Your SlideShare is downloading. ×
0
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Using	
  Advanced	
  Analy7cs	
  to	
  bring	
  
Business	
  Value	
  
...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Tiger	
  Analy7cs	
  
•  Bou6que	
  consul6ng	
  firm	
  solving	
  busi...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
•  Display	
  Adver6sing	
  through	
  Real-­‐6me	
  bidding	
  (RTB)	
...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Display	
  Adver7sing	
  through	
  Real-­‐7me	
  
bidding	
  (RTB)	
  ...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
	
  
5
Display	
  Adver7sing	
  –	
  Real	
  Time	
  Bidding	
  
Millis...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
	
  
6
Display	
  Adver7sing	
  –	
  Real	
  Time	
  Bidding	
  
Target...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Real	
  Time	
  Bidding	
  (RTB)	
  for	
  Display	
  Ads	
  
7
Ad-­‐Ex...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Business	
  Problem	
  
•  Click-­‐through	
  rate	
  (CTR)	
  predic6o...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Maximizing	
  the	
  CTR	
  is	
  Cri7cal	
  For	
  Cost	
  Op7miza7on	...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Sample	
  data	
  
10
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Data	
  challenges	
  
•  Challenges	
  
–  More	
  than	
  5000	
  var...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
•  Case	
  sampling	
  
–  Keep	
  all	
  impressions	
  with	
  clicks...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Logis7c	
  Regression	
  results	
  
13
- "
50 "
100 "
150 "
200 "
250 ...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
   14
Insights	
  –	
  Final	
  set	
  of	
  variables	
  
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Twier	
  –	
  CTR	
  Predic7on	
  
15
NLP
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Credit	
  Card	
  Customer	
  Acquisi7on	
  	
  
Through	
  Social	
  M...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Social Media provides rich data to marketers
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Ads	
  on	
  Facebook	
  
Newsfeed	
  on	
  Desktop	
   Newsfeed	
  on	...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Facebook	
  Ad	
  Pla`orm	
  -­‐-­‐	
  targe7ng	
  
19
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Facebook	
  Ad	
  Pla`orm	
  -­‐-­‐	
  pricing	
  
20
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Case	
  study:	
  credit	
  card	
  marke7ng	
  
The image cannot be di...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Micro	
  Segments	
  
1	
  Segment	
   50	
  Segments	
  
50	
  x	
  2	...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Methodology	
  
•  Iden6fy	
  high	
  performance	
  segments	
  
–  St...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Data	
  aggrega7on	
  
Segment	
  Level	
  Data	
  
(Sparse	
  and	
  N...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Segment	
  performance	
  es7ma7on	
  
Model	
  Es7mates	
  
Observed	
...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Bidding	
  
Brand	
  A	
  
Brand	
  B	
  
Other	
  Compe77on	
  for	
  ...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Budget	
  Alloca7on	
  
•  Increase	
  budget	
  for	
  high	
  
perfor...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Methodology	
  
Segment	
  Level	
  	
  
Observed	
  Data	
  
Inferred	...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Results:	
  Increased	
  CTR	
  
29
•  Overall increase in CTR by 50% a...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Results:	
  Lower	
  costs	
  
30
•  Overall decrease in CPA of 25% acr...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Concluding	
  remarks	
  
•  Online	
  and	
  social	
  adver6sing	
  a...
 
Copyright	
  ©	
  2013.	
  Tiger	
  Analy7cs	
  
Ques7ons	
  /	
  Comments	
  ?	
  
	
  
mahesh@7geranaly7cs.com	
  
www...
Upcoming SlideShare
Loading in...5
×

Using Advanced Analyics to bring Business Value

208

Published on

Two case studies in Digital Advertising

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
208
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
10
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "Using Advanced Analyics to bring Business Value "

