Smart Grids Summit 2010 Málaga SmartCity


Published on

Pautas para la realización de una ciudad sostenible.

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Smart Grids Summit 2010 Málaga SmartCity

  2. 2. Malaga Smartcity: model of sustainable energy management for the cities of the future Este proyecto ha sido cofinanciado por el Fondo Europeo de Desarrollo Regional,
  3. 3. Energy Challenges: Technology DriversSmart Grids concepts and evolution to SmartEnergy ServicesMalaga SmartCityElectric Vehicle projects: G4V and ELVIRE
  4. 4. Technology, efficiency and renewable energy: facing the challenges The importance of The importance of Energy Efficiency to Energy Efficiency to Solve de Challenge Solve de Challenge
  5. 5. Derived from these challenges, specific objectives have been established in Europe 2020 2050• Energy Consumption 12-15% over = 1990 2005• Efficiency 20% 40%• Renewable energy over 20% 33% primary energy• CO2 Reduction -20% -60-80%• Emissions electric sector -20% “0”• Emissions Transport N.A. -40%• Emissions Residential N.A. “0”“The new European objectives establish a new “ERA” for the energy sector led by Efficiency, Renewable energy and Advanced grids”
  6. 6. And the traditional utility business model will be largely affected Generation Transport Distribution Final customerThe current utility company, a business model• Highly centralized asset management model in infrastructures and invesment• The interaction with customers is about producing and distributing energy to supply demand• Success factors: relations with regulators is key to the results of the cores business model
  7. 7. The utility of the future: decentralized management and strong customer interactionThe potencial utility company, business model• Decentralized asset management with state of the arte technology• Customer interaction in eco-efficiency, micro-distributed generation, green energy, mobility and buildings, marketing and financing of new Smart Energy Services• Success factors: Technology, innovation and partnership with customers, retention and trust relationship
  8. 8. The utility of the future: new products, services and business models
  9. 9. Energy Challenges: Technology DriversSmart Grids concepts and evolution to SmartEnergy ServicesMalaga SmartCityElectric Vehicle projects: G4V and ELVIRE
  10. 10. Evolution to SmartGrids: 3 stages 1: Advanced Metering H2: Network Operation 3: Customer responses InfrastructureDigital AMR Data “Intelligent” In-homemeters integration applications applications Distribution Demand Communications Automatization Response Data recovery Integration and optimization of networks
  11. 11. SMART GRIDS: Telemetering as the first step Intelligence and Control 05 AMI – 20 96 19Enhancement System Network AMM Operations 3. AMI: Focus on the customer System Mainte- nance Network 2. AMM: Data Monitoring management: AMR System Improve the Control Customer Information Communi- cation Data 1. AMR = improve a Collection process (metering) Impact on Operation
  12. 12. And 3 different temporary horizons Future Today • Domotic Services • DER control • EV charging / de-charging • flexible tariffsTill now • Quality of Service • Demand management • in-home devices• Losses control • Remote control• Telemetering• Monitoring•Automatization• DSM• SCADA, OMS• GIS 2008 201x 202x
  13. 13. Fully integrated in the company’s processes Business processes and IT Platform Eficiencia Operativa y Gestión de ActivosGestión de la Demanda y Planif. Gestión GestiónEficiencia Energética Sistema Mantenim. Activos Gestión Medidas de Compra Clientes Integración Gestión de la Distribución Calidad y Continuidad de Servicio Información GIS OMS SDA Planif. Operaciones DMS EMS SCADA Empresa Servicios al Cliente Call Center Facturación Domótica OMS Tarifas flexibles Communications Infrastructure Monit A.T. Monit. / Automatiz. SS/EE Monit. / Automatiz. Distrib. M.T.-TT/DD AMI (Advanced Metering Infrastructure) Gx Distribuida - Microrredes
  14. 14. Different agents involved are defining Smart Grids and Smart Energy Services CUSTOMERS Billing Efficiency in Transparency Commercial Demand Processes Response Suppliers Saving Energy Smart Grids Liberalized Markets Vision of a modern electric network as aREGULATOR flexible and highly automated and Renewable ENVIRON- completely integrated network that Energy MENT includes centralized control and Functional Acquisition diagnosis, self-repairing components and smart meters Distributed Generation Investment Development Peak-shaving of Black-out demand Prevention Operational Efficiency OPERATIONAL REQUIREMENTS
