SlideShare a Scribd company logo
1 of 11
Download to read offline
Chapter 15
Exercise Solutions

EX15.1
For the circuit shown in Figure 15.7
            1
 f 3dB =
          2π RC
or
            1          1
RC =            =                = 3.979 × 10−6
         2π f3dB 2π ( 40 × 103 )
For R = 75 K
Then
C = 5.31×10−11 = 53.1 pF
We have C3 = 1.414C = 75.1 pF
        C4 = 0.707C = 37.5 pF

EX15.2
       1
 fC =
      CReq
or
           1            1
C=             =
        f c Req (105 )( 20 × 106 )
C = 0.5 pF

EX15.3
                                   C1    30
Low-frequency gain: T = −             =−    = −6
                                   C2     5
            fC C2 (100 × 10 )( 5 × 10 )
                           3         −12

 f 3dB =         =                       ⇒ f 3dB = 6.63 kHz
           2π CF     2π (12 × 10−12 )

EX15.4
             1
 f0 =
     2π 3RC
         1              1
RC =           =               = 6.13 × 10−6
      2π f 0 3 2π (15 × 10 ) 3
                          3


Let C = 0.001 μF = 1 nF
Then R = 6.13 kΩ so R2 = 8R = 49 kΩ

EX15.5
          1          1
 f0 =         ⇒C =
        2π RC      2π f 0 R
                 1
C=                          ⇒ C ≅ 0.02 μ F
        2π ( 800 ) (104 )
R2 = 2 R1 = 2 (10 ) ⇒ R2 = 20 kΩ

EX15.6
⎛ R1 ⎞
VTH = ⎜         ⎟ VH
      ⎝ R1 + R2 ⎠
     ⎛ R1 ⎞
2=⎜             ⎟ (12)
     ⎝ R1 + 20 ⎠
2 ( R1 + 20 ) = 12 R1
40 = 10 R1 ⇒ R1 = 4 kΩ

EX15.7
            ⎛ R1 ⎞
VTH − VTL = ⎜         ⎟ (VH − VL )
            ⎝ R1 + R2 ⎠
       ⎛ R1 ⎞
0.10 = ⎜         ⎟ (10 − [ −10])
       ⎝ R1 + R2 ⎠
     R2   20        R
1+      =    = 200 ⇒ 2 = 199
     R1 0.10        R1
     ⎛ R2 ⎞
VS = ⎜         ⎟ VREF
     ⎝ R1 + R2 ⎠
       ⎛    R ⎞       ⎛    1 ⎞
VREF = ⎜1 + 1 ⎟ VS = ⎜ 1 +   ⎟ (1) ⇒ VREF = 1.005 V
       ⎝    R2 ⎠      ⎝ 199 ⎠
     VH − VBE ( on ) − Vγ
I=
          R + 0.1
          10 − 0.7 − 0.7
R + 0.1 =                = 43 kΩ
               0.2
R = 42.9 kΩ

EX15.8
At t = 0− , let v0 = −5 so v X = −2.5. For t > 0
                             ⎛ −t ⎞
v X = 10 + ( −2.5 − 10 ) exp ⎜ ⎟
                             ⎝ rX ⎠
When v X = 5.0, output switches
                    ⎛ t ⎞
5.0 = 10 − 12.5 exp ⎜ − 1 ⎟
                    ⎝ rX ⎠
     ⎛ t ⎞ 10 − 5 5.0
exp ⎜ − 1 ⎟ =         =
     ⎝ rX ⎠ 12.5 12.5
     ⎛ t ⎞ 12.5                      ⎛ 12.5 ⎞
exp ⎜ + 1 ⎟ =         ⇒ t1 = rX ⋅ ln ⎜      ⎟ ⇒ t1 = rX ( 0.916 )
     ⎝ rX ⎠ 5.0                      ⎝ 5.0 ⎠
During the next part of the cycle
                            ⎛ t ⎞
v X = −5 + ( 5 − [ −5]) exp ⎜ − ⎟
                            ⎝ rX ⎠
When v X = −2.5, output switches
⎛ t ⎞
−2.5 = −5 + 10 exp ⎜ − 2 ⎟
                   ⎝ rX ⎠
    ⎛ t ⎞ 5 − 2.5 2.5
exp ⎜ − 2 ⎟ =    =
    ⎝ rX ⎠    10   10
    ⎛ t ⎞ 10                   ⎛ 10 ⎞
exp ⎜ + 2 ⎟ =   ⇒ t2 = rX ⋅ ln ⎜     ⎟ ⇒ t2 = rX (1.39 )
    ⎝  rX ⎠ 2.5                ⎝ 2.5 ⎠
                                                                           1
Period = t1 + t2 = T = ⎡( 0.916 ) + (1.39 ) ⎤ rX = 2.31rX ⇒ Frequency =
                       ⎣                    ⎦                           2.31rX
rX = ( 50 × 103 )( 0.01× 10 −6 ) = 5 × 10 −4 s ⇒ f = 866 Hz
                  t1                 ( 0.916 )
Duty cycle =           × 100% =                     × 100% ⇒ Duty cycle = 39.7%
               t1 + t2          ( 0.916 ) + (1.39 )




EX15.9
a.
rX = RX C X
     ⎛ R1 ⎞           ⎛ 10 ⎞
vY = ⎜         ⎟ v0 = ⎜         ⎟ (12 ) = 1.2 V
     ⎝ R1 + R2 ⎠      ⎝ 10 + 90 ⎠
        R1
β=           = 0.10
     R1 + R2
                                ⎡     0.7 ⎤
          ⎡1 + Vγ /VP ⎤         ⎢ 1 + 12 ⎥
T = rX ln ⎢           ⎥ = rX ln ⎢           ⎥
          ⎣ 1− β ⎦              ⎢1 − (0.10) ⎥
                                ⎢
                                ⎣           ⎥
                                            ⎦
T = 50 × 10−6 = rX ln [1.18] = (0.162) rX
            50 × 10−6
RX =                       ⇒ RX = 3.09 kΩ
       (0.1× 10−6 )(0.162)
b.        Recovery time
                            ⎛ t ⎞
v X = VP + (−1.2 − VP ) exp ⎜ − ⎟
                            ⎝ rX ⎠
When v X = Vγ , t = t2
⎛ t ⎞
0.7 = 12 + ( −1.2 − 12 ) exp ⎜ − 2 ⎟
                             ⎝ rX ⎠
     ⎛ t ⎞ 12 − 0.7
exp ⎜ − 2 ⎟ =            = 0.856
     ⎝ rX ⎠      13.2
           ⎛ 1 ⎞
t2 = rX ln ⎜       ⎟ = ( 0.155 ) rX
           ⎝ 0.856 ⎠
rX = ( 3.09 × 103 )( 0.1× 10−6 ) = 3.09 × 10−4 ⇒ t2 = 48.0 μ s

