SlideShare a Scribd company logo
1 of 18
Download to read offline
 
	
  
	
  
  
On-­‐line  resources:  h/p://imagine.enpc.fr/~conejob/ibyl/  
  
TBD,  X/X/2014  
  
Bruno  Conejo,  Phd  student  Ecole  des  Ponts  ParisTech  /  Research  Analyst  GPS,  
Caltech  
Nikos  Komodakis,  Associate  Professor  Ecole  des  Ponts  ParisTech    
with  S.  Leprince  &  JP.  Avouac  (GPS,  Caltech)
  
	
  
Inference  by  Learning:  Speeding-­‐up  Graphical  
Model  OpZmizaZon  via  a  Coarse-­‐to-­‐Fine  
Cascade  of  Pruning  Classifiers  (NIPS  2014)
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   2	
  
Introduc=on:	
  
Associated  materials:

Paper,  code,  slides  and  poster  are  available  on-­‐line  :
h/p://imagine.enpc.fr/~conejob/ibyl/


MoZvaZons:
1.  Speed-­‐up  the  inference  of  MRFs  that  have  a  piecewise  smooth  
MAP.
2.  While  maintaining  the  accuracy  of  the  inference  soluZon  of  MRFs.
Approach:
1.  Exploit  the  piecewise  smooth  structure  of  the  MAP  by  iteraZvely  
opZmizing  a  coarse  to  fine  representaZon  of  the  MRF.
2.  Rely  on  learning  to  progressively  reduce  the  soluZon  space.
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   3	
  
Nota=ons:	
  
Let’s  consider  the  following  discrete  MRF:
:  the  unary  terms  of  vertex  i
:  the  pairwise  terms  of  edge  ij
support  
graph
set  of  
ver1ces
set  of  
edges
discrete  
label  set
set  of  unary  
terms
set  of  pairwise  
terms
i
j
:  the  configuraZon  of  vertex  i
:  the  configuraZon  of  the  MRF
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   4	
  
Nota=ons:	
  
The  Energy:  i.e.,  the  total  cost  is  given  by
The  MAP:  Maximum  At  Posteriori
The  pruning  matrix:                                                                            is  defined  by:
  

and  its  associated  soluZon  space:
With            such  that:  
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   5	
  
Approach:	
  
To  obtain  an  inference  speed-­‐up  we  solve:
belongs  to
most  elements  of          are  0  (i.e.,  the  labels  are  pruned)
The  IbyL  framework  iteraZvely  esZmates            by:  
1.  Building  a  coarse  to  fine  set  of  MRFs  from  
2.  Learning  at  each  scale  pruning  classifiers  to  refine  
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   6	
  
Model	
  coarsening:	
  
Given              and  a  grouping  funcZon                                          ,  we  create  a  coarsen  MRF  
(slight  abuse  of  the  notaZon):  
The  unary  and  pairwise  potenZals  of              are  given  by
The  verZces  and  edges  of              are  given  by
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   7	
  
Coarse	
  to	
  fine	
  op=miza=on	
  and	
  label	
  pruning	
  
We  iteraZvely  apply  the  previous  coarsening  to    build  a  coarse  to  fine  set  
of  N+1  progressively  coarser  MRFs:

with:
We  set  all  elements  of  the  coarsest  pruning  matrix                      to  1  (no  pruning)
At  each  scale  (s)  we  apply  the  following  steps:  

1.  OpZmize  the  current  MRF
2.  Update  the  next  scale  pruning  matrix  
3.  Up-­‐sample  the  current  soluZon  for  next  scale.
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   8	
  
Coarse	
  to	
  fine	
  op=miza=on	
  and	
  label	
  pruning	
  
Step  1:  OpZmize  the  current  MRF:
Step  2:  Update  the  next  scale  pruning  matrix:
i.  Compute  feature  map:


ii.  Update  pruning  matrix  from  off-­‐line  trained  classifier:  
Step  3:  Up-­‐sample  the  current  soluZon:
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   9	
  
Inference	
  by	
  learning	
  framework	
  
We  sZll  need  to  define:
1.  How  to  compute  the  feature  map
2.  How  to  train  the  classifiers
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   10	
  
Feature	
  map	
  
We  stack  K  individual  scalar  features  defined  on  


Presence  of  strong  disconZnuity:


Local  energy  variaZon:


Unary  coarsening:
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   11	
  
Learning	
  pruning	
  classifiers	
  
On  a  training  set  of  MRFs,  we  run  the  IbyL  framework  without  any  
pruning,  i.e.,                                .  We  keep  track  of  features  and  compute:


such  that:







where          denotes  the  binary  OR  operator.
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   12	
  
Learning	
  pruning	
  classifiers	
  
We  split  the  features  in  two  groups  w.r.t  the  PSD  feature.

