Your SlideShare is downloading. ×
0
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane: What we know and what we still need to know

707

Published on

Presentation of Robert Boddey for the "2nd Workshop on the Impact of New Technologies on the Sustainability of the Sugarcane/Bioethanol Production Cycle" …

Presentation of Robert Boddey for the "2nd Workshop on the Impact of New Technologies on the Sustainability of the Sugarcane/Bioethanol Production Cycle"

Apresentação de Robert Boddey realizada no "2nd Workshop on the Impact of New Technologies on the Sustainability of the Sugarcane/Bioethanol Production Cycle "

Date / Data : Novr 11th - 12th 2009/
11 e 12 de novembro de 2009
Place / Local: CTBE, Campinas, Brazil
Event Website / Website do evento: http://www.bioetanol.org.br/workshop5

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
707
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
18
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Agrobiologia
  • 2. Sugarcane in Brazil 2008 - 2009•  Harvested area 2009 – 8.7 million ha (Mha)•  Planted area 2009 – 9.8 Mha•  Total cane production 2009 = 690 million tonnes.•  Mean cane yield – 79.5 ton./ha•  Ethanol prodution (2008) - 27 billion litres (5.4 bi exported)•  Ethanol prodution per ha - 6500 litres Agrobiologia
  • 3. The Contribution of Fossil EnergyIn all stages of sugarcane production and its processing to produce ethanol there are inputs of conventional (fossil) energyFor example:1.  Diesel oil for sub-soiling, ploughing, spraying.2.  Fertilizer manufature (natural gas) and its transport and application (diesel oil).3.  Harvest and transport of cane to factory (diesel oil).4.  Construction of factories/distilleries (cement, steel etc.) and manufacture of field machinery (tractors, ploughs harvesting machines) and factory equipment. Agrobiologia
  • 4. Emissions of other greenhouse gases Apart from CO2 there are two other gases which which also absorb infra-red radiation (heat). : Nitrous oxide (N2O) and methane (CH4)•  Nitrous oxide is emitted when nitrogen (in fertilizers and residues) is applied to the soil; the emissions being higher when the soil is at high moisture content.•  The quantities are small (typically 1% or less of the added N) but N2O is approximately 300 times more active than CO2 in absorption of infra-red radiation.•  Methane is liberated when the cane trash is burned or when vinasse (distillery waste) is added to the soil.•  Methane is approximately 25 times more active than CO2 in the absorption of infra-red radiation. Agrobiologia
  • 5. Evaluation of the mitigation of greenhouse gas (GHG) emissions in the full cycle of bio-ethanol production from sugarcanePhase 1:Calculate the ratio between the energy in the ethanol produced and the energy derived from fossil fuels utilized in the production process. This ratio is known as the “Energy Balance” of the bio-fuel.In this study an inventory was made of the fossil energy in:1.  fuels (principally diesel oil) utilized by tractors, trucks and other machinery used in the field and in transport of the cane and other inputs to the factory/plantation.2.  manufacture of inputs, vehicles, machines, structures and buildings utilizd in the production of ethanol from the cane. Agrobiologia
  • 6. Energy balance for ethanol production from sugarcane**Source: Boddey et al., 2008, Bio-ethanol production in Brazil. Chapter 13, In: Pimentel, D., (ed.), Biofuels,Solar and Wind as Renewable Energy Systems: Benefits and Risks. Springer, New York pp 321-356. Agrobiologia
  • 7. Agrobiologia
  • 8. * The vehicle running ethanol from sugarcane emits only 20 % of the GHGs which it would emit using pure gasoline OR The use of Brazilian bioethanol promotes a mitigation of 80 % of the GHGs emitted when the same distance is covered using pure gasoline*S10 Chevrolet pickup Agrobiologia