EX15.10
T = 1.1 RC
T = 75 × 10−6
Let C = 10 nF
Then
        75 × 10−6
R=                    = 6.82 K
    (1.1) (10 ×10−9 )

EX15.11
             1                                    1
 f =                      =                                                 ⇒ f = 802 Hz
    0.693 ( RA + 2 RB ) C ( 0.693) ⎡ 20 + 2 ( 80 ) ⎤ × 103 × ( 0.01× 10−6 )
                                   ⎣               ⎦
               R + RB               20 + 80
Duty cycle = A           × 100% =               × 100% ⇒ Duty cycle = 55.6%
              RA + 2 RB           20 + 2 ( 80 )

EX15.12
                  1 VP2
a.          P=     ⋅
                  2 RL
          VP = 2 RL P = 2 ( 8 )(1) ⇒ VP = 4 V
                  VP 4
           IP =     = ⇒ I P = 0.5 A
                  RL 8
b.        VCE = 12 − 4 = 8 V
           I C ≈ 0.5 A
So P = I C ⋅ VCE = ( 0.5 )( 8 ) ⇒ P = 4 W

EX15.13
VP = 2 RL PL = 2 ( 8 )(10 ) = 12.65 V
        ⎛ V ⎞
PS = VS ⎜ P ⎟
        ⎝ π RL ⎠
       PS π R2 (10 ) π ( 8 )
VS =          =
         VP      12.65
VS = 19.9 V

EX15.14
                     dV0   dV dV
Line regulation =       +
                          = 0 ⋅ Z+
                     dV    dVZ dV
Now
dV0 ⎛ 10 ⎞
               = ⎜1 + ⎟ = 2
            dVZ ⎝ 10 ⎠
 dVZ ⎛ rZ ⎞             10
   +
     =⎜          ⎟=             = 0.00227
dV     ⎝ rZ + R1 ⎠ 10 + 4400
So Line regulation = ( 2 )( 0.00227 ) = 0.00454
0.454%

EX15.15




V1 V0 − V1      ⎛1 1⎞ V
   =       ⇒ V1 ⎜ + ⎟ = 0
10   10         ⎝ 10 10 ⎠ 10
   ⎛ 2⎞ V                       V
V1 ⎜ ⎟ = 0 ⇒ V0 = 2V1 ⇒ V1 = 0
   ⎝ 10 ⎠ 10                    2
V0 − V1 V0 V0 − A0 L (VZ − V1 )
         +    +                 =0
   10      RL       R0
    V0 V0 V0 A0 LVZ V1 A0 LV1
      +  +   −     = −
    10 RL R0   R0   10  R0
                                   V0   A V
                              =        − 0L 0
                                  2(10) 2 R0
V0       V 1000 ( 6.3) V0 (1000 ) V0
   + I0 + 0 −         =    −
10       0.5  0.5       20   2 ( 0.5 )
V0 [0.10 + 2.0 − 0.05 + 1000] + I 0 = 12, 600
V0 (1002.05) + I 0 = 12, 600
For I 0 = 1 mA ⇒ V0 = 12.5732
For I 0 = 100 mA ⇒ V0 = 12.4744
                V0 ( NL ) − V0 ( FL )
Load reg =                              × 100%
                     V0 ( NL )
             12.5732 − 12.4744
            =                  × 100%
                  12.5732
            Load reg = 0.786%

EX15.16
a.
VZ − 3VBE ( on )
IC 3 =
            R1 + R2 + R3
             5.6 − 3 ( 0.6 )           3.8
IC 3 =                             =        ⇒ I C 3 = 0.482 mA
         3.9 + 3.4 + 0.576             7.88
                  ⎛I ⎞
I C 4 R4 = VT ln ⎜ C 3 ⎟
                  ⎝ IC 4 ⎠
                           ⎛ 0.482 ⎞
I C 4 (0.1) = (0.026) ln ⎜         ⎟
                           ⎝ IC 4 ⎠
By trial and error
                 I C 4 = 0.213 mA
VB 7 = 2(0.6) + (0.482)(3.9) ⇒ VB 7 = 3.08 V
b.
⎛ R13 ⎞
⎜           ⎟ V0 = VB 8 = VB 7
⎝ R13 + R12 ⎠
⎛ 2.23 ⎞
⎜             ⎟ (5) = 3.08
⎝ 2.23 + R12 ⎠
( 2.23)( 5 ) = ( 3.08 )( 2.23) + ( 3.08) R12
11.15 = 6.868 = 3.08R12 ⇒ R12 = 1.39 kΩ

TYU15.1
        1
 f 3dB =
      2π RC
        1        1
RC =        =          = 1.59 × 10−5
     2π f3dB 2π (104 )
Let C = 0.01 μ F ⇒ R = 1.59 kΩ
Then
C1 = 0.03546 μ F
C2 = 0.01392 μ F
C3 = 0.002024 μ F
                1                      1
T =                         =
                        6                   6
         ⎛ f ⎞        ⎛ 20 ⎞
      1+ ⎜     ⎟   1+ ⎜ ⎟
         ⎝ f3d ⎠      ⎝ 10 ⎠
T = 0.124 or T = −18.1 dB

TYU15.2
             1            1
 f 3dB =         ⇒ RC =
           2π RC        2π f3dB
                    1
RC =                            = 3.18 × 10−6
           2π ( 50 × 103 )
Let C = 0.001 μ F = 1 nF ⇒ R = 3.18 kΩ
Then
R1 = 2.94 kΩ
R2 = 3.44 kΩ
R3 = 1.22 kΩ
R4 = 8.31 kΩ
                        1
T = 0.01 =
                                     8
                       ⎛ f     ⎞
                   1 + ⎜ 3− dB ⎟
                       ⎝ f ⎠
              8              2
    ⎛ f     ⎞ ⎛ 1 ⎞       4
1 + ⎜ 3− dB ⎟ = ⎜  ⎟ = 10
    ⎝   f ⎠ ⎝ 0.01 ⎠
         2
⎛ f3− dB ⎞            f 3dB
⎜        ⎟ ≅ 10 ⇒ f =       ⇒ f ≅ 15.8 kHz
⎝ f ⎠                   10

