimler stopped its activities and followed the Hydrogen concept. </li></ul></ul><ul><ul><li>Most of the car manufacturer focus on direct hydrogen storage. </li></ul></ul><ul><ul><li>Most vehicles use compressed hydrogen gas. It can be compressed up to 350 bar. In near future 700 bar tanks are available. </li></ul></ul><ul><ul><li>Liquid hydrogen is stored in cryogen tanks. Hydrogen liquefies at minus 253°C. </li></ul></ul>Source: Aigle/Marz 2006, 85 Part 1 Part 2 Part 3 Part 4 Part 5 B
    26. 26. Main components of a H2-FCV 1: Electrical Engine. 2: Fuel-Cell System. 3: High-Pressure vessels. 4: High-voltage Battery. Fuel Cell A-Klasse of DaimlerChryler Source: Stauch 2005 Part 1 Part 2 Part 3 Part 4 Part 5 B
    27. 27. Energy flow in a Fuel Cell Vehicle <ul><ul><li>In a fuel car the chemical energy of H2 is converted into electrical energy. </li></ul></ul><ul><ul><li>A ICE converts the thermal energy of the fuel into mechanical energy (Karnot-process). </li></ul></ul><ul><ul><li>Compared to the Carnot-process the electrochemical conversion is more efficient. </li></ul></ul>Source: Los Alamos 1999, 5 Part 1 Part 2 Part 3 Part 4 Part 5 B
    28. 28. Methanol Fuel Cell Vehicles (NECAR V) <ul><ul><li>Fuel Processor System Specifications </li></ul></ul><ul><ul><li>Fuel: Methanol (CH 3 OH). </li></ul></ul><ul><ul><li>H2 flow rate 60 Nm³/h. </li></ul></ul><ul><ul><li>Efficiency 86%. </li></ul></ul><ul><ul><li>Start-up time1 minute. </li></ul></ul><ul><ul><li>Start from below 0°C possible. </li></ul></ul><ul><ul><li>Turn-down ratio 1:40. </li></ul></ul><ul><ul><li>Dynamics1.5 seconds (idle-90%load) . </li></ul></ul><ul><ul><li>Calculated cost $1,750 @ 100,000 units/yr. </li></ul></ul><ul><ul><li>per unit$3,550 @ 10,000 units/yr. </li></ul></ul><ul><ul><li>Dimensions 800x260x320 mm. </li></ul></ul><ul><ul><li>Volume / weight65 ltr/ 95 kg . </li></ul></ul><ul><ul><li>Fuel Cell System Specifications </li></ul></ul><ul><ul><li>Power of fuel cellsystem75 kW el,gross/ 60 kW el, net. </li></ul></ul><ul><ul><li>Emissions <SULEV. </li></ul></ul><ul><ul><li>Volume / weight332 ltr/ 385 kg. </li></ul></ul><ul><ul><li>System net efficiency> 40 %. </li></ul></ul>Source: Tillmetz/Benz 2006 Source: Tillmetz/Benz 2006 Part 1 Part 2 Part 3 Part 4 Part 5 B
    29. 29. Flow chart of a Methanol FCV Source: Los Alamos 1999, 16 Part 1 Part 2 Part 3 Part 4 Part 5 B
    30. 30. The fuel cell stack (Ballard) <ul><ul><li>Impressive technical achievements over the last years. </li></ul></ul><ul><ul><li>Ballard is the worldwide best-known stack-manufacture for mobile cars. </li></ul></ul><ul><ul><li>Hurdles are: costs, life-time and cold-start. But only a “small” gap to the performance of today's ICE. </li></ul></ul>Ballard MK902 Light Duty (LD) Ballard MK902 Heavy Duty (HD) Data: Budd 2006, 14-17, own illustration Part 1 Part 2 Part 3 Part 4 Part 5 B
    31. 31. Fuel Cell System Xcellsis TM HY-80 Power electronics Cooling pump System module Fuel Cell (80 kW) Control electronics Part 1 Part 2 Part 3 Part 4 Part 5 Source: Tillmetz/Benz 2006 B
