Hoofdstuk 16 2008 deel 1

1,024
-1

Published on

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,024
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Hoofdstuk 16 2008 deel 1

  1. 1. Chapter 16 The chromosomal basis of inheritance
  2. 2. Overview <ul><li>The genetic material is DNA </li></ul><ul><ul><li>D esoxyribo N ucleic A cid </li></ul></ul><ul><li>Structure of DNA </li></ul><ul><li>DNA replication </li></ul><ul><li>DNA repair </li></ul><ul><li>The end-problem </li></ul><ul><ul><li>Telomeres </li></ul></ul><ul><li>Chromatin structure </li></ul>James (Jim) Watson
  3. 3. 2 Transformation of bacteria Can hereditary information be passed on to another organism? <ul><li>Streptococus pneumoniae </li></ul><ul><li>Griffith-experiment </li></ul><ul><li>R cells transformed S cells into deadly bacteria </li></ul><ul><li>What was the active component? </li></ul>
  4. 4. 2 Transformation of bacteria Can hereditary information be passed on to another organism? <ul><li>Streptococcus pneumoniae </li></ul><ul><li>Griffith-experiment </li></ul><ul><li>R cells transformed S cells into deadly bacteria </li></ul><ul><li>What was the active component? </li></ul>
  5. 5. 2 Transformation of bacteria Can hereditary information be passed on to another organism? <ul><li>Streptococcus pneumoniae </li></ul><ul><li>Griffith-experiment </li></ul><ul><li>R cells transformed S cells into deadly bacteria </li></ul><ul><li>What was the active component? </li></ul>
  6. 6. 2 Transformation of bacteria Can hereditary information be passed on to another organism? <ul><li>Streptococcus pneumoniae </li></ul><ul><li>Griffith-experiment </li></ul><ul><li>R cells transformed S cells into deadly bacteria </li></ul><ul><li>What was the active component? </li></ul>
  7. 7. 2 Transformation of bacteria Can hereditary information be passed on to another organism? <ul><li>Streptococcus pneumoniae </li></ul><ul><li>Griffith-experiment </li></ul><ul><li>R cells transformed S cells into deadly bacteria </li></ul><ul><li>What was the active component? </li></ul>Conclusion:
  8. 8. 2 Transformation of bacteria Can hereditary information be passed on to another organism? <ul><li>Streptococcus pneumoniae </li></ul><ul><li>Griffith-experiment </li></ul><ul><li>R cells transformed S cells into deadly bacteria </li></ul><ul><li>What was the active component? </li></ul><ul><li>Conclusion: </li></ul><ul><li>De niet-pathogene R-bacterie heeft de pathogene eigenschap van de S-bacterie opgenomen </li></ul>
  9. 9. 2 Transformation of bacteria Can hereditary information be passed on to another organism? <ul><li>Streptococcus pneumoniae </li></ul><ul><li>Griffith-experiment </li></ul><ul><li>R cells transformed S cells into deadly bacteria </li></ul><ul><li>What was the active component? </li></ul><ul><li>Conclusion: </li></ul><ul><li>De niet-pathogene R-bacterie heeft de pathogene eigenschap van de S-bacterie opgenomen </li></ul><ul><li>Deze erfenis of eigenschap is erfelijk </li></ul>
  10. 10. 3: Viral DNA can program cells <ul><li>Bacteriophages or phages </li></ul><ul><li>Hershey and Chase experiment: </li></ul><ul><ul><li>DNA is the active part in a phage </li></ul></ul>Martha Chase and Alfred Hershey
  11. 11. 4: Hershey-Chase experiment ‘Is protein or DNA the genetic material?’
  12. 12. 4: Hershey-Chase experiment ‘Is protein or DNA the genetic material?’
  13. 13. 4: Hershey-Chase experiment ‘Is protein or DNA the genetic material?’
  14. 14. 4: Hershey-Chase experiment ‘Is protein or DNA the genetic material?’
  15. 15. 4: Hershey-Chase experiment ‘Is protein or DNA the genetic material?’  DNA is genetic material, not protein
  16. 16. Overview <ul><li>The genetic material is DNA </li></ul><ul><ul><li>desoxyribonucleic acid </li></ul></ul><ul><li>Structure of DNA </li></ul><ul><li>DNA replication </li></ul><ul><li>DNA repair </li></ul><ul><li>The end-problem </li></ul><ul><ul><li>telomeres </li></ul></ul>Francis Crick, 1916-2004
  17. 17. 5: Structure of DNA <ul><li>1947: Chargaff </li></ul><ul><ul><li>Base composition is different between animals </li></ul></ul><ul><ul><li>%A=%T, %G=%C </li></ul></ul><ul><li>How can DNA-structure explain its role in inheritance??? </li></ul><ul><ul><li>Pauling, Wilkins, Franklin, Watson, Crick </li></ul></ul>
  18. 18. 6: Rosalind Franklin X-ray diffraction
  19. 19. 5.25: Röntgendiffraction or X-ray crystallography
  20. 20. 5.25: Röntgendiffraction or X-ray crystallography
  21. 21. 5.25: Röntgendiffraction or X-ray crystallography
  22. 22. 5.25: Röntgendiffraction or X-ray crystallography
  23. 23. Nobel prize for Watson and Crick Stockholm 1962 Francis Crick Maurice Wilkins John Steinbeck James Watson Max Perutz John Kendrew
  24. 24. 7: DNA structure: the double helix
  25. 25. 7: DNA structure: the double helix
  26. 26. 7: DNA structure: the double helix
  27. 27. Possible base pairs <ul><li>Purine: A and G </li></ul><ul><li>Pyrimidine: C and T (or U) </li></ul>Purine + purine: too wide Pyrimidine + pyrimidine: too narrow Purine + pyrimidine: width consistent with X-ray data
  28. 28. Overview <ul><li>The genetic material is DNA </li></ul><ul><li>Structure of DNA </li></ul><ul><li>DNA replication </li></ul><ul><ul><li>Meselson & Stahl experiment </li></ul></ul><ul><ul><ul><li>Figure 16.11 </li></ul></ul></ul><ul><li>DNA repair </li></ul><ul><li>The end-problem </li></ul><ul><ul><li>telomeres </li></ul></ul>Maurice Wilkins, 1916-2004
  29. 29. 9 The basics of DNA replication (a) Parent molecule (c) “Daughter” DNA molecules, each consisting of one parental strand and one new strand (b) Separation of strands
  30. 30. 10 Three alternative models for DNA replication
  31. 31. 10 Three alternative models for DNA replication Study Figure 16.11 The Meselson-Stahl experiment
  32. 32. 12: Origin of replication: ori <ul><li>Ori is recognized bij initiator proteins </li></ul><ul><li>One bubble, two replication forks </li></ul><ul><li>Parental and template strand </li></ul><ul><li>E. coli : 1 ori, humans 10 3 oris </li></ul>
  33. 33. 13 Proteins involved in starting DNA replication <ul><li>Topoisomerase </li></ul><ul><li>ssBP </li></ul><ul><li>Helicase </li></ul><ul><li>Primase </li></ul><ul><li>(Ligase </li></ul><ul><li>DNA polymerase) </li></ul>
  34. 34. 14: Incorporation of a new nucleotide
  35. 35. 14: Incorporation of a new nucleotide
  36. 36. 14: Incorporation of a new nucleotide Energy from triphosphates

×