For  each  group:
1.  We  have  two  classes  (c0=to  prune  and  c1=to  remain  acZve)  
defined  from
2.  We  weight  c0  to  1,  and  c1  to
3.  We  train  a  linear  C-­‐SVM  classifier

During  tesZng,  the  classifier                  apply  the  trained  classifier  of  the  
corresponding  group  (w.r.t.  the  PSD  feature).
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   13	
  
Experiments:	
  Setup	
  
We  experiment  with  two  problems:
1.  Stereo-­‐matching.
2.  OpZcal  flow.
We  evaluate  different  pruning  aggressiveness  factor        ,  and  compute:
1.  The  speed-­‐up  w.r.t.  the  direct  opZmizaZon.
2.  The  raZo  of  acZve  labels.
3.  The  energy  raZo  w.r.t.  the  direct  opZmizaZon.
4.  The  MAP  agreement  w.r.t.  the  best  computed  soluZon.

As  an  opZmizaZon  sub-­‐rouZne  we  use  Fast-­‐PD.
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   14	
  
Experiments:	
  Results	
  
Stereo  matching:
OpZcal  flow:
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   15	
  
Experiments:	
  Stereo	
  matching	
  
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   16	
  
Experiments:	
  Op=cal	
  Flow	
  
B.Conejo	
  N.Komodakis	
  –	
  Inference	
  by	
  Learning	
   17	
  
Conclusions	
  
The  IbyL  framework:
1.  Gives  an  important  speed-­‐up  while  maintaining  excellent  
accuracy  of  the  soluZon.  
2.  Can  be  easily  adapted  to  any  MRF  task  by  compuZng  task  
dependent    features.
3.  Can  be  easily  adapted  to  high  order  MRFs.
4.  Is  available  to  download  at:  
h/p://imagine.enpc.fr/~conejob/ibyl/
B.Conejo	
  -­‐	
  Fast	
  global	
  Matching	
  via	
  Energy	
  Pyramid	
   18	
  

More Related Content

Viewers also liked

Weighted Naïve Bayes Model for Semi-Structured Document Categorization
Weighted Naïve Bayes Model for Semi-Structured Document CategorizationWeighted Naïve Bayes Model for Semi-Structured Document Categorization
Weighted Naïve Bayes Model for Semi-Structured Document Categorizationinscit2006
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningzukun
 
Convolution Neural Networks
Convolution Neural NetworksConvolution Neural Networks
Convolution Neural NetworksAhmedMahany
 
PROMISE 2011: "Handling missing data in software effort prediction with naive...
PROMISE 2011: "Handling missing data in software effort prediction with naive...PROMISE 2011: "Handling missing data in software effort prediction with naive...
PROMISE 2011: "Handling missing data in software effort prediction with naive...CS, NcState
 
Ontological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learningOntological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learningUniversity of Nantes
 
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...Kai-Wen Zhao
 
Modeling Social Data, Lecture 6: Classification with Naive Bayes
Modeling Social Data, Lecture 6: Classification with Naive BayesModeling Social Data, Lecture 6: Classification with Naive Bayes
Modeling Social Data, Lecture 6: Classification with Naive Bayesjakehofman
 
db-tech-showcase-sapporo-b24-20150911p
db-tech-showcase-sapporo-b24-20150911pdb-tech-showcase-sapporo-b24-20150911p
db-tech-showcase-sapporo-b24-20150911pSatoru Ishikawa
 
【2015.08】(4/5)cvpaper.challenge@CVPR2015
【2015.08】(4/5)cvpaper.challenge@CVPR2015【2015.08】(4/5)cvpaper.challenge@CVPR2015
【2015.08】(4/5)cvpaper.challenge@CVPR2015cvpaper. challenge
 
2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learningVan Thanh
 
Social Information Processing (Tin180 Com)
Social Information Processing (Tin180 Com)Social Information Processing (Tin180 Com)
Social Information Processing (Tin180 Com)Tin180 VietNam
 