    32. 32. Tank-System for compressed Hydrogen gas (CHG) <ul><ul><li>CGH2: compressed gaseous hydrogen, </li></ul></ul><ul><ul><li>Pressure 35–70 MPa and room temperature. </li></ul></ul><ul><ul><li>Usually 2 or 3 vessels can be placed in a car. In busses up to 8 vessels can be placed. </li></ul></ul><ul><ul><li>Cruising range is between 200km (350 bar) up to 500 km (700 bar). </li></ul></ul>Source: Helmolt/Eberle 2007, 837 Part 1 Part 2 Part 3 Part 4 Part 5 B
    33. 33. Tank-System for liquid hydrogen (LH2) <ul><ul><li>Operating temperature of in-between 20 and 30 K and 0.5 to max 1 MPa pressure. </li></ul></ul><ul><ul><li>Problem: Unavoidable head flow through: </li></ul></ul><ul><ul><ul><li>Thermal conduction. </li></ul></ul></ul><ul><ul><ul><li>Convection. </li></ul></ul></ul><ul><ul><ul><li>Thermal radiation. </li></ul></ul></ul><ul><ul><li>A efficient multi-layer vacuum super insulation is necessary (approximately 40 layers of metal foil). </li></ul></ul><ul><ul><li>Boil-off losses after several days. </li></ul></ul><ul><ul><li>Energy to liquefy hydrogen consumes 30% of the stored chemical energy. </li></ul></ul>Source: Helmolt/Eberle 2007, 838 Part 1 Part 2 Part 3 Part 4 Part 5 B
    34. 34. A example: DaimlerChryslers f-cell <ul><ul><li>Three-Phase asynchronous motor: </li></ul></ul><ul><ul><ul><li>Nominal Power: 65 kW. </li></ul></ul></ul><ul><ul><ul><li>Nominal Torque: 210 Nm. </li></ul></ul></ul><ul><ul><li>Fuel Cell System: </li></ul></ul><ul><ul><ul><li>PEFC Ballard Mark 902. </li></ul></ul></ul><ul><ul><ul><li>Nominal Power: 85 kW. </li></ul></ul></ul><ul><ul><li>Batteries: </li></ul></ul><ul><ul><ul><li>NiMh 20kW. </li></ul></ul></ul><ul><ul><li>Tank: </li></ul></ul><ul><ul><ul><li>CGH2@350bar: 1,8 kg. </li></ul></ul></ul><ul><ul><li>Consumption: 4,2 l Diesel equivalent. </li></ul></ul><ul><ul><li>Cruising-Range: 160 km. </li></ul></ul><ul><ul><li>Top-Speed: 145 km/h. </li></ul></ul><ul><ul><li>Performance: 16 sec </li></ul></ul><ul><ul><li>Costs: Prototype: </li></ul></ul><ul><ul><ul><li>Field-test of 60 cars since 2002. </li></ul></ul></ul>F-cell DaimlerChrysler Part 1 Part 2 Part 3 Part 4 Part 5 Only water! B
    35. 35. GM´s Chevrolet Equinox Fuel Cell <ul><ul><li>Electric traction: </li></ul></ul><ul><ul><ul><li>73 kw 3-Phase asynchronous motor. 94 kw max. </li></ul></ul></ul><ul><ul><ul><li>Nominal Torque 320 Nm. </li></ul></ul></ul><ul><ul><li>Fuel Cell System: </li></ul></ul><ul><ul><ul><li>Stack: 440 cells, 93 kW. </li></ul></ul></ul><ul><ul><ul><li>NiMH battery 35 kW. </li></ul></ul></ul><ul><ul><ul><li>Operation life: 2.5 years, 80.000km. </li></ul></ul></ul><ul><ul><ul><li>Operation temperature: -25 to +45°C. </li></ul></ul></ul><ul><ul><li>Fuel storage: </li></ul></ul><ul><ul><ul><li>3 CGH2 vessels. </li></ul></ul></ul><ul><ul><ul><li>70 MPa. </li></ul></ul></ul><ul><ul><ul><li>4.2. kg Hydrogen. </li></ul></ul></ul><ul><ul><li>Performance: </li></ul></ul><ul><ul><ul><li>Acceleration: 0-100 km/h in 12s. </li></ul></ul></ul><ul><ul><ul><li>Top speed 160 km/h. </li></ul></ul></ul><ul><ul><ul><li>Operation range 320 km. </li></ul></ul></ul><ul><ul><li>Curb weight: 2010 kg. </li></ul></ul>Source: Helmolt/Eberle 2007, 842 Part 1 Part 2 Part 3 Part 4 Part 5 B
