Neuroanatomy

971 views

Published on

1 Comment
0 Likes
Statistics
Notes
  • Be the first to like this

No Downloads
Views
Total views
971
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
63
Comments
1
Likes
0
Embeds 0
No embeds

No notes for slide
  • Dualism-mind is separate from the body Descartes believed that the pineal body directed fluid from the ventricles into the holow fibers we call nerves-this induced muscle action. The pineal gland is where the soul controls the physical body Monism: the belief that the mind is the working of the body (no need for a separate soul. Determinism-the notion that mental states are produced by physical mechanisms. Reductionists-we break complex phenomena into less complicated sytems.
  • Dualism-mind is separate from the body Descartes believed that the pineal body directed fluid from the ventricles into the holow fibers we call nerves-this induced muscle action. The pineal gland is where the soul controls the physical body Monism: the belief that the mind is the working of the body (no need for a separate soul. Determinism-the notion that mental states are produced by physical mechanisms. Reductionists-we break complex phenomena into less complicated sytems.
  • Dualism-mind is separate from the body Descartes believed that the pineal body directed fluid from the ventricles into the holow fibers we call nerves-this induced muscle action. The pineal gland is where the soul controls the physical body Monism: the belief that the mind is the working of the body (no need for a separate soul. Determinism-the notion that mental states are produced by physical mechanisms. Reductionists-we break complex phenomena into less complicated sytems.
  • Dualism-mind is separate from the body Descartes believed that the pineal body directed fluid from the ventricles into the holow fibers we call nerves-this induced muscle action. The pineal gland is where the soul controls the physical body Monism: the belief that the mind is the working of the body (no need for a separate soul. Determinism-the notion that mental states are produced by physical mechanisms. Reductionists-we break complex phenomena into less complicated sytems.
  • Neuroanatomy

    1. 1. Psyc 689 Clin Psychopharmacology Introduction-Neuroanatomy
    2. 2. Instructor Contact Details <ul><li>Paul J. Wellman </li></ul><ul><li>Office: Psychology 248 </li></ul><ul><ul><li>Phone: </li></ul></ul><ul><ul><ul><li>979-845-2557 (Office) </li></ul></ul></ul><ul><ul><ul><li>979-845-2581 (Dept) </li></ul></ul></ul><ul><ul><ul><li>979-845-4727 (Fax) </li></ul></ul></ul><ul><ul><ul><li>979-777-3163 (Cell) </li></ul></ul></ul><ul><ul><li>Email: [email_address] </li></ul></ul><ul><ul><li>Web site: http://psychology.tamu.edu/courses/Wellman/689.html </li></ul></ul>
    3. 3. Psyc 689 Course Details <ul><li>Lectures are Wednesday </li></ul><ul><ul><li>9 am-12 pm </li></ul></ul><ul><li>Exams: 2 exams each worth 100 points (exams will be taken in class) </li></ul><ul><li>Readings are from Handbook of Clinical Psychopharmacology for Therapists (4e) by Preston, O’ Neal, and Talaga (2005) </li></ul>