What's Wrong With Deep Learning?
What's Wrong With Deep Learning?What's Wrong With Deep Learning?
What's Wrong With Deep Learning?Philip Zheng
 
An Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational NetworksAn Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational NetworksMarko Rodriguez
 
Sentiment analysis using naive bayes classifier
Sentiment analysis using naive bayes classifier Sentiment analysis using naive bayes classifier
Sentiment analysis using naive bayes classifier Dev Sahu
 
Best practices in NIPS - IDC Sofia - March 2010
Best practices in NIPS - IDC Sofia - March 2010Best practices in NIPS - IDC Sofia - March 2010
Best practices in NIPS - IDC Sofia - March 2010EQS Group
 

Viewers also liked (16)

Weighted Naïve Bayes Model for Semi-Structured Document Categorization
Weighted Naïve Bayes Model for Semi-Structured Document CategorizationWeighted Naïve Bayes Model for Semi-Structured Document Categorization
Weighted Naïve Bayes Model for Semi-Structured Document Categorization
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
 
AAAI Beth Logan
AAAI  Beth LoganAAAI  Beth Logan
AAAI Beth Logan
 
Convolution Neural Networks
Convolution Neural NetworksConvolution Neural Networks
Convolution Neural Networks
 
PROMISE 2011: "Handling missing data in software effort prediction with naive...
PROMISE 2011: "Handling missing data in software effort prediction with naive...PROMISE 2011: "Handling missing data in software effort prediction with naive...
PROMISE 2011: "Handling missing data in software effort prediction with naive...
 
Ontological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learningOntological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learning
 
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
 
Modeling Social Data, Lecture 6: Classification with Naive Bayes
Modeling Social Data, Lecture 6: Classification with Naive BayesModeling Social Data, Lecture 6: Classification with Naive Bayes
Modeling Social Data, Lecture 6: Classification with Naive Bayes
 
db-tech-showcase-sapporo-b24-20150911p
db-tech-showcase-sapporo-b24-20150911pdb-tech-showcase-sapporo-b24-20150911p
db-tech-showcase-sapporo-b24-20150911p
 
【2015.08】(4/5)cvpaper.challenge@CVPR2015
【2015.08】(4/5)cvpaper.challenge@CVPR2015【2015.08】(4/5)cvpaper.challenge@CVPR2015
【2015.08】(4/5)cvpaper.challenge@CVPR2015
 
2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning
 
Social Information Processing (Tin180 Com)
Social Information Processing (Tin180 Com)Social Information Processing (Tin180 Com)
Social Information Processing (Tin180 Com)
 
What's Wrong With Deep Learning?
What's Wrong With Deep Learning?What's Wrong With Deep Learning?
What's Wrong With Deep Learning?
 
An Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational NetworksAn Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational Networks
 
Sentiment analysis using naive bayes classifier
Sentiment analysis using naive bayes classifier Sentiment analysis using naive bayes classifier
Sentiment analysis using naive bayes classifier
 
Best practices in NIPS - IDC Sofia - March 2010
Best practices in NIPS - IDC Sofia - March 2010Best practices in NIPS - IDC Sofia - March 2010
Best practices in NIPS - IDC Sofia - March 2010
 

Similar to Inference by Learning: Speeding-up Graphical Model Optimization via a Coarse-to-Fine Cascade of Pruning Classifiers

R-FCN : object detection via region-based fully convolutional networks
R-FCN :  object detection via region-based fully convolutional networksR-FCN :  object detection via region-based fully convolutional networks
R-FCN : object detection via region-based fully convolutional networksEntrepreneur / Startup
 
Cheatsheet convolutional-neural-networks
Cheatsheet convolutional-neural-networksCheatsheet convolutional-neural-networks
Cheatsheet convolutional-neural-networksSteve Nouri
 
Review: You Only Look One-level Feature
Review: You Only Look One-level FeatureReview: You Only Look One-level Feature
Review: You Only Look One-level FeatureDongmin Choi
 
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryDeep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryKenta Oono
 
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...Pirouz Nourian
 
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)Abdulrahman Kerim
 
Skiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programmingSkiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programmingzukun
 
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...IJERA Editor
 
A note on word embedding
A note on word embeddingA note on word embedding
A note on word embeddingKhang Pham
 
