• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Solar Prominence
 

Solar Prominence

on

  • 55 views

 

Statistics

Views

Total Views
55
Views on SlideShare
55
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Solar Prominence Solar Prominence Document Transcript

    • -Solar prominence Solar Prominence is a huge loop of solar material extending from the sun. Again, these are several miles wide and tall. A prominence is a large bright feature extending outward from the Sun's surface, often in a loop configuration. Prominences are anchored to the Sun's surface in the photosphere, and extend outwards into the Sun's corona. While the corona consists of extremely hot ionized gases, known as plasma, which do not emit much visible light, prominences contain much cooler plasma, similar in composition to that of the chromosphere. A prominence forms over timescales of about a day, and stable prominences may persist in the corona for several months. Some prominences break apart and give rise to coronal mass ejections.A typical prominence extends over many thousands of kilometers; the largest observed by SOHO was seen in 1997 and was some 350,000 km (216,000 miles) long [1] - some 28 times the diameter of the Earth. The mass contained within a prominence is typically of the order of 100 billion tonnes of material.If a prominence occurs on the disc of the sun it appears darker than its background (due to the lower temperature of the plasma). These are referred to as solar filaments. Solar activity » Prominences Prominences are among the most beautiful of solar phenomena. They are the analogues of clouds in the Earth’s atmosphere, but they are supported by magnetic fields, rather than by thermal currents as clouds are. Because the plasma of ions and electrons that makes up the solar atmosphere cannot cross magnetic field lines in regions of horizontal magnetic fields, material is supported against gravity. This occurs at the boundaries between one magnetic polarity and its opposite, where the connecting field lines reverse direction. Thus, prominences are reliable indicators of sharp field transitions. (The fields are either up or down; tilted fields are unusual.) As with the chromosphere, prominences are transparent in white light and, except during total eclipses, must be viewed in Hα. At eclipse the red Hα line lends a beautiful pink to the prominences visible at totality. The density of prominences is much lower than that of the photosphere; there are few collisions to generate radiation. Prominences absorb radiation from below and emit it in all directions, a process called pure scattering. The visible light emitted toward Earth at the limb has been removed from the upward beam, so the prominences appear dark
    • against the disk. But the sky is darker still, so they appear bright against the sky. The temperature of prominences is 5,000–50,000 K. In the past, when radiative processes were not well understood, prominences seen dark against the disk were called filaments. There are two basic types of prominences: (1) quiescent, or long-lived, and (2) transient. The former are associated with large-scale magnetic fields, marking the boundaries of unipolar magnetic regions or sunspot groups. Because the large unipolar plates are long- lived, the quiescent prominences are as well. These prominences may have varied forms —hedgerows, suspended clouds, or funnels—but they always take the form of two- dimensional suspended sheets. Stable filaments often become unstable and erupt, but they may also just fade away. Few quiescent prominences live more than a few days, but new ones may form on the magnetic boundary.The equilibrium of the longer lived prominences is indeed curious. While one might expect them to eventually fall down, they always erupt upwards. This is because all unattached magnetic fields have a tremendous buoyancy and attempt to leave the Sun. When they do escape, they produce not only a splendid sight but also a transient shock wave in the corona called a coronal mass ejection, which can cause important geomagnetic effects.Transient prominences are an integral part of solar activity. Sprays are the disorganized mass of material ejected by a flare. Surges are collimated streams of ejecta connected with small flares. In both cases some of the material returns to the surface. Loop prominences are the aftermath of flares. In the flare process a barrage of electrons heats the surface to millions of degrees and a hot (more than 10 million K), dense coronal cloud forms. This emits very strongly, cooling the material, which then, since there is no magnetic support, descends to the surface in elegant loops, following the magnetic lines of force.The spectrum of prominences seen against the sky reflects their history. Quiescent prominences have no source of energy except some conduction from the corona, which is a small effect because heat cannot cross the field lines. The spectrum is similar to the chromosphere, except in the chromosphere, spicule motions produce broad lines, while the prominence lines are quite narrow until they erupt, indicating little internal motion. Surges and sprays also usually display low excitation because they are often cool material seized and ejected by magnetic forces. Loop prominences, on the other hand, are cooling from a very hot post-flare coronal condensation and have just become visible. Thus, they show high-excitation lines of ionized helium and strong ultraviolet emission, as befits a gas at 30,000 to 100,000 K. Image gallery Solar Prominence Detached Solar A limb's flare and after- flare prominence Major eruptive prominence (Skylab1973)
    • Prominence