TYU15.3
                         1
1-pole       T =                         ⇒ −3.87 dB
                                 2
                        ⎛ 12 ⎞
                     1+ ⎜ ⎟
                        ⎝ 10 ⎠
                        1
2-pole       T =                         ⇒ −4.88 dB
                                 4
                        ⎛ 12 ⎞
                     1+ ⎜ ⎟
                        ⎝ 10 ⎠
                        1
3-pole       T =                         ⇒ −6.0 dB
                                 6
                        ⎛ 12 ⎞
                     1+ ⎜ ⎟
                        ⎝ 10 ⎠
                         1
4-pole       T =                         ⇒ −7.24 dB
                                 8
                        ⎛ 12 ⎞
                     1+ ⎜ ⎟
                        ⎝ 10 ⎠

TYU15.4
       1
Req =
      fC C
              1     1
or f C C =      =        = 2 × 10−7
             Req 5 × 106
If C = 10 pF ⇒ fC = 20 kHz

TYU15.5
         1              1
 f0 =        =                         ⇒ f 0 ≅ 65 kHz
      2π 6 RC 2π 6 (10 )(100 × 10−12 )
                      4



R2 = 29 R = 29 (104 ) ⇒ R2 = 290 kΩ

TYU15.6
1                             1
 f0 =                        =                               ⇒ f 0 = 7.12 MHz
               ⎛ CC ⎞                     ⎡ (10−9 ) 2    ⎤
        2π L ⋅ ⎜ 1 2 ⎟           2π (10 ) ⎢
                                         −6
                                                   −9
                                                        ⋅⎥
               ⎝ C1 + C2 ⎠                ⎣ 2 × 10       ⎦
C2
   = gm R
C1
       C2 1          1
gm =      ⋅ =             ⇒ g m = 0.25 mA / V
       C1 R 4 × 103
We have
        ⎛ k ′ ⎞⎛ W ⎞
g m = 2 ⎜ ⎟⎜ ⎟ (VGS − VTh )
        ⎝ 2 ⎠⎝ L ⎠
k ′ ≅ 20 μ A / V 2 , VGS − VTh ≅ 1 V
     W   0.25 × 10−3
So     =                 = 12.5
     L ( 20 × 10−6 ) (1)
and a value of W / L = 12.5 is certainly reasonable.

TYU15.7
        ⎛R ⎞
VTH = − ⎜ 1 ⎟ VL
        ⎝ R2 ⎠
         ⎛R ⎞           R
0.10 = − ⎜ 1 ⎟ ( −10 ) ⇒ 1 = 0.010
         ⎝ R2 ⎠         R2
Let R1 = 0.10 kΩ then R2 = 10 kΩ

TYU15.8
a.
      ⎛ R2 ⎞             ⎛ 10 ⎞
VS = ⎜          ⎟ VREF = ⎜        ⎟ ( 2)
      ⎝ R1 + R2 ⎠        ⎝ 1 + 10 ⎠
     VS = 1.82 V
           ⎛ R1 ⎞                  ⎛ 1 ⎞
VTH = VS + ⎜         ⎟ VH = 1.82 + ⎜        ⎟ (10 )
           ⎝ R1 + R2 ⎠             ⎝ 1 + 10 ⎠
      VTH = 2.73 V
              ⎛ R1 ⎞                  ⎛ 1 ⎞
VTL =    VS + ⎜         ⎟ VL = 1.82 + ⎜        ⎟ ( −10 )
              ⎝ R1 + R2 ⎠             ⎝ 1 + 10 ⎠
         VTL = 0.91 V
b.
TYU15.9
     ⎛    R ⎞
VS = ⎜ 1 + 1 ⎟ VREF
     ⎝ R2 ⎠
           ⎛R ⎞                    ⎛R ⎞
VTH = VS − ⎜ 1 ⎟ VL and VTL = VS − ⎜ 1 ⎟ VH
           ⎝ R2 ⎠                  ⎝ R2 ⎠
                               ⎛R ⎞
Hysteresis Width = VTH − VTL = ⎜ 1 ⎟ (VH − VL )
                               ⎝ R2 ⎠
      ⎛R ⎞                    ⎛R ⎞
2.5 = ⎜ 1 ⎟ ( 5 − [ −5]) = 10 ⎜ 1 ⎟
      ⎝ R2 ⎠                  ⎝ R2 ⎠
    R
So 1 = 0.25
    R2
Then
          ⎛     R ⎞
VS = −1 = ⎜ 1 + 1 ⎟ VREF = (1 + 0.25)VREF ⇒ VREF = −0.8 V
          ⎝     R2 ⎠
Then
VTH = −1 − ( 0.25 )( −5 ) ⇒ VTH = 0.25 V
VTL = −1 − ( 0.25 )( 5 ) ⇒ VTL = −2.25 V

TYU15.10
      ⎛ R1 ⎞           ⎛ 10 ⎞          1
vX = ⎜          ⎟ v0 = ⎜         ⎟ v0 = v0
      ⎝ R1 + R2 ⎠      ⎝ 10 + 20 ⎠     3
                   10
t = 0,     vX = −
                    3
           ⎛ 10        ⎞      ⎛ t ⎞
v X = 10 + ⎜ − − 10 ⎟ exp ⎜ − ⎟
           ⎝ 3         ⎠      ⎝ rX ⎠
                                10
Output switches when v X =
                                 3
10                    ⎛ t1 ⎞
   = 10 − 13.33 exp   ⎜− ⎟
 3                    ⎝ rX ⎠
    ⎛ t ⎞ 10 − 3.33 6.67
exp ⎜ − 1 ⎟ =       =
    ⎝ rX ⎠    13.33   13.33
      ⎛ t ⎞ 13.33
exp ⎜ + 1 ⎟ =         ≅2
      ⎝ rX ⎠ 6.67
t1 = rX ln (2) = (0.693)rX
T = 2(0.693)rX
           1
f =
      2(0.693)rX
rX = RX C X = (104 )( 0.1×10 −6 ) = 1×10 −3 ⇒ f = 722 Hz ⇒ Duty cycle = 50%