Audio Processing
Audio ProcessingAudio Processing
Audio Processinganeetaanu
 
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...csandit
 
[MIRU2018] Global Average Poolingの特性を用いたAttention Branch Network
[MIRU2018] Global Average Poolingの特性を用いたAttention Branch Network[MIRU2018] Global Average Poolingの特性を用いたAttention Branch Network
[MIRU2018] Global Average Poolingの特性を用いたAttention Branch NetworkHiroshi Fukui
 
MLIP - Chapter 5 - Detection, Segmentation, Captioning
MLIP - Chapter 5 - Detection, Segmentation, CaptioningMLIP - Chapter 5 - Detection, Segmentation, Captioning
MLIP - Chapter 5 - Detection, Segmentation, CaptioningCharles Deledalle
 
super-cheatsheet-deep-learning.pdf
super-cheatsheet-deep-learning.pdfsuper-cheatsheet-deep-learning.pdf
super-cheatsheet-deep-learning.pdfDeanSchoolofElectron
 
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdfSongsDrizzle
 
Anchor free object detection by deep learning
Anchor free object detection by deep learningAnchor free object detection by deep learning
Anchor free object detection by deep learningYu Huang
 
Reading_0413_var_Transformers.pptx
Reading_0413_var_Transformers.pptxReading_0413_var_Transformers.pptx
Reading_0413_var_Transformers.pptxcongtran88
 
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012Florent Renucci
 

Similar to Inference by Learning: Speeding-up Graphical Model Optimization via a Coarse-to-Fine Cascade of Pruning Classifiers (20)

R-FCN : object detection via region-based fully convolutional networks
R-FCN :  object detection via region-based fully convolutional networksR-FCN :  object detection via region-based fully convolutional networks
R-FCN : object detection via region-based fully convolutional networks
 
Cheatsheet convolutional-neural-networks
Cheatsheet convolutional-neural-networksCheatsheet convolutional-neural-networks
Cheatsheet convolutional-neural-networks
 
Review: You Only Look One-level Feature
Review: You Only Look One-level FeatureReview: You Only Look One-level Feature
Review: You Only Look One-level Feature
 
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryDeep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistry
 
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
 
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
 
Skiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programmingSkiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programming
 
QMC: Transition Workshop - Monte Carlo and (Randomized) Quasi-Monte Carlo Sim...
QMC: Transition Workshop - Monte Carlo and (Randomized) Quasi-Monte Carlo Sim...QMC: Transition Workshop - Monte Carlo and (Randomized) Quasi-Monte Carlo Sim...
QMC: Transition Workshop - Monte Carlo and (Randomized) Quasi-Monte Carlo Sim...
 
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
 
A note on word embedding
A note on word embeddingA note on word embedding
A note on word embedding
 
Audio Processing
Audio ProcessingAudio Processing
Audio Processing
 
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...
 
[MIRU2018] Global Average Poolingの特性を用いたAttention Branch Network
[MIRU2018] Global Average Poolingの特性を用いたAttention Branch Network[MIRU2018] Global Average Poolingの特性を用いたAttention Branch Network
[MIRU2018] Global Average Poolingの特性を用いたAttention Branch Network
 
MLIP - Chapter 5 - Detection, Segmentation, Captioning
MLIP - Chapter 5 - Detection, Segmentation, CaptioningMLIP - Chapter 5 - Detection, Segmentation, Captioning
MLIP - Chapter 5 - Detection, Segmentation, Captioning
 
super-cheatsheet-deep-learning.pdf
super-cheatsheet-deep-learning.pdfsuper-cheatsheet-deep-learning.pdf
super-cheatsheet-deep-learning.pdf
 
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
 
DNN and RBM
DNN and RBMDNN and RBM
DNN and RBM
 
Anchor free object detection by deep learning
Anchor free object detection by deep learningAnchor free object detection by deep learning
Anchor free object detection by deep learning
 
Reading_0413_var_Transformers.pptx
Reading_0413_var_Transformers.pptxReading_0413_var_Transformers.pptx
Reading_0413_var_Transformers.pptx
 
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
 

Recently uploaded

Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...Chayanika Das
 
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsTimeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsDanielBaumann11
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasChayanika Das
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsDobusch Leonhard
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxzeus70441
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11GelineAvendao
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerLuis Miguel Chong Chong
 
dll general biology week 1 - Copy.docx
dll general biology   week 1 - Copy.docxdll general biology   week 1 - Copy.docx
dll general biology week 1 - Copy.docxkarenmillo
 