    36. 36. Comparison of Efficiency and CO 2 -Emission  Average efficiency (European Drive Cycle): Efficiencies: 36 % / 22 % CO 2 -Emissions (direct): 0 g/km / 177 g/km [ Km/h ] Source: Hermann/Winter 2003 Part 1 Part 2 Part 3 Part 4 Part 5 B 0 5 10 15 20 25 30 35 40 45 0 50 100 150 200 [ Efficiency (%) ] <ul><li>Hydrogen-driven FC Zafira (HydroGen3) </li></ul><ul><li>Diesel Zafira (X20DTL Engine) </li></ul>1. Gear 2. Gear 3. Gear 4. Gear 5. Gear
    37. 37. Overall efficiency FC-car (example DC) 100 % l H 2 Data: Lamm 2002 Part 1 Part 2 Part 3 Part 4 Part 5 B 37.7 % overall efficiency tank to whell 62.2 % FC-output 37.8 % Heat 45.8 % Converter output 16.4 % auxilliaries 37.7 % Wheel 8.1 % converter, motor, gear, differential
    38. 38. Fuel Cell Busses <ul><ul><li>DaimlerChryslers “Citaro-Bus” based on fuel cell technology. </li></ul></ul><ul><ul><li>27 Citaro buses were tested during 2003 to 2005 in 9 European cities. </li></ul></ul><ul><ul><li>Stack-Technology from Ballard: </li></ul></ul><ul><ul><ul><li>Two modules “MK902 Heavy Duty“ with 300 kW. </li></ul></ul></ul><ul><ul><li>Tank-System </li></ul></ul><ul><ul><ul><li>9 CGH2-vessels with 350 bar can store 1845 litre. </li></ul></ul></ul><ul><ul><li>operating range </li></ul></ul><ul><ul><ul><li>200 to 250 kilometres. </li></ul></ul></ul><ul><ul><li>maximum speed </li></ul></ul><ul><ul><ul><li>approx. 80 kilometres. </li></ul></ul></ul>Source: Fuel Cell Bus Club 2004 Part 1 Part 2 Part 3 Part 4 Part 5 Fuel Cell Bus “Citaro” B
    39. 39. H2 Filling Stations - worldwide Part 1 Part 2 Part 3 Part 4 Part 5 299 filling stations worldwide ! Source: H2stations.org by LBST (LBST 2007) B
    40. 40. H2 Filling Stations – Europe Part 1 Part 2 Part 3 Part 4 Part 5 Source: H2stations.org by LBST (LBST 2007) B
    41. 41. Sources I <ul><li>Aigle, Thomas; Marz, Lutz (2007a): Automobilität und Innovation. Versuch eine interdisziplinären Systematisierung. Discussion Paper SPIII 2007-102. Wissenschaftszentrum für Sozialforschung Berlin </li></ul><ul><li>Aigle, Thomas; Krien, Philipp; Marz, Lutz (2007): Die Evaluations-Matrix. Ein Tool zur Bewertung antriebs- und kraftstofftechnologischer Innovationen in der Automobilindustrie. Discussion Paper SPIII 2007-105. Wissenschaftszentrum für Sozialforschung Berlin </li></ul><ul><li>Bady, Ralf (2000): Hybrid-Elektrofahrzeuge – Strukturen und Entwicklungen. Vortrag, 6. Symposium Elektrische Straßenfahrzeug. Technische Akademie Esslingen. </li></ul><ul><li>Budd, Geoff (2006): A fuel cell bus project for Europe – Lessons learned from a fuel cell perspektive. Vortag, CUTE-Abschlusskonferenz. 