TYU15.11
   ⎛ R1 ⎞        20
β =⎜         ⎟=        = 0.333
   ⎝ R1 + R2 ⎠ 20 + 40
rX = RX C X = (104 )( 0.01× 10−6 ) = 1× 10−4
                                          ⎡     0.7 ⎤
          ⎛ 1 + Vγ / VP   ⎞               ⎢ 1+ 8 ⎥
                          ⎟ = (1× 10 ) ln ⎢          ⎥ ⇒ T = 48.9 μ s
                                    −4
T = rX ln ⎜
          ⎝ 1− β          ⎠               ⎢1 − 0.333 ⎥
                                          ⎢
                                          ⎣          ⎥
                                                     ⎦
Recovery time
⎛ R1 ⎞           ⎛ 20 ⎞
vY = ⎜         ⎟ v0 = ⎜         ⎟ (8) = 2.667 V
     ⎝ R1 + R2 ⎠      ⎝ 20 + 40 ⎠
                              ⎛ t ⎞
0.7 = 8 + ( −2.667 − 8 ) exp ⎜ − 2 ⎟
                              ⎝ rX ⎠
     ⎛ t ⎞ 8 − 0.7
exp ⎜ − 2 ⎟ =         = 0.6844
     ⎝ rX ⎠ 10.66
           ⎛ 1 ⎞
t2 = rX ln ⎜       ⎟ ⇒ t2 = 37.9 μ s
           ⎝ 0.685 ⎠

TYU15.12
                1
 f =
       ( 0.693)( RA + RB ) C
                   1
RA + RB =
             ( 0.693) fC
Let C = 0.01 μ F,        f = 1kHz
                                1
RA + RB =                                    = 1.443 × 105
             ( 0.693) (103 )( 0.01×10−6 )
                         RA + RB
Duty cycle = 55 =                  × 100%
                         RA + 2 RB

55 =
        (1.443 ×10 ) (100 )
                    5



        (1.443 ×10 ) + R
                    5
                            B



RB    =
         (1.443 ×10 ) (100 − 55) ⇒ R
                    5

                                            = 118 kΩ so RA = 26.2 kΩ
                                       B
                    55

TYU15.13
       v01 ⎛ R2 ⎞ ⎛ 30 ⎞
a.         = ⎜ 1 + ⎟ = ⎜1 + ⎟ = 2.5
       vI ⎝        R1 ⎠ ⎝ 20 ⎠
       v02      R      50
           =− 4 =−        = −2.5
       vI       R3     20
                1 VL2 1 [12 − (−12)]2
(b)        P=    ⋅   = ⋅              = 240 mW
                2 RL 2       1.2
Or
P = 0.24 W
            12
c.              = V pi = 4.8 V
            2.5

More Related Content

What's hot

Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioCaleb Rangel
 
Ultrasound lecture 1 post
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 postlucky shumail
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma ediciónSohar Carr
 
Mecánica para ingeniería dinámica bedford - 5ed (sol)
Mecánica para ingeniería  dinámica   bedford - 5ed (sol)Mecánica para ingeniería  dinámica   bedford - 5ed (sol)
Mecánica para ingeniería dinámica bedford - 5ed (sol)sneydergustavo diaz
 
Dinamica estructural 170614215831
Dinamica estructural 170614215831Dinamica estructural 170614215831
Dinamica estructural 170614215831Miguel Ángel
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma ediciónSohar Carr
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusChit Laplana
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineeringmanish katara
 
Capitulo 9, 7ma edición
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma ediciónSohar Carr
 
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   TippensProblemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb TippensLUIS POWELL
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma ediciónSohar Carr
 
solucionario del capitulo 12
solucionario del capitulo 12 solucionario del capitulo 12
solucionario del capitulo 12 jasson silva
 

What's hot (17)

Ch15s
Ch15sCh15s
Ch15s
 
Sect2 3
Sect2 3Sect2 3
Sect2 3
 
Ch11s
Ch11sCh11s
Ch11s
 
Ch08s
Ch08sCh08s
Ch08s
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
 
Ultrasound lecture 1 post
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 post
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
 
Mecánica para ingeniería dinámica bedford - 5ed (sol)
Mecánica para ingeniería  dinámica   bedford - 5ed (sol)Mecánica para ingeniería  dinámica   bedford - 5ed (sol)
Mecánica para ingeniería dinámica bedford - 5ed (sol)
 
Dinamica estructural 170614215831
Dinamica estructural 170614215831Dinamica estructural 170614215831
Dinamica estructural 170614215831
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Ch10p
Ch10pCh10p
Ch10p
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 
Capitulo 9, 7ma edición
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma edición
 
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   TippensProblemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
 
solucionario del capitulo 12
solucionario del capitulo 12 solucionario del capitulo 12
solucionario del capitulo 12
 

Viewers also liked

Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Ontico
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Ontico
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Ontico
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Ontico
 

Viewers also liked (14)

Ch09s
Ch09sCh09s
Ch09s
 
Ch06s
Ch06sCh06s
Ch06s
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch08p
Ch08pCh08p
Ch08p
 
Ch05p
Ch05pCh05p
Ch05p
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch04p
Ch04pCh04p
Ch04p
 
Ch16s
Ch16sCh16s
Ch16s
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
 

Similar to Ch15p

Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
 
Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2nayakq
 
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxrafbolet0
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayanbrandwin marcelo lavado
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensãoJhayson Carvalho
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
 

Similar to Ch15p (16)

Ch13s
Ch13sCh13s
Ch13s
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch06p
Ch06pCh06p
Ch06p
 
Ch04s
Ch04sCh04s
Ch04s
 
Ch13p
Ch13pCh13p
Ch13p
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 
Ejericio analisis
Ejericio analisisEjericio analisis
Ejericio analisis
 
Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2
 
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Ch16p
Ch16pCh16p
Ch16p
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 

More from Bilal Sarwar

More from Bilal Sarwar (6)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch05s
Ch05sCh05s
Ch05s
 
Ch03s
Ch03sCh03s
Ch03s
 

Recently uploaded

Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...Eticketing.co
 
Expert Pool Table Refelting in Lee & Collier County, FL
Expert Pool Table Refelting in Lee & Collier County, FLExpert Pool Table Refelting in Lee & Collier County, FL
Expert Pool Table Refelting in Lee & Collier County, FLAll American Billiards
 