Unveiling the Cannabis Plant’s Potential
Unveiling the Cannabis Plant’s PotentialUnveiling the Cannabis Plant’s Potential
Unveiling the Cannabis Plant’s PotentialMarkus Roggen
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2AuEnriquezLontok
 
Probability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UGProbability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UGSoniaBajaj10
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Measures of Central Tendency.pptx for UG
Measures of Central Tendency.pptx for UGMeasures of Central Tendency.pptx for UG
Measures of Central Tendency.pptx for UGSoniaBajaj10
 
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyLAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyChayanika Das
 

Recently uploaded (20)

Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
 
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsTimeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
 
Science (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and PitfallsScience (Communication) and Wikipedia - Potentials and Pitfalls
Science (Communication) and Wikipedia - Potentials and Pitfalls
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptx
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of Cancer
 
dll general biology week 1 - Copy.docx
dll general biology   week 1 - Copy.docxdll general biology   week 1 - Copy.docx
dll general biology week 1 - Copy.docx
 
Unveiling the Cannabis Plant’s Potential
Unveiling the Cannabis Plant’s PotentialUnveiling the Cannabis Plant’s Potential
Unveiling the Cannabis Plant’s Potential
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
 
Probability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UGProbability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UG
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Measures of Central Tendency.pptx for UG
Measures of Central Tendency.pptx for UGMeasures of Central Tendency.pptx for UG
Measures of Central Tendency.pptx for UG
 
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyLAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
 

Inference by Learning: Speeding-up Graphical Model Optimization via a Coarse-to-Fine Cascade of Pruning Classifiers