22.5.2006, Hamburg. </li></ul><ul><li>BMW (2006a): Der BMW Hydrogen 7 – eine neue Ära der Mobilität. Pressemitteilung, Internet: www.7-forum.com/news/Der-BMW-Hydrogen-7-eine-neue-Aera-der-Mo-1285.html. Zugriff: 10.10.2006 </li></ul><ul><li>Fuel Cell Bus Club (2004) Background Information / Fuel Cell Technology / New Generation of Buses Internet: /www.fuel-cell-bus-club.com/index.php?module=pagesetter&func=viewpub&tid=1&pid=116. zugriff: 17.12.2007 </li></ul><ul><li>Helmolt von, Rittmar; Eberle, Ulrich (2007): Fuel cell vehicles: Status 2007. In: Journal of Power Sources, 165 (2007), S. 833-845 </li></ul><ul><li>Herrmann, M.; Winter, U.: Fuel Cells 2003, 3, No. 3, 141 ff </li></ul><ul><li>HyCar (2006): Der Wasserstoff-Wankelmotor. Informationsseiten über Wasserstofffahrzeuge von Jürgen Kern. Internet: www.hycar.de/wankel.htm. Zugriff: 04.10.06 </li></ul><ul><li>Jörissen, Ludwig; Garche, Jürgen (2000): Brennstoffzellen für den Fahrzeugantrieb. In: Wengel, Jürgen; Schirmeister, Elna (Hg.): Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle – Chancen und Risiken für die baden-württembergische Industrie. Abschlussbericht. Karlsruhe, Februar 2000, S. 13-48. </li></ul>Part 1 Part 2 Part 3 Part 4 Part 5
    42. 42. Sources II <ul><li>Lamm, Arnold (2006): PEM-BZ-Systeme für den mobilen Einsatz. Vortrag, DaimlerChrysler Forschungszentrum Ulm. Internet: www.sfb374.uni-stuttgart.de/rv_02_03/PEM_Brennstoffzelle_Lamm.pdf. Zugriff: 06.11.2006 </li></ul><ul><li>LBSt (2007): Hydrogen filling stations worldwide. Internet: www.h2stations.org </li></ul><ul><li>Los Alamos (1999): Fuel Cells. The green Power. </li></ul><ul><li>Manager-Magazin (2005): Hybridautos – Der Airbag-Effekt. Artikel, Internet: www.manager-magazin.de/unternehmen/artikel/0,2828,373740,00.html. Zugriff: 22.10.2006 </li></ul><ul><li>Mitshubishi (2005): Mitsubishi Motors to drive forward development of next-generation EVs - Colt EV test car uses in-wheel motors & lithium-ion batteries. Pressemitteilung, Internet: http://media.mitsubishi-motors.com/pressrelease/e/corporate/detail1269.html. Zugriff: 02.11.2006 </li></ul><ul><li>Stauch, Thorsten (2005): Präsentation Technik F-Cell. Vortrag, Praxis-Seminar Wasserstoff­betriebene Fahrzeuge, Weiterbildungszentrum Brennstoffzelle. 27.1.2005, Ulm. </li></ul><ul><li>Tillmetz, Werner; Benz, Uwe (2006): Methanol Fuel Cell Power Train. Vortrag. European Biofuel Congress, 17.Oktober 2006, Essen </li></ul><ul><li>Toyota (2006): Seriell-paralleles Hybridsystem - Fluss der Systemenergie. Schaubild, Internet: www.hybridsynergydrive.com/de/series_parallel.html. Zugriff: 22.10.2006 </li></ul><ul><li>Umweltbrief (2007): Tesla - ein Elektro-Roadster aus USA. Internet: www.umweltbrief.de/neu/html/aktuell.html#Tesla-Elektro-Roadster. Zugriff: 17.12.2007 </li></ul>Part 1 Part 2 Part 3 Part 4 Part 5
    1. Gostou de algum slide específico?

      Recortar slides é uma maneira fácil de colecionar informações para acessar mais tarde.

    ×