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝soniya singh
 
IPL Quiz ( weekly quiz) by SJU quizzers.
IPL Quiz ( weekly quiz) by SJU quizzers.IPL Quiz ( weekly quiz) by SJU quizzers.
IPL Quiz ( weekly quiz) by SJU quizzers.SJU Quizzers
 
Technical Data | ThermTec Wild 335 | Optics Trade
Technical Data | ThermTec Wild 335 | Optics TradeTechnical Data | ThermTec Wild 335 | Optics Trade
Technical Data | ThermTec Wild 335 | Optics TradeOptics-Trade
 
Technical Data | ThermTec Wild 650L | Optics Trade
Technical Data | ThermTec Wild 650L | Optics TradeTechnical Data | ThermTec Wild 650L | Optics Trade
Technical Data | ThermTec Wild 650L | Optics TradeOptics-Trade
 
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样7pn7zv3i
 
Instruction Manual | ThermTec Hunt Thermal Clip-On Series | Optics Trade
Instruction Manual | ThermTec Hunt Thermal Clip-On Series | Optics TradeInstruction Manual | ThermTec Hunt Thermal Clip-On Series | Optics Trade
Instruction Manual | ThermTec Hunt Thermal Clip-On Series | Optics TradeOptics-Trade
 
Austria vs France David Alaba Switches Position to Defender in Austria's Euro...
Austria vs France David Alaba Switches Position to Defender in Austria's Euro...Austria vs France David Alaba Switches Position to Defender in Austria's Euro...
Austria vs France David Alaba Switches Position to Defender in Austria's Euro...Eticketing.co
 
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docxFrance's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docxEuro Cup 2024 Tickets
 
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics TradeInstruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics TradeOptics-Trade
 
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesMysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best Servicesnajka9823
 
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdfJORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdfArturo Pacheco Alvarez
 
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/78377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7dollysharma2066
 
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited MoneyReal Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited MoneyApk Toly
 
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024Judith Chuquipul
 

Recently uploaded (18)

Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
Croatia vs Italy UEFA Euro 2024 Croatia's Checkered Legacy on Display in New ...
 
Expert Pool Table Refelting in Lee & Collier County, FL
Expert Pool Table Refelting in Lee & Collier County, FLExpert Pool Table Refelting in Lee & Collier County, FL
Expert Pool Table Refelting in Lee & Collier County, FL
 
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
Call Girls in Dhaula Kuan 💯Call Us 🔝8264348440🔝
 
IPL Quiz ( weekly quiz) by SJU quizzers.
IPL Quiz ( weekly quiz) by SJU quizzers.IPL Quiz ( weekly quiz) by SJU quizzers.
IPL Quiz ( weekly quiz) by SJU quizzers.
 
Technical Data | ThermTec Wild 335 | Optics Trade
Technical Data | ThermTec Wild 335 | Optics TradeTechnical Data | ThermTec Wild 335 | Optics Trade
Technical Data | ThermTec Wild 335 | Optics Trade
 
Technical Data | ThermTec Wild 650L | Optics Trade
Technical Data | ThermTec Wild 650L | Optics TradeTechnical Data | ThermTec Wild 650L | Optics Trade
Technical Data | ThermTec Wild 650L | Optics Trade
 
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
办理学位证(KCL文凭证书)伦敦国王学院毕业证成绩单原版一模一样
 
Instruction Manual | ThermTec Hunt Thermal Clip-On Series | Optics Trade
Instruction Manual | ThermTec Hunt Thermal Clip-On Series | Optics TradeInstruction Manual | ThermTec Hunt Thermal Clip-On Series | Optics Trade
Instruction Manual | ThermTec Hunt Thermal Clip-On Series | Optics Trade
 
Austria vs France David Alaba Switches Position to Defender in Austria's Euro...
Austria vs France David Alaba Switches Position to Defender in Austria's Euro...Austria vs France David Alaba Switches Position to Defender in Austria's Euro...
Austria vs France David Alaba Switches Position to Defender in Austria's Euro...
 
young Call girls in Moolchand 🔝 9953056974 🔝 Delhi escort Service
young Call girls in Moolchand 🔝 9953056974 🔝 Delhi escort Serviceyoung Call girls in Moolchand 🔝 9953056974 🔝 Delhi escort Service
young Call girls in Moolchand 🔝 9953056974 🔝 Delhi escort Service
 
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docxFrance's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
France's UEFA Euro 2024 Ambitions Amid Coman's Injury.docx
 
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics TradeInstruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
Instruction Manual | ThermTec Wild Thermal Monoculars | Optics Trade
 
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best ServicesMysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
Mysore Call Girls 7001305949 WhatsApp Number 24x7 Best Services
 
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdfJORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
JORNADA 3 LIGA MURO 2024GHGHGHGHGHGH.pdf
 
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/78377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
8377087607 ☎, Cash On Delivery Call Girls Service In Hauz Khas Delhi Enjoy 24/7
 
FULL ENJOY Call Girls In Savitri Nagar (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In  Savitri Nagar (Delhi) Call Us 9953056974FULL ENJOY Call Girls In  Savitri Nagar (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In Savitri Nagar (Delhi) Call Us 9953056974
 
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited MoneyReal Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
Real Moto 2 MOD APK v1.1.721 All Bikes, Unlimited Money
 
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
Resultados del Campeonato mundial de Marcha por equipos Antalya 2024
 