  15. 15. Smart Grids: the relevance of ICT technologies CBM COMMUNICATIONS Real-time IP network CI S D SM AMI AMI Advanced Meter Infrastructure Smart meters (electricity, water and gas) Demand response Smart building and homes COM DMS Smart and informed customers sOMS rc e Communications Ad ou va Aut es nc om yR AD R ADA ed a DE rg Real-time monitoring A ne Di tion str E Network failure and recovery ed ib ut ut Network automation ion rib st SC S Di EM AD A DER GIS Electric vehicles Energy storage Distributed generation of renewable sources
  16. 16. SmartGrids need an strong technology effort AI-Based Weather Web Services & Impedance Fiber Optic Voltage & Load Grid Computing Sensors & Current Meters Forecasting Wireless Intelligence Advanced Energy 4G-Wi Max Fixed Sensors Storage Systems Private Wireless Agent & Multi- Agent Systems = IT&T Zigbee Superconducting Wi Media “Internet II” Technologies WiFi Wireless = TTD Ethernet Over Fiber Electric Loads & Advanced Pattern Reliability Source Grid Recognition Monitoring Geospatial Information Consumer Systems Distribution Portal Advanced Grid Feeder Control Devices Automation DER-Based Semi-Autonomous Micro Grids Agents BPL Various High Efficiency & Renewable DG 3G Wireless Advanced Voice & Data Visualization Methods Substation AutomationSource: San Diego Law School Energy Policy Initiatives Center, SAIC
  17. 17. Smart Grids: digital, distributed, and dynamic Dynamic Thermal Circuit Ratings Flexible Alternating Current Transmission SystemSource: EPRI
  18. 18. Smart Grids: from megawats to megabytesSMART GRIDS • It is not cables nor electric assets • It is not automatic meter reading No • It is not kWh • It is not a regulated distribution business • It is not industrial equipment • It is an intelligent digital network • It is sensors, ICT, software, artificial intelligence, dynamic control, recovery algorithms, etc. Yes • It is bytes • It is multi-service to the final customer • It will be a business with cash-flow that comes from non- regulated sources “an unstoppable paradigm shift in the way that the utilities do business”
  19. 19. SmartGrids: The adaptation to the new needs Electric Vehicles Distributed generation Real-time monitoringIn 10 years, 10% of the vehicles will be electric Active grids to improve quality of To reduce O&M expenses and improve quality service and renewables SS.EE. CTs integration Stations Flying DER Chargin wheels poles Condensators Centro de diagnóstico de Bateries DER SW ~ red MT BT Protecciones Fuel cells Domotics Demand management Energy storage A new customer’s management Peak-saving, energy saving and Peak-saving, cost optimization Detectores de costs shifting and availability improvement Detectores de humo y gas presencia Control de gasto energético Salida IP Control de • RTB interruptores Control de • ADSL enchufes • Cable Control de • PLC termostato From energy use to “smart energy”
  20. 20. Energy Challenges: Technology DriversSmart Grids concepts and evolution to SmartEnergy ServicesMalaga SmartCityElectric Vehicle projects: G4V and ELVIRE
  21. 21. SmartCities: From Smart Grids to Smart Energy ServicesBrussels 2006, 19th October20% energy saving until 2020: the EuropeanCommission exposes the Energetic Efficient ActionPlan smart Smart Smart Smart Smart Smart Energy Generation Buildings and Informed Grids Mobility and Storage Customer Fuente: H2PIA Supported by technology we can achieve the transition to  a low carbon society (‐50%)
  22. 22. The importance of TICs technologies CBM Communications ADA (Advanced Distrib. Automation) DSM AMI CIS • Real‐time monitoring v • Real‐time IP networks • Fault detectiong and restoring v Comuni-OMS caciones DMS AMI (Advanced Meter Infrastructure) • Grid automatization ADA DER • Tele‐metering (electricity, water, gas) DER (Distributed Energy Resources) • Electric vehicles SCADA EMS • Demand management v • Energy storage v • Domotics and intelligent buildings • Renewables integration • Smart and Informed customers GIS Smart Energy Smart Energy Smart and Informed Smart and Informed Smart Grid Smart Grid Smart Mobility Smart Mobility Smart Buildings Smart Buildings Generation and Storage Generation and Storage Customer Customer 22
  23. 23. Project’ location and scope
  24. 24. Project’ location and scope 24