  • 1.         On-­‐line  resources:  h/p://imagine.enpc.fr/~conejob/ibyl/     TBD,  X/X/2014     Bruno  Conejo,  Phd  student  Ecole  des  Ponts  ParisTech  /  Research  Analyst  GPS,   Caltech   Nikos  Komodakis,  Associate  Professor  Ecole  des  Ponts  ParisTech     with  S.  Leprince  &  JP.  Avouac  (GPS,  Caltech)     Inference  by  Learning:  Speeding-­‐up  Graphical   Model  OpZmizaZon  via  a  Coarse-­‐to-­‐Fine   Cascade  of  Pruning  Classifiers  (NIPS  2014)
  • 2. B.Conejo  N.Komodakis  –  Inference  by  Learning   2   Introduc=on:   Associated  materials: Paper,  code,  slides  and  poster  are  available  on-­‐line  : h/p://imagine.enpc.fr/~conejob/ibyl/ MoZvaZons: 1.  Speed-­‐up  the  inference  of  MRFs  that  have  a  piecewise  smooth   MAP. 2.  While  maintaining  the  accuracy  of  the  inference  soluZon  of  MRFs. Approach: 1.  Exploit  the  piecewise  smooth  structure  of  the  MAP  by  iteraZvely   opZmizing  a  coarse  to  fine  representaZon  of  the  MRF. 2.  Rely  on  learning  to  progressively  reduce  the  soluZon  space.
  • 3. B.Conejo  N.Komodakis  –  Inference  by  Learning   3   Nota=ons:   Let’s  consider  the  following  discrete  MRF: :  the  unary  terms  of  vertex  i :  the  pairwise  terms  of  edge  ij support   graph set  of   ver1ces set  of   edges discrete   label  set set  of  unary   terms set  of  pairwise   terms i j :  the  configuraZon  of  vertex  i :  the  configuraZon  of  the  MRF
  • 4. B.Conejo  N.Komodakis  –  Inference  by  Learning   4   Nota=ons:   The  Energy:  i.e.,  the  total  cost  is  given  by The  MAP:  Maximum  At  Posteriori The  pruning  matrix:                                                                            is  defined  by:   and  its  associated  soluZon  space:
  • 5. With            such  that:   B.Conejo  N.Komodakis  –  Inference  by  Learning   5   Approach:   To  obtain  an  inference  speed-­‐up  we  solve: belongs  to most  elements  of          are  0  (i.e.,  the  labels  are  pruned) The  IbyL  framework  iteraZvely  esZmates            by:   1.  Building  a  coarse  to  fine  set  of  MRFs  from   2.  Learning  at  each  scale  pruning  classifiers  to  refine  
  • 6. B.Conejo  N.Komodakis  –  Inference  by  Learning   6   Model  coarsening:   Given              and  a  grouping  funcZon                                          ,  we  create  a  coarsen  MRF   (slight  abuse  of  the  notaZon):   The  unary  and  pairwise  potenZals  of              are  given  by The  verZces  and  edges  of              are  given  by
  • 7. B.Conejo  N.Komodakis  –  Inference  by  Learning   7   Coarse  to  fine  op=miza=on  and  label  pruning   We  iteraZvely  apply  the  previous  coarsening  to    build  a  coarse  to  fine  set   of  N+1  progressively  coarser  MRFs: with: We  set  all  elements  of  the  coarsest  pruning  matrix                      to  1  (no  pruning) At  each  scale  (s)  we  apply  the  following  steps:   1.  OpZmize  the  current  MRF 2.  Update  the  next  scale  pruning  matrix   3.  Up-­‐sample  the  current  soluZon  for  next  scale.
  • 8. B.Conejo  N.Komodakis  –  Inference  by  Learning   8   Coarse  to  fine  op=miza=on  and  label  pruning   Step  1:  OpZmize  the  current  MRF: Step  2:  Update  the  next  scale  pruning  matrix: i.  Compute  feature  map: ii.  Update  pruning  matrix  from  off-­‐line  trained  classifier:   Step  3:  Up-­‐sample  the  current  soluZon:
  • 9. B.Conejo  N.Komodakis  –  Inference  by  Learning   9   Inference  by  learning  framework   We  sZll  need  to  define: 1.  How  to  compute  the  feature  map 2.  How  to  train  the  classifiers
  • 10. B.Conejo  N.Komodakis  –  Inference  by  Learning   10   Feature  map   We  stack  K  individual  scalar  features  defined  on   Presence  of  strong  disconZnuity: Local  energy  variaZon: Unary  coarsening:
  • 11. B.Conejo  N.Komodakis  –  Inference  by  Learning   11   Learning  pruning  classifiers   On  a  training  set  of  MRFs,  we  run  the  IbyL  framework  without  any   pruning,  i.e.,                                .  We  keep  track  of  features  and  compute: such  that: where          denotes  the  binary  OR  operator.
  • 12. B.Conejo  N.Komodakis  –  Inference  by  Learning   12   Learning  pruning  classifiers   We  split  the  features  in  two  groups  w.r.t  the  PSD  feature. For  each  group: 1.  We  have  two  classes  (c0=to  prune  and  c1=to  remain  acZve)   defined  from 2.  We  weight  c0  to  1,  and  c1  to 3.  We  train  a  linear  C-­‐SVM  classifier During  tesZng,  the  classifier                  apply  the  trained  classifier  of  the   corresponding  group  (w.r.t.  the  PSD  feature).
  • 13. B.Conejo  N.Komodakis  –  Inference  by  Learning   13   Experiments:  Setup   We  experiment  with  two  problems: 1.  Stereo-­‐matching. 2.  OpZcal  flow. We  evaluate  different  pruning  aggressiveness  factor        ,  and  compute: 1.  The  speed-­‐up  w.r.t.  the  direct  opZmizaZon. 2.  The  raZo  of  acZve  labels. 3.  The  energy  raZo  w.r.t.  the  direct  opZmizaZon. 4.  The  MAP  agreement  w.r.t.  the  best  computed  soluZon. As  an  opZmizaZon  sub-­‐rouZne  we  use  Fast-­‐PD.
  • 14. B.Conejo  N.Komodakis  –  Inference  by  Learning   14   Experiments:  Results   Stereo  matching: OpZcal  flow:
  • 15. B.Conejo  N.Komodakis  –  Inference  by  Learning   15   Experiments:  Stereo  matching  
  • 16. B.Conejo  N.Komodakis  –  Inference  by  Learning   16   Experiments:  Op=cal  Flow  
  • 17. B.Conejo  N.Komodakis  –  Inference  by  Learning   17   Conclusions   The  IbyL  framework: 1.  Gives  an  important  speed-­‐up  while  maintaining  excellent   accuracy  of  the  soluZon.   2.  Can  be  easily  adapted  to  any  MRF  task  by  compuZng  task   dependent    features. 3.  Can  be  easily  adapted  to  high  order  MRFs. 4.  Is  available  to  download  at:   h/p://imagine.enpc.fr/~conejob/ibyl/
  • 18. B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   18