Ch15p

  • 1. Chapter 15 Exercise Solutions EX15.1 For the circuit shown in Figure 15.7 1 f 3dB = 2π RC or 1 1 RC = = = 3.979 × 10−6 2π f3dB 2π ( 40 × 103 ) For R = 75 K Then C = 5.31×10−11 = 53.1 pF We have C3 = 1.414C = 75.1 pF C4 = 0.707C = 37.5 pF EX15.2 1 fC = CReq or 1 1 C= = f c Req (105 )( 20 × 106 ) C = 0.5 pF EX15.3 C1 30 Low-frequency gain: T = − =− = −6 C2 5 fC C2 (100 × 10 )( 5 × 10 ) 3 −12 f 3dB = = ⇒ f 3dB = 6.63 kHz 2π CF 2π (12 × 10−12 ) EX15.4 1 f0 = 2π 3RC 1 1 RC = = = 6.13 × 10−6 2π f 0 3 2π (15 × 10 ) 3 3 Let C = 0.001 μF = 1 nF Then R = 6.13 kΩ so R2 = 8R = 49 kΩ EX15.5 1 1 f0 = ⇒C = 2π RC 2π f 0 R 1 C= ⇒ C ≅ 0.02 μ F 2π ( 800 ) (104 ) R2 = 2 R1 = 2 (10 ) ⇒ R2 = 20 kΩ EX15.6
  • 2. ⎛ R1 ⎞ VTH = ⎜ ⎟ VH ⎝ R1 + R2 ⎠ ⎛ R1 ⎞ 2=⎜ ⎟ (12) ⎝ R1 + 20 ⎠ 2 ( R1 + 20 ) = 12 R1 40 = 10 R1 ⇒ R1 = 4 kΩ EX15.7 ⎛ R1 ⎞ VTH − VTL = ⎜ ⎟ (VH − VL ) ⎝ R1 + R2 ⎠ ⎛ R1 ⎞ 0.10 = ⎜ ⎟ (10 − [ −10]) ⎝ R1 + R2 ⎠ R2 20 R 1+ = = 200 ⇒ 2 = 199 R1 0.10 R1 ⎛ R2 ⎞ VS = ⎜ ⎟ VREF ⎝ R1 + R2 ⎠ ⎛ R ⎞ ⎛ 1 ⎞ VREF = ⎜1 + 1 ⎟ VS = ⎜ 1 + ⎟ (1) ⇒ VREF = 1.005 V ⎝ R2 ⎠ ⎝ 199 ⎠ VH − VBE ( on ) − Vγ I= R + 0.1 10 − 0.7 − 0.7 R + 0.1 = = 43 kΩ 0.2 R = 42.9 kΩ EX15.8 At t = 0− , let v0 = −5 so v X = −2.5. For t > 0 ⎛ −t ⎞ v X = 10 + ( −2.5 − 10 ) exp ⎜ ⎟ ⎝ rX ⎠ When v X = 5.0, output switches ⎛ t ⎞ 5.0 = 10 − 12.5 exp ⎜ − 1 ⎟ ⎝ rX ⎠ ⎛ t ⎞ 10 − 5 5.0 exp ⎜ − 1 ⎟ = = ⎝ rX ⎠ 12.5 12.5 ⎛ t ⎞ 12.5 ⎛ 12.5 ⎞ exp ⎜ + 1 ⎟ = ⇒ t1 = rX ⋅ ln ⎜ ⎟ ⇒ t1 = rX ( 0.916 ) ⎝ rX ⎠ 5.0 ⎝ 5.0 ⎠ During the next part of the cycle ⎛ t ⎞ v X = −5 + ( 5 − [ −5]) exp ⎜ − ⎟ ⎝ rX ⎠ When v X = −2.5, output switches
  • 3. ⎛ t ⎞ −2.5 = −5 + 10 exp ⎜ − 2 ⎟ ⎝ rX ⎠ ⎛ t ⎞ 5 − 2.5 2.5 exp ⎜ − 2 ⎟ = = ⎝ rX ⎠ 10 10 ⎛ t ⎞ 10 ⎛ 10 ⎞ exp ⎜ + 2 ⎟ = ⇒ t2 = rX ⋅ ln ⎜ ⎟ ⇒ t2 = rX (1.39 ) ⎝ rX ⎠ 2.5 ⎝ 2.5 ⎠ 1 Period = t1 + t2 = T = ⎡( 0.916 ) + (1.39 ) ⎤ rX = 2.31rX ⇒ Frequency = ⎣ ⎦ 2.31rX rX = ( 50 × 103 )( 0.01× 10 −6 ) = 5 × 10 −4 s ⇒ f = 866 Hz t1 ( 0.916 ) Duty cycle = × 100% = × 100% ⇒ Duty cycle = 39.7% t1 + t2 ( 0.916 ) + (1.39 ) EX15.9 a. rX = RX C X ⎛ R1 ⎞ ⎛ 10 ⎞ vY = ⎜ ⎟ v0 = ⎜ ⎟ (12 ) = 1.2 V ⎝ R1 + R2 ⎠ ⎝ 10 + 90 ⎠ R1 β= = 0.10 R1 + R2 ⎡ 0.7 ⎤ ⎡1 + Vγ /VP ⎤ ⎢ 1 + 12 ⎥ T = rX ln ⎢ ⎥ = rX ln ⎢ ⎥ ⎣ 1− β ⎦ ⎢1 − (0.10) ⎥ ⎢ ⎣ ⎥ ⎦ T = 50 × 10−6 = rX ln [1.18] = (0.162) rX 50 × 10−6 RX = ⇒ RX = 3.09 kΩ (0.1× 10−6 )(0.162) b. Recovery time ⎛ t ⎞ v X = VP + (−1.2 − VP ) exp ⎜ − ⎟ ⎝ rX ⎠ When v X = Vγ , t = t2