  25. 25. 70 CCDD PLC@ 40km MVL º 13MW MV 100kW LV 200kWh MV 3* 10 kWh LV 2.500 Meters CUSTOMERS 300 industrial 900 service 12 electric 12.000 domestic vehicles 75 transformers 5 MV lines (20 kVs, 38 km) Deployment of a public lighting 63 MWs of installed capacity system with 200 elements, micro wind (600w) and (85wp) Consumed energy: 70 GWh/year, photovoltaic generation Smartcity will save 6.000 Ton CO2/ year
  26. 26. SmartCity Málaga: Technical Scope High technology solutions are being integrated at large scale anddeployed involving the distribution network and the final customerSmart and Informed Customers Energy efficiency Information and Telecommunication Systems Information and Citizens must be “Carbon footprint” and demand energy awareness measurement management involved and committed programs programsSmart Energy Management for real time operations Internet-based Efficient management of energy Homes and SMEs Efficient public demand response lighting and citizen energy end-use management programs services systems Smart Generation and Storage Renewable energy auto- Solar photovoltaic Energy storage Electric vehicles panels and micro- generation and storage wind power SmartGrids Medium and low Efficient integration AMI Smart distribution voltage operation of distributed (electricity, water networks and automation generation and gas)
  27. 27. SmartCity Málaga: Participants and FeaturesProject coordinator and oficial entitiesProject partnersResearch centers 27
  28. 28. The migration towards active consumersEnergy use Customers’ profiles scenarios + 6 Conditional green 5 7 5 My confort • Nivel de consumo medio alto Survivers 1 • Nivel • Nivel de consumo3bajode consumoTechno Green medio alto • Conciencia medioambiental Deep Green 1 6 confort Techno Green Mimedia • Conciencia medioambiental medioambiental • Conciencia (es lo • Nivel de muy baja consumo bajo 4 Antide consumo baja •Dispuestos a tomar ciertas • baja o muy Mainstream primero) Elevado nivel con la sostenibilidad •es un valor iniciativas relacionadas •La •Escaso conocimiento deylos Elevado conocimiento 2 Mi confort • Nivel de consumo bajo sostenibilidad siempre queque no 2 puedenpreocupación por problemas •Alta penetración tecnológica problemas medioambientales. sean se Cultural Green permitir. Cultural medioambientales fáciles y cómodas de llevarTienen otras preocupaciones disposición a tomar • Conciencia medioambiental Poca o nula a •Conocimiento y preocupación Green cabo problemas medioambientales media medidas su confort y otras •Supedita más básicas de consumo medio • Nivel Conditional Green •Sostenibilidad como una parte decisiones de consumo a su •Compensar sus acciones,Elevado conocimiento y medioambiental • no preocupación reducir consumo de valores, pero de su escala 3 7 no fundamental preocupación por problemas medioambientales Deep green Supervivientes •Intenta reducir su consumo sin 4 Anti-mainstream afectar mucho a su calidad de - vida - + Enviroment conscience
  29. 29. The migration towards active consumers Customers’ profiles scenariosEnergy use + Techno Green 2020 2010 Mi confort (es lo Cultural primero) Green Conditional Green Supervivientes Deep green Anti-mainstream - - + Enviroment conscience
  30. 30. The migration towards active consumersEnergy use Customers’ profiles scenarios Nivel de consumo + Techno Green Mi Main- confort stream (es lo Green primero) 2035 Conditional Green Spiritual Green Deep Supervi- green vientes Anti-mainstream - - Baja Media Alta + Enviroment conscience
  31. 31. SmartCity Showroom and monitoring centerº Showroom 31
  32. 32. SmartCity Showroomand monitoring center
  33. 33. SmartCity Showroomand monitoring center
  34. 34. Telecommunications Telecom Network design Telecom Network design PowerLine Communications tests PowerLine Communications tests 34
  35. 35. Information SystemsTechnology assesmentCommunication monitoring systemMV/LV Grid Telemanagement system designNew measurements and algorithms for monitoringData acquisition designEngineering and testingConsumers’ monitorsElectric Vehicles management systemCollaborative tool for the project development 35
  36. 36. MV network automatization GOAL OBJETIVOTo deploy an intelligent system for MV automatization with optimal solution ‐‐ economic, funcional and operative – for the new network requirements (distributed generation, electric vehicles, storage, renewables integration, etc) 36