    4. 4. Overview Of Course Topics <ul><ul><li>Neurophysiology </li></ul></ul><ul><ul><li>Neurochemistry </li></ul></ul><ul><ul><li>Neuroanatomy (functional and neurochemical) </li></ul></ul><ul><ul><li>Basic principles of pharmacology </li></ul></ul><ul><ul><li>Specific disorders </li></ul></ul><ul><ul><ul><li>Psychoses </li></ul></ul></ul><ul><ul><ul><li>Anxiety </li></ul></ul></ul><ul><ul><ul><li>Depression </li></ul></ul></ul><ul><ul><li>Issues of treatment </li></ul></ul><ul><ul><ul><li>Side effect profiles </li></ul></ul></ul><ul><ul><ul><li>Subject characteristics (gender, age, health) </li></ul></ul></ul><ul><ul><ul><li>Psychopharmacology Resources (PDR) </li></ul></ul></ul>
    5. 5. Physical Approaches to Altering Behavior <ul><li>Trephining </li></ul><ul><li>ECT </li></ul><ul><li>Psychosurgery </li></ul><ul><li>All are based on the idea that altering brain function can alter behavior </li></ul><ul><li>Risk-benefit issues for these treatments </li></ul>
    6. 6. ECT
    7. 7. Psychosurgery
    8. 8. Psychopharmacology <ul><li>Psychopharmacology is the study of the effects of drugs on the nervous system and on behavior </li></ul><ul><li>The term drug has many meanings: </li></ul><ul><ul><li>Medication to treat a disease </li></ul></ul><ul><ul><li>A chemical that is likely to be abused </li></ul></ul><ul><ul><li>An “ exogenous” chemical that significantly alters the function of certain bodily cells when taken in relatively low doses (chemical is not required for normal cellular functioning) </li></ul></ul>
    9. 9. Development of Psychoactive Drugs <ul><ul><li>Alcohol (?) </li></ul></ul><ul><ul><li>Cannabis (THC) </li></ul></ul><ul><ul><li>Opiates </li></ul></ul><ul><ul><li>Caffeine (1300 Ethiopia) </li></ul></ul><ul><ul><li>Cocaine (1200-1500 Incas; cocaine isolated in 1859) </li></ul></ul><ul><ul><li>Nicotine (1556: Western Europe) </li></ul></ul><ul><ul><li>Ether: used as an inhalation toxicant </li></ul></ul><ul><ul><li>Hallucinogens (peyote) </li></ul></ul><ul><ul><li>Stimulants (amphetamine syn in 1887) </li></ul></ul><ul><ul><li>Medicinal chemistry </li></ul></ul>http://itsa.ucsf.edu/~ddrc/histdrg_frset.html
    10. 10. “ Evolution” of Localization of Function Phrenology Bust Brodman Cytoarchitectonic Map Cortical Activity During 2 nd Language Practice
    11. 11. Broca’s Area <ul><li>Patient “Tan” showed major deficit in speech ( aphasia ) following a stroke </li></ul><ul><ul><li>Broca’s autopsy of Tan’s brain (1861) noted damage in the left hemisphere </li></ul></ul><ul><ul><li>“ the lesion of the left frontal lobe was the cause of the loss of speech” </li></ul></ul><ul><ul><li>Case report conclusion was correct </li></ul></ul><ul><ul><li>Broca’s paper can be read at: http://psychclassics.yorku.ca/Broca/perte-e </li></ul></ul>
    12. 12. Artificial Stimulation of Brain <ul><li>Neurons in a region can be artificially activated to assess the role of that region in behavior </li></ul><ul><ul><li>Electrical stimulation involves passing electrical current through a wire inserted into brain </li></ul></ul><ul><ul><li>Cincinnati physician and brain stimulation </li></ul></ul><ul><ul><ul><li>Conducted in prostitute with bone cancer of skull </li></ul></ul></ul><ul><ul><ul><ul><li>Patient died, but not related to electrical stimulation… </li></ul></ul></ul></ul><ul><ul><li>Penfield’s cortical stimulation studies (Montreal) </li></ul></ul><ul><ul><li>Chemical stimulation can involve infusion of an excitatory amino acid such as glutamate into a region </li></ul></ul><ul><ul><ul><li>A cannula implanted into a region can be used to deliver drug solutions into that region </li></ul></ul></ul><ul><ul><ul><li>Chemical stimulation can be more specific than electrical stimulation (glutamate activates cell bodies, not axons) </li></ul></ul></ul>