  • 9. Circular Técnica 27Luis Henrique SoaresBruno J.R. AlvesSegundo UrquiagaRobert M. Boddey www.cnpab.embrapa.br/publicacoes/download/cit027.pdf Agrobiologia
  • 10. Impact of the change from manual harvesting of burned cane to mechanical harvesting of green caneLess soot and smoke – less health problems.Soil surface protected – less erosion and evaporation Agrobiologia
  • 11. Comparison of emissions of GHGs from the manual harvesting of burned cane with the mechanized harvest of green (unburned) canea Based on IPCC (2006) methodology for the burning of 13.1 Mg ha-1 of agricultural residues at 80 % efficiency (2.7 kg CH4 Mg-1 burned). b Based on IPCC (2006) methodology for 13.1 Mg ha-1 of sugarcane residues (0.07 kg N O Mg-1 burned). 2 ------------------------------------------------------------------------------------------------------------------------------------------------------- At present ~60% of cane is burned for manual harvest. If burning iscompletely replaced by mechanized green cane harvesting the mitigation of GHG emissions increases from 80 to 87% Agrobiologia
  • 12. Impact on soil C stocks of change from burned cane to green-cane harvesting Usina Cruangi, Timbauba, PE* Increase in soil C stocks on change to green cane harvesting = ~300 kg C ha-1 yr-1 over 16 years*Resende et al., 2006, Plant Soil 281: 337-349 Agrobiologia
  • 13. Field N budget for a typical cane variety growing in São Paulo State•  Yield 84 tonnes/ha•  Total N (kg N /ha/yr) in:•  Cane stems ……………………… 42 kg•  Trash/senescent leaves*………. 52 kg•  Flag leaves (left in field) ………. 62 kg•  Total aerial tissue ………………156 kg•  Removed by burning and exported to mill … 94 kg•  Added as N fertilizer 65 kg N/ha•  Balance = minus 29 kg N ha (not counting leaching, volatilization and erosion losses)•  Rainfall and dry deposition inputs estimated for Piracicaba as <9 kg N/ha* * Krusche et al., 2003, Environ. Pollution 121: 389-399 Agrobiologia
  • 14. Impact of GHG emissions of biological nitrogen fixation Agrobiologia
  • 15. Emissões de óxido nitroso principalmente associadas as aplicações de fertilizante nitrogenado Metodologia Câmara estática fechada Agrobiologia
  • 16. Agrobiologia
  • 17. Menores emissões em Latossolos estariam relacionadas a altadrenagem e as condições de evapotranspiração em regiões tropicais Após quase 1 dia sob inundação, o potencial redox reduz ao ponto do NO3- ser consumido de forma mais significativa (Sposito, 1989).Infiltração de água em Latossolo Vermelho,Sto Antonio de Goiás Agrobiologia
  • 18. Soil N2O-N fluxes after vinasse and urea application on sugarcane crop growing on a Cambisol of Campos dos Goytacazes Agrobiologia
  • 19. Soil N-N2O emission from a sugarcane crop treated with vinasseand urea and from a non-fertilized control area, used to calculate emission factors for both N sources Agrobiologia
  • 20. Fator de emissão de N2O Ciclo de FE baseado emobtido de estudos feitos pela avaliação1 N-Fertilizante área de Uso do solo Tipo de solo equipe da Embrapa (fonte kg N ha-1) (dias) referência (%) Agrobiologia em solos agrícolas Londrina, PR Latossolo Milho SP rotação (ano 1 e 2) 136/141 Uréia – 80 Vermelho 0,05/0,04 Milho PD rotação (ano 1 e 2) 136/141 Uréia – 80 distroférrico 0,09/0,03 Fator de emissão direta Passo Fundo, RSDados medidos no Brasil Trigo PD rotação 137 Uréia – 40 0,13 Média geral Soja/trigo PD (ano 1 e 2) 1 ano Fert+Res – 0,56/0,81 120/116 0,30 % (0,20 – 0,47%) Soja/trigo PC (ano 1 e 2) 1 ano Fert+Res – Latossolo 0,47/0,52 Vermelho 126/133 escuro Milho/trigo PD 1 ano Fert+Res – 162 0,41 Milho/trigo PC 1 ano Fert+Res – 141 0,70 Sorgo/trigo PD 1 ano Fert+Res – 193 0,24 Sorgo/trigo PC 1 ano Fert+Res – 193 0,29 Santo Antônio de Goiás, GO Milho PD sucessão 140 Uréia – 80 Latossolo 0,22 Arroz sequeiro PD (ano 1 e 2) 133/132 Uréia – 90 Vermelho 0,13/0,14 Feijão irrigado PD 149 Uréia – 80 Escuro 0,12Fator de emissão direta Seropédica, RJ IPCC Milho SP 120 Uréia – 50 0,16 1% (0,3 – 3%) Milho SP 120 Uréia – 100 Argissolo 0,35 Milho SP 120 Uréia – 150 Vermelho 0,33 Capim elefante 180 Uréia – 40 Amarelo 0,18 Capim elefante 180 Uréia – 80 0,22 Capim elefante 180 Uréia – 120 0,22 Capim elefante 180 Uréia – 160 0,37 Agrobiologia