  37. 37. Mini generation (mDER) GOAL OBJETIVOTo develop the technology to adapt the power output of all  the mDER in the MW network.Also the development of all the integrating systems for the MV storage resources with special emphasys in reactive managementLI‐ion, iron and phosphate batteries LI‐ion, iron and phosphate batteries selection and installationselection and installationNew power devices for storage New power devices for storage controlcontrol 37
  38. 38. Storage and mini/micro generationMini Storage: 70043 Pal. Ferias 0,1 MwPalacio de Ferias de Málaga:  Navinco100‐200 kWh in CTMicro Storage: 307 Guindos 403 SeleneSeveral systems of 5‐10 kWh 2,2 Kw 3,8 Kw 81693 E.D.A.R. 10 Mw2 x CHP 5 kW 312 Pta.Blanca 5 Kw ºGestión activa de la  7105 Mainakedemanda: 2 Kw 80159 Chiringuitos.Playa 10 Kw 69067 Finca El Pato 8 Solar Photovoltaic33 kW Low Voltage 10 Kw Micro storage12,94 MW Medium Voltage º Mini storage Efficient lightning Cogeneration 38
  39. 39. Energy efficiency and active demand managementGOALOBJETIVO To develop all the systems for domestic customers, offices and public buildings 39
  40. 40. Energy efficiency and active demand management Active customersDeployment of advenced monitoring systems for energy demand of domestic and SMEs customers• Global energy management for  buildings and SMEs• Information and analysis tools• Price signals and demand  management• Active Demand Side Management 40
  41. 41. Energy efficiency and active demand management Public lightning60 units with LED and Halogenorous technology9 units with micro‐wind generation10 units with photovoltaic generation120 light points telemanaged12.100 W of total power 41
  42. 42. LV network automatization GOAL OBJETIVOTo deploy grid intelligence in LV network, taking into account the multiple intelligent electronic devices (iSockets) and the new challenges of the distributed energy resources Design of the new wireless sensors, self‐feeded, to  Design of the new wireless sensors, self‐feeded, to  measure the current intensity in all the feeders. measure the current intensity in all the feeders. These new devices will ensure the optimal and safe  These new devices will ensure the optimal and safe  use of the lines capacity use of the lines capacity 42
  43. 43. Micro generation (uDER) and micro-store GOAL OBJETIVOTo deploy grid intelligence in LV network, taking into account the multiple intelligent electronic devices (iSockets) and the new challenges of the distributed energy resourcesA new experimental micro‐grid has been implemented. It simulates a A new experimental micro‐grid has been implemented. It simulates a wind generator, and storage system and a variable load (electricwind generator, and storage system and a variable load (electricvehicle), all of them of 4 kW, coordinated by a control iNode.vehicle), all of them of 4 kW, coordinated by a control iNode.Also operating with a SCADA with 61850 protocol for a real‐time Also operating with a SCADA with 61850 protocol for a real‐time monitoring of all the LV network.monitoring of all the LV network. 43
  44. 44. Automated Management Infrastructure (AMI)2.500 telemeters of last generation, with PLC compatible with METER&MOREThe first ones in SpainPLC communications(through the electric network) and also GPRS (wireless) Showroom 44
  45. 45. Automated Management Infrastructure (AMI) ShowroomCenelec A BandPLC of 28.8 kbps operated at 4.8 kbpsBPSK modulationSecurity (AES‐128 bits hardware encryption)Field‐proven METERS & MORE PROTOCOL 45
  46. 46. Automated Management Infrastructure (AMI) Functionalities: European adapted  AMMS System – central management and cordination of the whole  architecture metering system. Electronic  meters – Real‐time  operation.  Allow  the  energy  control  and  measurement,  the  remote  connection  /  disconnection, over  6 tariff periods tarifarios.Central system Concentrator ‐ Detects  and  manages  (real‐time,  fully  automated)  the new meters conected ti the grid. PLC‐Power  Line  Communications– Automatic  management  of  any  network change. Communication  protocol,  based  in  METERS &  MORE,  with  all  the  Transformer reliability of Enel technology and experience. station Houses 46
  47. 47. Electric Vehicles10 vehículos eléctricos2 vehículos híbridos6 postes de recargaIntegración de renovables 47
  48. 48. Grid-for-Vehicles (G4V)Introduction into the project The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007 – 2013) under grant agreement No. 241295.