    13. 13. Hunger and Reward After Lateral Hypothalamic Stimulation
    14. 14. Neuroanatomy Terms <ul><li>The neuraxis is an imaginary line drawn through the spinal cord up to the front of the brain </li></ul><ul><li>Anatomical directions are understood relative to the neuraxis </li></ul><ul><ul><ul><li>Anterior (rostral): toward the head </li></ul></ul></ul><ul><ul><ul><li>Posterior (caudal): toward the tail </li></ul></ul></ul><ul><ul><ul><li>Ventral (inferior): toward the “belly” </li></ul></ul></ul><ul><ul><ul><li>Dorsal (superior): toward the back (top of head) </li></ul></ul></ul><ul><li>Location in brain: </li></ul><ul><ul><li>Ipsilateral : same side of brain </li></ul></ul><ul><ul><li>Contralateral : opposite side of brain </li></ul></ul>
    15. 15. Planes of Section <ul><li>The brain can be sectioned in three planes </li></ul><ul><li>Each section provides a different view of the internal anatomy of the brain </li></ul><ul><ul><li>Sagittal </li></ul></ul><ul><ul><li>Coronal (or transverse) </li></ul></ul><ul><ul><li>Horizontal </li></ul></ul>
    16. 16. Two Nervous Systems <ul><li>The nervous system consists of two divisions </li></ul><ul><ul><li>The central nervous system (CNS) is comprised of the brain and spinal cord </li></ul></ul><ul><ul><li>The peripheral nervous system (PNS) is comprised of the cranial/spinal nerves and peripheral ganglia </li></ul></ul><ul><ul><ul><li>PNS nerves project to target organs and to muscles ( efferent ) </li></ul></ul></ul><ul><ul><ul><li>These nerves also carry sensory information to the brain ( afferent ) </li></ul></ul></ul>
    17. 17. Views of the CNS <ul><li>Anatomical </li></ul><ul><ul><li>Nuclei and fibers </li></ul></ul><ul><li>Functional </li></ul><ul><ul><li>Sensory, motor, integrative </li></ul></ul><ul><ul><li>Emotion, reward, memory, sleep and arousal </li></ul></ul><ul><ul><li>Lesion studies, functional imaging studies </li></ul></ul><ul><li>Neurochemical pathways </li></ul><ul><ul><li>Dopamine, serotonin, glutamate, GABA, glycine </li></ul></ul>
    18. 18. Levels of the CNS <ul><li>Cerebral Cortex and brain hemispheres </li></ul><ul><li>Cortical lobes (4 bone-defined, 2 internal) </li></ul><ul><li>Gyri and sulci markers </li></ul><ul><li>Fibers, tracts, commisures, nerves, ganglia, nuclei, fasciculi (us) </li></ul><ul><li>Neurons </li></ul><ul><li>Neuron components </li></ul><ul><li>Synapses and neurotransmitters (NTs) </li></ul><ul><li>Receptors (auto-, post-synaptic) </li></ul><ul><li>Neuron membranes and associated channels </li></ul><ul><ul><li>Ligand-gated; voltage-gated </li></ul></ul>
    19. 19. Midline Brain View Motor Sensory
    20. 20. Cerebral Cortex <ul><li>The cerebral cortex forms the outer surface of the cerebral hemispheres </li></ul><ul><li>Cortex surface is convoluted by grooves </li></ul><ul><ul><li>Sulci (small grooves) </li></ul></ul><ul><ul><li>Fissures (large grooves) </li></ul></ul><ul><li>The bulges in cortex are termed gyri </li></ul><ul><li>The cortex is primarily composed of cells, giving it a gray appearance </li></ul><ul><ul><li>The cortex is formed from 6 layers of cells </li></ul></ul><ul><li>Cortex can be divided into 4 lobes: frontal, parietal, occipital, and temporal (limbic makes 5) </li></ul>
