Conversão da Biomassa
Upcoming SlideShare
Loading in...5
×
 

Conversão da Biomassa

on

  • 1,098 views

Presentation of Cesar A. M. Abreu for the "Workshop Virtual Sugarcane Biorefinery"...

Presentation of Cesar A. M. Abreu for the "Workshop Virtual Sugarcane Biorefinery"

Apresentação de Cesar A. M. Abreu realizada no "Workshop Virtual Sugarcane Biorefinery "

Date / Data : Aug 13 - 14th 2009/
13 e 14 de agosto de 2009
Place / Local: ABTLus, Campinas, Brazil
Event Website / Website do evento: http://www.bioetanol.org.br/workshop4

Statistics

Views

Total Views
1,098
Views on SlideShare
1,098
Embed Views
0

Actions

Likes
0
Downloads
10
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Conversão da Biomassa Conversão da Biomassa Presentation Transcript

  • CONVERSÃO DA BIOMASSA Cesar A. M. Abreu UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ENGENHARIA QUÍMICA LABORATÓRIO DE PROCESSOS CATALÍTICOS RECIFE, PERNAMBUCO
  • CONVERSÃO DA BIOMASSA CONVERSÃO DA BIOMASSA COM VALORIZAÇÃOConversão da biomassaProcessos de conversãoNatureza químicaFracionamentoFuncionalização ou degradaçãoIntermediáriosProdutos finais
  • CONVERSÃO DA BIOMASSA BIOMASSA LIGNOCELULÓSICAPrincipais componentes: celulose, hemicelulose, ligninaOutros componentes: cinzas, fenois , acidos graxos, ….Celulose: polissacarídeo de D-glucose, unidades associadasvia β-1,4-glucosidic ligações.Hemicelulose: polissacarídeo de xilose, arabinose, manose,promovendo interações entre a celulose e a ligninaLignina: polímero baseado em fenilpropano, estruturado emgrupos guaiacil, siringil and p-hidroxifenylpropano
  • CONVERSÃO DA BIOMASSA CONVERSÃO DA BIOMASSA (CANA-DE-AÇÚCAR) 1 EXTRAÇÃO SACAROSE QUÍMICO GLUCOSE,FRUTOSE (MELAÇO) BIOQUÍMICO AÇÚCAR INVERTIDO CELULOSE BIOMASSA PRÉ-TRAT. HEMICELULOSE L-CEL FRACIONAMENTO LIGNINA (BAGAÇO) 2 HIDRÓLISE CELULOSE ÁCIDO DILUÍDO GLUCOSE HEMICELULOSE ÁCIDO CATALÍTICO HMF, DMF ENZIMÁTICO XILOSE, ARABINOSE, FURFURAL,
  • CONVERSÃO DA BIOMASSA CONVERSÃO DA BIOMASSA (CANA-DE-AÇÚCAR) 3 OXIDAÇÃO LIGNINA QUÍMICO ALDEÍDOS AROMÁTICOS CATALÍTICO ÁCIDOS DERIVADOS 4 HIDROGENA SACAROSE QUÍMICO POLIÓIS ÇÃO GLUCOSE CATALÍTICO ÁCIDOS DERIVADOS HIDROGENÓ FRUTOSE ÉSTERES LISE XILOSE OXIDAÇÃO (MELAÇO, HIDROLISADOS) ESTERIFICA ÇÃO
  • CONVERSÃO DA BIOMASSA CONVERSÃO DO BAGAÇO DE CANA-DE-AÇÚCAR BAGAÇO DE CANA-DE-AÇÚCAR CELULOSE HEMICELULOSE LIGNINA ACETATO SORBITOL / FURFURAL XILITOL RESINAS PLÁSTICOS VANILINA DE MANITOL FENÓLICAS CELULOSE
  • The acid hydrolysis processDilute acid hydrolysis,Low acid consumptionMaximum monosaccharide yields reached at hightemperatures and short residence times,Fast reaction ratesYields circa of 50-60% of the theoretical valueConcentrated acid hydrolysis,Processed decomposing and dissolving the polysaccharidesOccurs with water deficiencyProduction of oligosaccharides
  • The acid hydrolysis processLimitations,Severe conditions (e.g. higher temperature, low pH)Formations of degradation by-productsFurans and organic acidsMonomeric hexoses and pentoses transformed into HMF andfurfural,Further degradation into organic acids (e.g. levulinic, humicacids) and condensation reactionsDissolved lignin result in the formation of inhibiting phenoliccompoundsCorrosion of the equipment
  • The acid hydrolysis processProduction process of saccharidic mixtures to furtherprocessing,Degradation of corn starch or sugarcane hemicellulose in acidmediaQuantification of the oligomeric decompositionsSelection of saccharidic mixtures to further catalytictreatementsKinetics of starch and pentosane depolymerizationConsecutive evolutions of the oligomeric componentsIdentification by the degree of polymerizations (DP6, DP5,DP4, DP3, DP2, DP1 = glucose, xylose,..).
  • The acid hydrolysis processStarch and sugar cane bagasse hydrolysis,Native corn starch solutions were hydrolyzed attemperatures ranging 343 K to 373 K, producingglucose with yield circa 70%Sugar cane bagasse was hydrolised at 393 K,producing xylose, with approximate yield of 60%Abreu, C. A. M. et al. (1995) Biomass and Bioenergy Vol9, No. 6, 487-492