  • 4. ⎛ t ⎞ 0.7 = 12 + ( −1.2 − 12 ) exp ⎜ − 2 ⎟ ⎝ rX ⎠ ⎛ t ⎞ 12 − 0.7 exp ⎜ − 2 ⎟ = = 0.856 ⎝ rX ⎠ 13.2 ⎛ 1 ⎞ t2 = rX ln ⎜ ⎟ = ( 0.155 ) rX ⎝ 0.856 ⎠ rX = ( 3.09 × 103 )( 0.1× 10−6 ) = 3.09 × 10−4 ⇒ t2 = 48.0 μ s EX15.10 T = 1.1 RC T = 75 × 10−6 Let C = 10 nF Then 75 × 10−6 R= = 6.82 K (1.1) (10 ×10−9 ) EX15.11 1 1 f = = ⇒ f = 802 Hz 0.693 ( RA + 2 RB ) C ( 0.693) ⎡ 20 + 2 ( 80 ) ⎤ × 103 × ( 0.01× 10−6 ) ⎣ ⎦ R + RB 20 + 80 Duty cycle = A × 100% = × 100% ⇒ Duty cycle = 55.6% RA + 2 RB 20 + 2 ( 80 ) EX15.12 1 VP2 a. P= ⋅ 2 RL VP = 2 RL P = 2 ( 8 )(1) ⇒ VP = 4 V VP 4 IP = = ⇒ I P = 0.5 A RL 8 b. VCE = 12 − 4 = 8 V I C ≈ 0.5 A So P = I C ⋅ VCE = ( 0.5 )( 8 ) ⇒ P = 4 W EX15.13 VP = 2 RL PL = 2 ( 8 )(10 ) = 12.65 V ⎛ V ⎞ PS = VS ⎜ P ⎟ ⎝ π RL ⎠ PS π R2 (10 ) π ( 8 ) VS = = VP 12.65 VS = 19.9 V EX15.14 dV0 dV dV Line regulation = + = 0 ⋅ Z+ dV dVZ dV Now
  • 5. dV0 ⎛ 10 ⎞ = ⎜1 + ⎟ = 2 dVZ ⎝ 10 ⎠ dVZ ⎛ rZ ⎞ 10 + =⎜ ⎟= = 0.00227 dV ⎝ rZ + R1 ⎠ 10 + 4400 So Line regulation = ( 2 )( 0.00227 ) = 0.00454 0.454% EX15.15 V1 V0 − V1 ⎛1 1⎞ V = ⇒ V1 ⎜ + ⎟ = 0 10 10 ⎝ 10 10 ⎠ 10 ⎛ 2⎞ V V V1 ⎜ ⎟ = 0 ⇒ V0 = 2V1 ⇒ V1 = 0 ⎝ 10 ⎠ 10 2 V0 − V1 V0 V0 − A0 L (VZ − V1 ) + + =0 10 RL R0 V0 V0 V0 A0 LVZ V1 A0 LV1 + + − = − 10 RL R0 R0 10 R0 V0 A V = − 0L 0 2(10) 2 R0 V0 V 1000 ( 6.3) V0 (1000 ) V0 + I0 + 0 − = − 10 0.5 0.5 20 2 ( 0.5 ) V0 [0.10 + 2.0 − 0.05 + 1000] + I 0 = 12, 600 V0 (1002.05) + I 0 = 12, 600 For I 0 = 1 mA ⇒ V0 = 12.5732 For I 0 = 100 mA ⇒ V0 = 12.4744 V0 ( NL ) − V0 ( FL ) Load reg = × 100% V0 ( NL ) 12.5732 − 12.4744 = × 100% 12.5732 Load reg = 0.786% EX15.16 a.
  • 6. VZ − 3VBE ( on ) IC 3 = R1 + R2 + R3 5.6 − 3 ( 0.6 ) 3.8 IC 3 = = ⇒ I C 3 = 0.482 mA 3.9 + 3.4 + 0.576 7.88 ⎛I ⎞ I C 4 R4 = VT ln ⎜ C 3 ⎟ ⎝ IC 4 ⎠ ⎛ 0.482 ⎞ I C 4 (0.1) = (0.026) ln ⎜ ⎟ ⎝ IC 4 ⎠ By trial and error I C 4 = 0.213 mA VB 7 = 2(0.6) + (0.482)(3.9) ⇒ VB 7 = 3.08 V b. ⎛ R13 ⎞ ⎜ ⎟ V0 = VB 8 = VB 7 ⎝ R13 + R12 ⎠ ⎛ 2.23 ⎞ ⎜ ⎟ (5) = 3.08 ⎝ 2.23 + R12 ⎠ ( 2.23)( 5 ) = ( 3.08 )( 2.23) + ( 3.08) R12 11.15 = 6.868 = 3.08R12 ⇒ R12 = 1.39 kΩ TYU15.1 1 f 3dB = 2π RC 1 1 RC = = = 1.59 × 10−5 2π f3dB 2π (104 ) Let C = 0.01 μ F ⇒ R = 1.59 kΩ Then C1 = 0.03546 μ F C2 = 0.01392 μ F C3 = 0.002024 μ F 1 1 T = = 6 6 ⎛ f ⎞ ⎛ 20 ⎞ 1+ ⎜ ⎟ 1+ ⎜ ⎟ ⎝ f3d ⎠ ⎝ 10 ⎠ T = 0.124 or T = −18.1 dB TYU15.2 1 1 f 3dB = ⇒ RC = 2π RC 2π f3dB 1 RC = = 3.18 × 10−6 2π ( 50 × 103 ) Let C = 0.001 μ F = 1 nF ⇒ R = 3.18 kΩ Then
  • 7. R1 = 2.94 kΩ R2 = 3.44 kΩ R3 = 1.22 kΩ R4 = 8.31 kΩ 1 T = 0.01 = 8 ⎛ f ⎞ 1 + ⎜ 3− dB ⎟ ⎝ f ⎠ 8 2 ⎛ f ⎞ ⎛ 1 ⎞ 4 1 + ⎜ 3− dB ⎟ = ⎜ ⎟ = 10 ⎝ f ⎠ ⎝ 0.01 ⎠ 2 ⎛ f3− dB ⎞ f 3dB ⎜ ⎟ ≅ 10 ⇒ f = ⇒ f ≅ 15.8 kHz ⎝ f ⎠ 10 TYU15.3 1 1-pole T = ⇒ −3.87 dB 2 ⎛ 12 ⎞ 1+ ⎜ ⎟ ⎝ 10 ⎠ 1 2-pole T = ⇒ −4.88 dB 4 ⎛ 12 ⎞ 1+ ⎜ ⎟ ⎝ 10 ⎠ 1 3-pole T = ⇒ −6.0 dB 6 ⎛ 12 ⎞ 1+ ⎜ ⎟ ⎝ 10 ⎠ 1 4-pole T = ⇒ −7.24 dB 8 ⎛ 12 ⎞ 1+ ⎜ ⎟ ⎝ 10 ⎠ TYU15.4 1 Req = fC C 1 1 or f C C = = = 2 × 10−7 Req 5 × 106 If C = 10 pF ⇒ fC = 20 kHz TYU15.5 1 1 f0 = = ⇒ f 0 ≅ 65 kHz 2π 6 RC 2π 6 (10 )(100 × 10−12 ) 4 R2 = 29 R = 29 (104 ) ⇒ R2 = 290 kΩ TYU15.6