    21. 21. Orbitofrontal Cortex <ul><li>Humans are able to interact socially and to understand social situations </li></ul><ul><li>The analysis of social situations requires an intact orbitofrontal cortex </li></ul><ul><ul><li>Phineas Gage: dynamite tamping rod penetrated orbitofrontal cortex </li></ul></ul><ul><ul><li>Gage exhibited reduced inhibitions and self-concern </li></ul></ul><ul><li>Jacobsen: reported calming action of frontal lobe damage in monkeys </li></ul><ul><ul><li>Led to the development of prefrontal lobotomy technique (Moniz) </li></ul></ul>
    22. 22. Frontal Lobe Neuropathology <ul><li>Paralysis (usually flaccid if upper body neuron) </li></ul><ul><li>Paresis (weakness) </li></ul><ul><li>Impaired dexterity </li></ul><ul><li>Motor impersistence </li></ul><ul><li>Subclinical catatonia and motor retardation </li></ul><ul><li>Impairment smooth eye-tracking </li></ul><ul><li>Elevated blink rate </li></ul>
    23. 23. Primary Sensory and Motor Cortex
    24. 24. Motor Cortex <ul><li>Multiple motor systems control body movements </li></ul><ul><ul><li>Walking, talking, postural, arm and finger movements </li></ul></ul><ul><li>Primary motor cortex is located on the precentral gyrus </li></ul><ul><ul><li>Motor cortex is somatotopically organized (motor homunculus) </li></ul></ul><ul><ul><li>Motor cortex receives input from </li></ul></ul><ul><ul><ul><li>Premotor cortex </li></ul></ul></ul><ul><ul><ul><li>Supplemental motor area </li></ul></ul></ul><ul><ul><ul><li>Frontal association cortex </li></ul></ul></ul><ul><ul><ul><li>Primary somatosensory cortex </li></ul></ul></ul><ul><ul><li>Planning of movements involves the premotor cortex and the supplemental motor area which influence the primary motor cortex </li></ul></ul>
    25. 25. Divisions of Motor Cortex
    26. 26. Motor “Homunculus”
    27. 27. Parietal Lobe Neuropathology <ul><li>Issues in receptive speech, naming, comprehension </li></ul><ul><li>Tactile discrimination difficulty </li></ul><ul><li>Vestibular processing (Area 2) </li></ul><ul><li>Route finding issues (spatial) </li></ul><ul><li>Calculation problems </li></ul><ul><li>Right parietal lobe: spatial neglect </li></ul><ul><li>Time interval estimate difficulties </li></ul><ul><li>Prosopagnosia (w/ inf. Temporal lobe) </li></ul>
    28. 28. Visual Cortex Function <ul><li>V4: responds to color and </li></ul><ul><li>perception </li></ul><ul><li>V5: responds to movement </li></ul><ul><li>TEO: involved in color discrimination, 2-d pattern discrimination </li></ul><ul><li>TE: neurons respond to 3-d </li></ul><ul><li>(a face or a hand) </li></ul>form objects
    29. 29. Occipital Lobe Neuropathology <ul><li>Cortical blindness </li></ul><ul><li>Visual eye movement difficulties (area 8) </li></ul><ul><li>Achromatopsia (rod vision, lacks color perception </li></ul><ul><li>Visual neglect (agnosias) </li></ul><ul><li>Gaze disorders </li></ul>
    30. 30. Receptive Fields <ul><ul><li>Receptive Field (RF): Those attributes of a stimulus that will alter the firing rate of a given sensory cell </li></ul></ul><ul><ul><ul><li>Can measure the RF at each level of sensory system </li></ul></ul></ul><ul><ul><ul><li>There are as many RF’s as there are cells in a sensory system </li></ul></ul></ul><ul><ul><ul><ul><li>Look for commonalities of fields at each level of the system </li></ul></ul></ul></ul><ul><ul><li>Cortex is organized into columns, with each column sharing an attribute </li></ul></ul>