  49. 49. 1. BackgroundWhy is electricity industry dealing with EV?● Electric Vehicles (EV) contribute to solving Car manufacturer Energy suppliers environmental and economic challenges of Customer- mobility and electricity sectors (and foster Interface Billing the security of energy supply in Europe) Car Charging- Charging point at home control● Most automobile manufacturers plan to launch EV within the next years – appropriate infrastructure as prerequisite for Balancing & Billing the mass roll-out of EV needs to be Car Identification Information Management Public prepared charging poles● EV induce new business opportunities,● Current R&D-activities (of the automobile industry) do not address grid-/ infrastructure Battery State of Energy Energy Generation charge manage- issues sufficiently ment & Supply
  50. 50. 2. Objectives of the project● Development of an analytical method to assess the impact of the mass introduction of EV and PHEV on the electricity grids● Elaboration of recommendations for technological upgrading of the grid infrastructure and related ICT system solutions for grid management● Elaboration of recommendations for policy makers to foster electric mobility (in terms of regulations and incentives)● Identification and seizing of business opportunities for different stakeholders groups● Elaboration of standardisation proposals => Joint European Approach● Definition of future required RTD activities and projects
  51. 51. 3. Consortium
  52. 52. 4. MethodologyWork Plan: t1 - t18 / general overview WP1: Scenario writing WP2: Value chain analysis and business modeling WP9: Project management Scientific Advisory Board WP 3: WP 4: Analysis WP 5: Analysis WP 6: Analysis Economic, of ICT solutions of grid of impacts & environmental infrastructure opportunities in regulatory and power system social aspects management WP7: System analysis and definition of the road map WP8: Project dissemination
  53. 53. 4. MethodologyWork Plan: t1 - t18 / technical WP 1 - 3 WP1: Scenario writing – concrete scenarios as basis for the whole project• Starting point: requirements of different stakeholders (car drivers, grid and plants operators, automotive industry, service providers etc.)• Consideration of trends in future power supply WP2: Value chain analysis and businesss modeling• Identification of the roles of relevant stakeholders and interactions among them in the value chain• Elaboration of concrete business opportunities (charging / billing concepts, tariffs models, energy market services such as spinning reserve, frequency regulation and peak management) WP3: Evaluation of economic, environmental, regulatory and social aspects• Quantification of the economic (i.e. enhancement of the grids stability) and environmental (i.e. CO2 reduction) impacts of the mass roll out of EV and PHEV => systemic approach• Identification of key social factors to facilitate the mass roll out of EV• Investigation of appropriate market and regulatory framework in Europe => concrete recommendations for policy makers
  54. 54. 4. Methodology Work Plan: t1 - t18 / technical WP 4 - 7 WP4: Analysis of ICT solutions - WP5: Analysis of (physical) grid WP6: Analysis of impacts and functional recommendations for infrastructure on the basis of opportunities in power system the global ICT architecture three grid models: rural, sub- operation• Identification of EV, billing system urban, urban • Status quo analysis of operational design, charging control and • New model for the physical grid structures and procedures, and communications DSO - Aggregator infrastructure to support bi-directional definition of technical and organizational• Monitoring and control of all aspects of energy flows between EV and the gaps in terms of EV integration mobility electricity network • Elaboration of specifications of new• Ensuring the grid stability • Identification of technical features of control systems new devices to be installed to enable • Identification of opportunities