  • 21. Impacto nas emissões de GEEs da expansão da áreautilizada para a produção de etanol da cana-de-açúcarDuas perguntas:1.  Quais terras estão sendo convertidas para a produção de etanol?Resposta: Principalmente pastagens de baixa produtividade e alguma área de lavoura2. Qual é a diferença das emissões de GEEs no uso atual da terra comparado com a substituição da produção de etanol da cana. Agrobiologia
  • 22. Principais emissões de GEEs em pastagens1.  Metano ruminal: para uma pastagem de baixa produtividade (0,7 UA/ha) = 120 g CH4 ou 2.500 kg CO2eq/ha/ano.2.  Óxido nitroso da urina 240 g N2O ou 74 kg CO2eq/ha/ano3.  Outras emissões =~260 kg CO2eq/ha/ano TOTAL 2.840 kg CO2eq/ha/ano____________________________________________________________ Principais emissões de GEEs em soja/milho1.  Adubos e operações de campo = 810 a 1017 kg CO2eq/ha/ano2.  Óxido nitroso do N dos resíduos e N fertilizante = 0,55 a 0,80 kg N2O ou 270 a 390 kg CO2eq/ha/ano Para 75 % soja e 25 % milho estima se uma emissão de TOTAL 1160 kg CO2eq/ha/ano Agrobiologia
  • 23. Mudança nas emissões de GEEs na conversão de lavoura (soja/milho), ou pastagem de baixa produtividade, para a produção de etanol1.  Soja/milho: 1.160 para 3.244 kg CO2eq/ha/ano – maior emissão de GEEs, quase 2000 kg CO2eq/ha/ano a mais.2.  Pastagem 2.840 para 3.244 kg CO2eq/ha/ano – pouco mudança em emissões.MAS! o etanol produzido de 1 ha de cana (6.500 litros) pode substituir 4.500 litros de gasolina que emitiria 16.425 kg CO2eq/ha/ano. Os 6.500 litros de etanol só emite 3.244 kg CO2eq/ha/ano de GEEs. CONCLUSÃO: Se o etanol substitui a gasolina pura, 1 ha de cana substituirá 13,2 toneladas de CO2 fóssil. Qualquer emissão devido a mudança do uso da terra é pequena em comparação. Agrobiologia
  • 24. Mudanças no Uso da Terra Indiretas ILUC Desmatamento (ha) Aumento na área da cana (ha) ? - No momento o EPA/USA – Considera inviável o etanol brasileiro devido a - As negociações com a Europa ainda vão começar Agrobiologia
  • 25. Com a passagem dos anos as melhorias no manejo da lavoura da cana vem aumentando gradualmente o rendimento de etanol/ha com apenas pequenos aumentos no uso de insumos não renováveis. A prática de queima da cana com a colheita manual está sendo substituída pela colheita mecanizada decana crua, que aumenta a poder de mitigação da etanol da cana-de-açúcar.Só o plantio de florestas ou de capim elefante para uso para produção de energia por combustão pode ser mais efetivo por hectare do que o etanol da cana na mitigação do aquecimento do planeta Agrobiologia
  • 26. A EQUIPE Bruno J.R. Alves Segundo Urquiaga Ednaldo da Silva Araújo Luis Henrique de B. Soares Robert M. Boddey bob@cnpab.embrapa.brAgrobiologia
  • 27. Agrobiologia
  • 28.   Vinhaça• Principal subproduto da indústria sucroalcooleira• Composição variada• Ferti-irrigação• Efeitos no solo• Efeitos no ambiente Fotos: Fernando Zuchello Agrobiologia
  • 29. Fotos: Fernando ZuchelloAgrobiologia
  • 30. Câmaras ao longo do canal de vinhaça Foto: Fernando Zuchello Agrobiologia
  • 31. • As análises de gases serão realizadas utilizando os cromatógrafos da Embrapa Agrobiologia.• Caracterização da vinhaça: pH; Potencial redox; Temperatura; Acetato; Agrobiologia
  • 32. Fluxos de metano em diferentes pontos de uma lagoa de vinhaça Entrada de vinhaça 4,5 gCH4.m-2.h-1 60oCCanal de distribuição185,5 gCH4.m-2.h-1 25oC 52oC 37oC 20,9 Foto: Fernando gCH4.m-2.h-1 Zuchello Agrobiologia

×