    31. 31. Primary Auditory Cortex
    32. 32. Temporal Lobe Neuropathology <ul><li>Misidentification syndromes – Prosopagnosia </li></ul><ul><li>Amnestic syndromes (hippocampus) </li></ul><ul><li>Central deafness (areas 41,42) </li></ul><ul><li>Wernicke –related dysphasias (Area 22) </li></ul><ul><ul><li>Receptive </li></ul></ul><ul><ul><li>Conductive type </li></ul></ul><ul><li>Hypo- and hypersexuality </li></ul><ul><li>Panic/fear states </li></ul>
    33. 33. Limbic System <ul><li>The limbic system is comprised of </li></ul><ul><ul><li>Hippocampus: involved in learning and memory </li></ul></ul><ul><ul><li>Amygdala: involved in emotion </li></ul></ul><ul><ul><li>Mammillary Bodies </li></ul></ul><ul><ul><ul><li>The fornix is a fiber bundle that interconnects the hippocampus with the mammillary bodies </li></ul></ul></ul>
    34. 34. Hippocampal Damage and Amnesia <ul><li>Severe anterograde amnesia follows bilateral damage to the hippocampus </li></ul><ul><ul><li>Patient H.M. suffered from severe epilepsy </li></ul></ul><ul><ul><ul><li>To minimize his epilepsy, H.M.’s surgeons removed his medial temporal lobe (including the hippocampus) </li></ul></ul></ul><ul><ul><li>Following surgery, H.M. showed severe anterograde amnesia </li></ul></ul><ul><ul><ul><li>No retention for events that have occurred since 1953 </li></ul></ul></ul><ul><ul><ul><li>Can recall events that occurred prior to 1953 </li></ul></ul></ul><ul><ul><ul><li>H.M.’s amnesia was attributed to hippocampal damage </li></ul></ul></ul><ul><ul><li>Patient Boswell: herpes encephalitis led to bilateral damage to the mesial temporal lobe </li></ul></ul><ul><ul><ul><li>Amygdala, hippocampus, entorhinal cortex) </li></ul></ul></ul><ul><ul><ul><li>Severe anterograde AND severe retrograde amnesia </li></ul></ul></ul>
    35. 35. Emotion and the Amygdala <ul><li>Threat stimuli increase neural firing and fos activity within central nucleus of the amygdala </li></ul><ul><ul><li>Humans show increased amygdala activity (PET studies) </li></ul></ul><ul><li>Lesions of central nucleus diminish emotional responses: </li></ul><ul><ul><li>Reduced fear responses to threat stimuli </li></ul></ul><ul><ul><li>Reduced chance of developing ulcers to stress </li></ul></ul><ul><ul><li>Reduced levels of stress hormones </li></ul></ul><ul><li>Electrical stimulation of central nucleus induces fear and agitation </li></ul><ul><li>Central amygdala nucleus is important for the expression of emotional responses to aversive stimuli </li></ul>
    36. 36. Diencephalon <ul><li>Diencephalon consists of </li></ul><ul><ul><li>Thalamus : contains nuclei that receive sensory information and transmit it to cortex </li></ul></ul><ul><ul><li>Hypothalamus : contains nuclei involved in integration of species-typical behaviors, control of the autonomic nervous system and pituitary </li></ul></ul>
    37. 37. The Basal Ganglia <ul><li>The basal ganglia are a collection of subcortical nuclei that lie just under the anterior aspect of the lateral ventricles </li></ul><ul><ul><li>“ Ganglia ” is a misnomer (term refers to collections of cell bodies in periphery) </li></ul></ul><ul><li>Basal ganglia consist of the caudate nucleus, the putamen and the globus pallidus </li></ul><ul><ul><li>Input to the basal ganglia is from the primary motor cortex and the substantia nigra </li></ul></ul><ul><ul><li>Output of the basal ganglia is to </li></ul></ul><ul><ul><ul><li>Primary motor cortex, supplemental motor area, premotor cortex </li></ul></ul></ul><ul><ul><ul><li>Brainstem motor nuclei (ventromedial pathways) </li></ul></ul></ul>