  • The acid hydrolysis process Mechanism KineticsS+  AcH 1 → SH + Ac - dC S  k  = −k C S 1 − ((C S O − C G ) dt  k SH + H 2 O 1 → DPn + GDPn + AcH 2 → DPn H + Ac − 1/2 dC G    = k K AcH 1 − (C So − C G ) (C So − C G ) kDP H + H O 2 n → DP 2 +G n −1 dt   k ----------------------------DP + AcH n 2 → DP H + Ac - 1DP1 H + H 2 O n   → G + G dC OL = k (C S − C G )1 − (C So − C G ) k dt  k AcH ⇔ Ac - + H +
  • CONVERSION OF CARBOHYDRATESProcessing of raw materials rich in saccharides (sugarcane, starch,molasse, bagasse,…),Products with industrial application as polyols and organicacidsCarbohydrate hydrogenations (saccharides → monosaccharides → polyols)Carbohydrate oxidations (saccharides → monosaccharides + acids → acids)Heterogeneous processes with supported catalysts based onnickel, chromium, ruthenium to hydrogenate glucose,fructose and sucrose to sorbitol and mannitol
  • Hydrogenation of carbohydrates Heterogeneous mechanism
  • 1st Brazilian Workshop on Green Chemistry Hydrogenation of carbohydrates Heterogeneous mechanism
  • Hydrogenation of carbohydratesSaccharide hydrogenation process,Polyol production in a batch three-phase reactorGlucose conversions of 85% with a selectivity in sorbitol of99.05% at 413K, under 24 bar, after 3 hours of reaction witha nickel catalyst (14.75 % weight)/activated carbonSaccharose conversions of 52% after 3 hours of reactionProduction of glucose and fructose and sorbitol and mannitolL. C. A. Maranhão, F. G. Sales, J. A. F. R. Pereira, C. A. M. Abreu (2004) React. Kinet. Catal. Lett.81, 169-175
  • Hydrogenolysis of carbohydratesSaccharide hydrogenolysis process,More drastic temperature and hydrogen pressure conditionsSplitting of carbon-carbon and carbon-oxygen carbohydratebondsPolyols obtained from hydrogenations can be hydrogenolysedProducts: other polyols, glycols and alcoholsCatalysts: noble metals
  • Continuous production of fine polyolsScale-up of carbohydrate hydrogenations,Fine polyols from biomass resources are traditionallyproduced in discontinuous processesApparatus of great volume in relation to the small quantity ofthe obtained productsScale-up from discontinuous operations to continuous oneDevelopment of the saccharide hydrogenation process into acontinuous operationContinuous polyol production
  • Continuous production of fine polyolsContinuous hydrogenation in a three-phase reactor,Trickle-bed reactor under moderate operation conditions(1.22 MPa, 413 K)Glucose conversions of 44% with a polyol selectivity of99.31%Yield of 24% in sorbitol and mannitol for the saccharosehydrogenationPossibility to develop a process (pressures up to 2.54MPa, lowliquid flow rates) to obtain high conversionsMaranhão, L. A., Abreu, C. A. M. (2005) Industrial and Engineering Chemistry Research. v. 44, p.9642-9645
  • Continuous production of fine polyols 0,5 dC G ′ dC G η G k G C G Dax − uL − =0 0,4 dz 2 dz 1 + K G CG 0,3 glucose C (mol L-1) sorbitol model 0,2 f e φ G [coth (3φ G f e ) − ( f e 3φ G )] ηG = 0,1 ( ) 1 + φ G ShLG [coth (3φ G f e ) − ( f e 3φ G )] 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 Axial position (m)Hydrogenation of glucose at 1.22MPa and 413K in trickle-bedreactor
  • Continuous production of fine polyols 0,3 d 2 C Sac dC Sac Dax − uL ′ − η Sac k Sac C Sac = 0 dz 2 dz 0,2 C (mol L-1) saccharose d 2 C Mo dC Mo  ′ k Mo C Mo  0,1 monosaccharides Dax −u + η Mo  k Sac C Sac −  ′ =0  polyols model dz 2 dz  1 + K Mo C Mo  0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 d 2 C Po dC Po ′ k Mo C Mo Dax −u + η Po =0 Axial position (m) dz 2 dz 1 + K Mo C MoHydrogenation of saccharose at 1.22MPa and 413K in trickle-bed reactor.
  • Continuous production of fine polyolsAn up grade of the discontinuous to the continuous process for saccharidehydrogenation may be compared in the following terms:Discontinuous process (slurry reactor) Continuous process (trickle-bed reactor)Ni/C catalyst; 413 K, 2.44 MPa Ni/C catalyst; 413 K, 1.22 MPaOperation time = 3 hours Operation time = 3 hoursConcentration of the saccharide feed = Concentration of the saccharide feed =100.00 g/L 100.00 g/LProduction = 42.50 g in polyol Acumulated production = 749.35 g in polyol