resulting• Ensuring the security of transactions smart recharging of millions of from the EV integration (i.e. RES• Technical independence of the future stochastically behaving EV integration, storage advantages, solution developed balancing power) • Identification of possible threats WP7: System analysis and definition of the road map • Integration of the results from WP 1 – 6 to assess the opportunities and threats of the different scenarios using the following criteria: reliability of the system, associated costs and feasibility of the adaptation plans • Derivation of a road map describing the dedicated network solution and the methodology of its deployment
  55. 55. ELectric Vehicle communication Europeanto Infrastructure, Road services and Research Electricity supply Programme (ELVIRE) Consulting
  56. 56. ELectric Vehicle communication European to Infrastructure, Road services and Research Electricity supply Programme (ELVIRE) Consulting Overall Project ObjectiveA crucial aspect to the customer acceptance of the emerging E-Vehicles is its reliableoperation, free from concerns to get stranded because of lack of power, enabling efficient useof sustainable energy.Based on a typical mission of a E-Vehicle as use case the project addresses the developmentof a customer oriented, open service platform required for the optimum interaction betweenthe user, the vehicle, the service provider and the electricity infrastructure. These servicescomprise the on-board services, which are interacting via the communication layer, with theexternal service providers to ensure E mobility to the user.Therefore it is the purpose of the project to develop necessary tools, solutions and servicessupporting energy-efficient driving to allow uncompromised mobility. 20 km Range Extenders Plug-in & Drive Domain, Plug- Optional Energy Supply, Socket bound energy supply e.g. Exchange batteries Urban & Suburban Area Country Side
  57. 57. Utilities Service Provider Electric Vehicle User Volkswagen Renault Horizontal Activities Horizontal Activities European • Project Governance • Project Governance Research Confidential • Proof of Concept, Testing & Validation • Proof of Concept, Testing & Validation Programme Consulting
  58. 58. EnGrid Resp.: Conti Resp.: Conti WP1000 WP2000 WP3000 WP4000 WP5000 EVeGrid Service Provider ICT & Proof of Concept, Test Scenarios & Business On-Board Processes & Governance Models Communication Unit ValidationResp.: ERPC Resp.: .SAP Resp.: Better Place Resp.: .Renault Resp.: Lindholmen Task 3100 Task 1100 Task 2100 Task 4100 Task 5100 Operational & Control & Car Integration & Financial Requirements & Management Centre Communication Usability Test Administration Scenarios Device Resp.: CEA Resp.: Lindholmen Resp.: ERPC Resp.: BP / Renault Resp.: .VW Task 3200 Task 1200 Task 2200 Task 4200 Task 5200 Communication to Data Protection & Charg. Infrastruct. System Validation Privacy Business Models Resp.: BP On-Board Services Resp.: .SAP Resp.: Lindholmen Resp.: ERPC Task 3300 Resp.: .Conti New Mobility Services Task 1300 Task 2300 & Roam Complementary Resp.: SAP RTD Interaction, Stakeholder Standardization, Interaction Task 3400 Dissemination Resp.: BP Resp.: CEA Data Authenticity Resp.: Motorola Task 3500 Utility Energy Communication Resp.: ENDESA
  59. 59. ELectric Vehicle communication European to Infrastructure, Road services and Research Programme Electricity supply Consulting (ELVIRE) Total Budget: 9.963 m€ 0.846 m€ 0.624 m€ 2.994 m€ 4.244 m€ 1.254 m€ WP1000 WP2000 WP3000 WP4000 WP5000 EVeGrid Proof of Concept, Test Scenarios & Business Service Provider ICT & On-Board & Governance Models Processes Communication Unit ValidationResp.: Contii Resp.: .SAP Resp.: Better Place Resp.: .Renault Resp.: Lindholmen 0.705 m€ 0.323 m€ 1.607 m€ 2.218 m€ 0.639 m€ Funds Requested: 5.493 m€ 10% 10% 30% 30% 20%
  60. 60. SmartCity Showroomand monitoring center
  61. 61. Many thanks !!
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.