    38. 38. Degenerative Disorders <ul><li>Certain diseases produce loss of brain neurons </li></ul><ul><ul><li>Parkinson’s disease: loss of dopamine neurons </li></ul></ul><ul><ul><li>Huntington’s Chorea: loss of GABA/ACh </li></ul></ul><ul><ul><li>Alzheimer’s disease: loss of ACh neurons </li></ul></ul>
    39. 39. Mesencephalon <ul><li>The mesencephalon (midbrain) consists of </li></ul><ul><ul><li>Tectum is the dorsal portion of midbrain </li></ul></ul><ul><ul><ul><li>Superior and inferior colliculi are involved in the visual and auditory systems </li></ul></ul></ul><ul><ul><li>Tegmentum is that portion of the midbrain located under the tectum and consists of the </li></ul></ul><ul><ul><ul><li>Rostral end of the reticular formation </li></ul></ul></ul><ul><ul><ul><li>Periaqueductal gray </li></ul></ul></ul><ul><ul><ul><li>Red nucleus </li></ul></ul></ul><ul><ul><ul><li>Substantia nigra (projects to striatum) </li></ul></ul></ul><ul><ul><ul><li>Ventral tegmental area (part of </li></ul></ul></ul><ul><ul><ul><li>reward circuit) </li></ul></ul></ul>
    40. 40. Metencephalon <ul><li>Metencephalon consists of the </li></ul><ul><ul><li>Pons </li></ul></ul><ul><ul><ul><li>Contains the core of the reticular formation </li></ul></ul></ul><ul><ul><ul><li>The pons is involved in the control of sleep and arousal </li></ul></ul></ul><ul><ul><li>Cerebellum is involved in motor control </li></ul></ul>
    41. 41. Neural Control of REM Sleep <ul><li>The pons is important for the control of REM sleep </li></ul><ul><ul><li>PGO waves are the first predictor of REM sleep </li></ul></ul><ul><ul><li>ACh neurons in the peribrachial pons modulate REM sleep </li></ul></ul><ul><ul><ul><li>Increased ACh increases REM sleep </li></ul></ul></ul><ul><ul><ul><li>Peribrachial neurons fire at a high rate during REM sleep </li></ul></ul></ul><ul><ul><ul><li>Peribrachial lesions reduce REM sleep </li></ul></ul></ul><ul><ul><li>Pontine ACh neurons project to the thalamus (control of cortical arousal), to the basal forebrain (arousal and desynchrony), and to the tectum (rapid eye movements) </li></ul></ul><ul><ul><li>Pontine cells project via magnocellular cells within medulla to the spinal cord: release glycine to inhibit alpha-motoneurons (induce REM motor paralysis or atonia) </li></ul></ul>
    42. 42. Sleep and Neurotransmitters <ul><li>Sleep function is altered by </li></ul><ul><ul><li>Norepinephrine (arousal) </li></ul></ul><ul><ul><li>Serotonin (promotes sleep) </li></ul></ul><ul><ul><li>Dopamine (arousal) </li></ul></ul><ul><ul><li>Acetylcholine (in cortex – arousal) </li></ul></ul><ul><ul><li>Histamine (arousal) </li></ul></ul><ul><ul><li>GABA (promotes sleep) </li></ul></ul><ul><ul><li>Opioid/opiates (promote sleep) </li></ul></ul>
    43. 43. Myelencephalon <ul><li>The myelencephalon consists of the </li></ul><ul><ul><li>Medulla oblongata </li></ul></ul><ul><ul><li>The medulla is the most caudal portion of brain and is rostral to the spinal cord </li></ul></ul><ul><ul><li>The medulla contains part of the reticular formation </li></ul></ul><ul><ul><li>The nuclei of the medulla control vital functions such as regulation of the cardiovascular system, breathing, and skeletal muscle tone </li></ul></ul>

    ×