  • LIGNIN FROM BIOMASSBiomass conversion into aldehydes and acids,Lignin degradation: break up into fragments producingaromatic aldehydesPolifenate ions, precursors of the aromatic aldehydeformationsAldehyde conversion into organic acids
  • LIGNIN PROCESSING FROM SUGARCANE BAGASSELignin oxidation,Wet air oxidation process (WAO) as an alternative technologyValorization of lignocellulosic materialsProduction of a mixture of aromatic aldehydes of industrialinterestCatalytic wet air oxidation (CWAO) process using air andcatalystsTreatment of effluents and by-product of the biomass industry
  • Catalytic wet oxidation of lignin H 2COH CH CO H2 COH OCH3 1 H2COH HC HC 3 O CH H3CO O CH OCH3 4 2 H2 COH OCH3 HC O H3CO OCH3 O CHO (a) H 2COH HO O H2COH H O HC C H C OH C O 2 Pd γ − Al2 O CH //  3 →  HO C H  2 /γ−Al2 Pd/ O3 → O  + AcH Pd / γ−Al O3 →  2 / 2 O  2 + AcH 2 2 R1 R2 2 R1 R2 OH OH H3CO OCH3 O R1 R2 OH [ Lignin ] [ Aldehydes ] [ Acids ] (b)Basic structure of lignin and degradation/oxidationmechanism. (a) basic unit of the Fagus silvatic lignin. (b)degradation/oxidation reaction steps. R1= H, OCH3 ;R2 = OCH3 .
  • Catalytic wet oxidation of ligninCWAO of lignin from sugar-cane bagasse was evaluated toproduce aromatic aldehydesLignin (L) is depolymerized with the productions ofaldehydes, acids and other products of low molecularweightsThe aromatic aldehydes vanillin (V), syringaldehyde (S) andp-hydroxibenzaldehyde (P) were submitted to subsequentoxidationsOther products (R), such as organic acids can degrade intocarbon dioxide Reaction scheme of the catalytic wet oxidation of lignin
  • Process operationsOperations in a slurry reactor,Palladium catalyst, 373-413 K, 2-10 bar/ PO2Lignin as a by-product from sugarcane bagasse by the DFH(Dedine Fast Hydrolysis)Yields of the aromatic aldehydes associated with ligninconsumption and their oxidations to acidsAromatic aldehyde yields approximately ten to twenty timeshigher then with the noncatalytic oxidation processSales, F. G. , Maranhão, L. A. , Lima Filho, N. M. , Abreu, C. A. M.( 2006). Industrial & EngineeringChemistry Research. v. 45, p. 6627-6631
  • Processo continuo de produção de aldeídos aromáticosScale-up of process,From batch to continuous operationsAromatic aldehyde productions operated in a continuous fluidized-bed reactorLignin as a by-product from sugarcane bagasseYields of the aromatic aldehydes associated with the lignin consumption and their oxidations to acids
  • Processo continuo de produção de aldeídos aromáticos Three-phase fluidized-bed reactor
  • Processo continuo de produção de aldeídos aromáticosEscalonamento,Batch operation: 56.24x10-2g of vanillin and50.01x10-2g of syringaldehyde from a 0.50L-ligninsolution (60.00g/L), 2 h of reaction at 5.00 bar and 393KContinuous operation: 65.10x10-1g of vanillin and114.84x10-1g of syringaldehyde, with a feedconcentration of lignin of 30.00 g/L, 2 h of reaction, at5.00 bar and 393 K, liquid-phase flow rate of 5.00 L/hF. G. Sales, L. C.A. Maranhão, N. M. Lima Filho, C. A.M. Abreu (2007) ChemicalEngineering Science 62, 5386 – 5391
  • ConclusionsRecent technology developments done in the scope of the biorefineryconcept have emerged as alternatives, making production of chemicalsfrom ligno-cellulosic feedstocks become a reality.Biomass conversions employ hydrolysis and pretreatments of hemicelluloseand lignin, and acid or enzymatic hydrolysis of cellulose to break thepolymeric structures to their saccharides and lignin components.In the presence of homogeneous or heterogeneous catalysts the oligomericmixtures selected may be processed in order to produce valuablechemicals.Through catalytic hydrogenation, hydrogenolysis or oxidation thesemixtures can be converted to polyols, glycols, monoalcohols, aldehydes andorganic acids.