  • 8. 1 1 f0 = = ⇒ f 0 = 7.12 MHz ⎛ CC ⎞ ⎡ (10−9 ) 2 ⎤ 2π L ⋅ ⎜ 1 2 ⎟ 2π (10 ) ⎢ −6 −9 ⋅⎥ ⎝ C1 + C2 ⎠ ⎣ 2 × 10 ⎦ C2 = gm R C1 C2 1 1 gm = ⋅ = ⇒ g m = 0.25 mA / V C1 R 4 × 103 We have ⎛ k ′ ⎞⎛ W ⎞ g m = 2 ⎜ ⎟⎜ ⎟ (VGS − VTh ) ⎝ 2 ⎠⎝ L ⎠ k ′ ≅ 20 μ A / V 2 , VGS − VTh ≅ 1 V W 0.25 × 10−3 So = = 12.5 L ( 20 × 10−6 ) (1) and a value of W / L = 12.5 is certainly reasonable. TYU15.7 ⎛R ⎞ VTH = − ⎜ 1 ⎟ VL ⎝ R2 ⎠ ⎛R ⎞ R 0.10 = − ⎜ 1 ⎟ ( −10 ) ⇒ 1 = 0.010 ⎝ R2 ⎠ R2 Let R1 = 0.10 kΩ then R2 = 10 kΩ TYU15.8 a. ⎛ R2 ⎞ ⎛ 10 ⎞ VS = ⎜ ⎟ VREF = ⎜ ⎟ ( 2) ⎝ R1 + R2 ⎠ ⎝ 1 + 10 ⎠ VS = 1.82 V ⎛ R1 ⎞ ⎛ 1 ⎞ VTH = VS + ⎜ ⎟ VH = 1.82 + ⎜ ⎟ (10 ) ⎝ R1 + R2 ⎠ ⎝ 1 + 10 ⎠ VTH = 2.73 V ⎛ R1 ⎞ ⎛ 1 ⎞ VTL = VS + ⎜ ⎟ VL = 1.82 + ⎜ ⎟ ( −10 ) ⎝ R1 + R2 ⎠ ⎝ 1 + 10 ⎠ VTL = 0.91 V b.
  • 9. TYU15.9 ⎛ R ⎞ VS = ⎜ 1 + 1 ⎟ VREF ⎝ R2 ⎠ ⎛R ⎞ ⎛R ⎞ VTH = VS − ⎜ 1 ⎟ VL and VTL = VS − ⎜ 1 ⎟ VH ⎝ R2 ⎠ ⎝ R2 ⎠ ⎛R ⎞ Hysteresis Width = VTH − VTL = ⎜ 1 ⎟ (VH − VL ) ⎝ R2 ⎠ ⎛R ⎞ ⎛R ⎞ 2.5 = ⎜ 1 ⎟ ( 5 − [ −5]) = 10 ⎜ 1 ⎟ ⎝ R2 ⎠ ⎝ R2 ⎠ R So 1 = 0.25 R2 Then ⎛ R ⎞ VS = −1 = ⎜ 1 + 1 ⎟ VREF = (1 + 0.25)VREF ⇒ VREF = −0.8 V ⎝ R2 ⎠ Then VTH = −1 − ( 0.25 )( −5 ) ⇒ VTH = 0.25 V VTL = −1 − ( 0.25 )( 5 ) ⇒ VTL = −2.25 V TYU15.10 ⎛ R1 ⎞ ⎛ 10 ⎞ 1 vX = ⎜ ⎟ v0 = ⎜ ⎟ v0 = v0 ⎝ R1 + R2 ⎠ ⎝ 10 + 20 ⎠ 3 10 t = 0, vX = − 3 ⎛ 10 ⎞ ⎛ t ⎞ v X = 10 + ⎜ − − 10 ⎟ exp ⎜ − ⎟ ⎝ 3 ⎠ ⎝ rX ⎠ 10 Output switches when v X = 3
  • 10. 10 ⎛ t1 ⎞ = 10 − 13.33 exp ⎜− ⎟ 3 ⎝ rX ⎠ ⎛ t ⎞ 10 − 3.33 6.67 exp ⎜ − 1 ⎟ = = ⎝ rX ⎠ 13.33 13.33 ⎛ t ⎞ 13.33 exp ⎜ + 1 ⎟ = ≅2 ⎝ rX ⎠ 6.67 t1 = rX ln (2) = (0.693)rX T = 2(0.693)rX 1 f = 2(0.693)rX rX = RX C X = (104 )( 0.1×10 −6 ) = 1×10 −3 ⇒ f = 722 Hz ⇒ Duty cycle = 50% TYU15.11 ⎛ R1 ⎞ 20 β =⎜ ⎟= = 0.333 ⎝ R1 + R2 ⎠ 20 + 40 rX = RX C X = (104 )( 0.01× 10−6 ) = 1× 10−4 ⎡ 0.7 ⎤ ⎛ 1 + Vγ / VP ⎞ ⎢ 1+ 8 ⎥ ⎟ = (1× 10 ) ln ⎢ ⎥ ⇒ T = 48.9 μ s −4 T = rX ln ⎜ ⎝ 1− β ⎠ ⎢1 − 0.333 ⎥ ⎢ ⎣ ⎥ ⎦ Recovery time
  • 11. ⎛ R1 ⎞ ⎛ 20 ⎞ vY = ⎜ ⎟ v0 = ⎜ ⎟ (8) = 2.667 V ⎝ R1 + R2 ⎠ ⎝ 20 + 40 ⎠ ⎛ t ⎞ 0.7 = 8 + ( −2.667 − 8 ) exp ⎜ − 2 ⎟ ⎝ rX ⎠ ⎛ t ⎞ 8 − 0.7 exp ⎜ − 2 ⎟ = = 0.6844 ⎝ rX ⎠ 10.66 ⎛ 1 ⎞ t2 = rX ln ⎜ ⎟ ⇒ t2 = 37.9 μ s ⎝ 0.685 ⎠ TYU15.12 1 f = ( 0.693)( RA + RB ) C 1 RA + RB = ( 0.693) fC Let C = 0.01 μ F, f = 1kHz 1 RA + RB = = 1.443 × 105 ( 0.693) (103 )( 0.01×10−6 ) RA + RB Duty cycle = 55 = × 100% RA + 2 RB 55 = (1.443 ×10 ) (100 ) 5 (1.443 ×10 ) + R 5 B RB = (1.443 ×10 ) (100 − 55) ⇒ R 5 = 118 kΩ so RA = 26.2 kΩ B 55 TYU15.13 v01 ⎛ R2 ⎞ ⎛ 30 ⎞ a. = ⎜ 1 + ⎟ = ⎜1 + ⎟ = 2.5 vI ⎝ R1 ⎠ ⎝ 20 ⎠ v02 R 50 =− 4 =− = −2.5 vI R3 20 1 VL2 1 [12 − (−12)]2 (b) P= ⋅ = ⋅ = 240 mW 2 RL 2 1.2 Or P = 0.24 W 12 c. = V pi = 4.8 V 2.5