  1. 1.   Copyright  ©  2013.  Tiger  Analy7cs   Using  Advanced  Analy7cs  to  bring   Business  Value     Two  case  studies  in  Digital  Adver7sing   _________________________   Mahesh  Kumar   CEO,  Tiger  Analy6cs    
  2. 2.   Copyright  ©  2013.  Tiger  Analy7cs   Tiger  Analy7cs   •  Bou6que  consul6ng  firm  solving  business  problems  using   advanced  data  analy6cs   •  Focus  areas   –  Digital  adver6sing  and  Social  Media     –  Marke6ng  and  Customer  Analy6cs   –  Retail  and  CPG   –  Transporta6on   •  Offices  in  Bay  area,  North  Carolina,  and  India  
  3. 3.   Copyright  ©  2013.  Tiger  Analy7cs   •  Display  Adver6sing  through  Real-­‐6me  bidding  (RTB)   –  Background  on  RTB     –  Business  problem:  improve  CTR   –  Solu6on  Approach  and  Results   •  Credit  Card  Customer  Acquisi6on  via  Facebook  Ads   –  Facebook  ads  plaOorm   –  Business  problem:  op6mal  targe6ng  and  bidding   –  Applica6on  to  credit  card  marke6ng   3 Overview  –  Two  case  studies  
  4. 4.   Copyright  ©  2013.  Tiger  Analy7cs   Display  Adver7sing  through  Real-­‐7me   bidding  (RTB)       Case  Study  #  1    
  5. 5.   Copyright  ©  2013.  Tiger  Analy7cs     5 Display  Adver7sing  –  Real  Time  Bidding   Milliseconds to bid and load ad … Waiting for ad from ad exchange … Male, 20-30 yrs, NYC Tech user
  6. 6.   Copyright  ©  2013.  Tiger  Analy7cs     6 Display  Adver7sing  –  Real  Time  Bidding   Targeted Ads
  7. 7.   Copyright  ©  2013.  Tiger  Analy7cs   Real  Time  Bidding  (RTB)  for  Display  Ads   7 Ad-­‐Exchange   Ad-network 2 Publisher (NYT.com) Tech section Ad-network 1 Ad-network 3 Advertiser Advertiser Advertiser Male, 20-30 yrs, New York, Tech user •  The  en6re  process  takes  less  than  500  milliseconds   •  RTB  share  of  online  ads  is  es6mated  to  be  $2B  per  year  
  8. 8.   Copyright  ©  2013.  Tiger  Analy7cs   Business  Problem   •  Click-­‐through  rate  (CTR)  predic6on:  Given  a  campaign  line,   what  is  the  predicted  CTR  for  an  impression  based  on   –  User  characteris6cs   –  Webpage  characteris6cs   •  Iden6fy  impressions  with  highest  CTR?   8
  9. 9.   Copyright  ©  2013.  Tiger  Analy7cs   Maximizing  the  CTR  is  Cri7cal  For  Cost  Op7miza7on   9 High CTR is good for everyone: users, advertiser, and publisher High   CTR   Relevant   content  for   Users   Revenue   maximiza6on  for   Publisher   Relevant   audience  for   Adver6ser  
  10. 10.   Copyright  ©  2013.  Tiger  Analy7cs   Sample  data   10
  11. 11.   Copyright  ©  2013.  Tiger  Analy7cs   Data  challenges   •  Challenges   –  More  than  5000  variables   –  Hundreds  of  millions  of  data  points   –  Sparse  and  missing  data   –  Clicks  are  very  rare  (typically  1  click  in  every  3,000  impressions)   11
  12. 12.   Copyright  ©  2013.  Tiger  Analy7cs   •  Case  sampling   –  Keep  all  impressions  with  clicks   –  Keep  only  a  random  sample  of  1%  non-­‐clicks   •  This  reduced  the  data  size  by  100-­‐fold,  but  predic6on   accuracy  was  as  good  as  when  using  all  data   12 Reducing  the  number  of  data  sets  
  13. 13.   Copyright  ©  2013.  Tiger  Analy7cs   Logis7c  Regression  results   13 - " 50 " 100 " 150 " 200 " 250 " 300 " 350 " 400 " 450 " 1" 1001" 2001" 3001" 4001" 5001" predicted! baseline! K K K K K K 0% 20% 40% 60% 80% All data •  Top  20%  of  data  got  232  out  of  415  (56%)  of  clicks   •  A  liY  of  180%  
  14. 14.   Copyright  ©  2013.  Tiger  Analy7cs   14 Insights  –  Final  set  of  variables  
  15. 15.   Copyright  ©  2013.  Tiger  Analy7cs   Twier  –  CTR  Predic7on   15 NLP
  16. 16.   Copyright  ©  2013.  Tiger  Analy7cs   Credit  Card  Customer  Acquisi7on     Through  Social  Media  Marke7ng       Case  Study  #  2    
  17. 17.   Copyright  ©  2013.  Tiger  Analy7cs   Social Media provides rich data to marketers
  18. 18.   Copyright  ©  2013.  Tiger  Analy7cs   Ads  on  Facebook   Newsfeed  on  Desktop   Newsfeed  on  Mobile   Right  Hand  Side  on  Desktop   Sponsored  Story   Image source: Facebook
  19. 19.   Copyright  ©  2013.  Tiger  Analy7cs   Facebook  Ad  Pla`orm  -­‐-­‐  targe7ng   19
  20. 20.   Copyright  ©  2013.  Tiger  Analy7cs   Facebook  Ad  Pla`orm  -­‐-­‐  pricing   20
  21. 21.   Copyright  ©  2013.  Tiger  Analy7cs   Case  study:  credit  card  marke7ng   The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Cash  Back   The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. 1,000,000   Impressions   300   Clicks   3   Applica7ons   1   Approval   Conversions are rare events when compared to clicks. The challenge is to be able to make meaningful inferences based on very little data, especially early on in the campaign. Click-­‐through  rate   0.03%   Conversion  rate   1%   Approval  rate   33%  
  22. 22.   Copyright  ©  2013.  Tiger  Analy7cs   Micro  Segments   1  Segment   50  Segments   50  x  2  =     100  Segments   2  Genders   4  Age  Groups   100  x  4  =     400  Segments   25  Interest  Clusters   400  x  25  =     10,000  Segments  
  23. 23.   Copyright  ©  2013.  Tiger  Analy7cs   Methodology   •  Iden6fy  high  performance  segments   –  Sta6s6cally  significant  difference  in  ctr,  cpc,  cost  per  conversion,  etc.   –  Use  ctr  as  a  proxy  for  conversion  rate   •  Ac6ons  on  high  performance  segments   –  Allocate  higher  budget   –  Increase  bid  price   23
  24. 24.   Copyright  ©  2013.  Tiger  Analy7cs   Data  aggrega7on   Segment  Level  Data   (Sparse  and  Noisy)   Iden7fy  Important  Dimensions     (Using  Sta7s7cal  Models)  
  25. 25.   Copyright  ©  2013.  Tiger  Analy7cs   Segment  performance  es7ma7on   Model  Es7mates   Observed  Performance   Prior  Knowledge   Inferred  Performance  
  26. 26.   Copyright  ©  2013.  Tiger  Analy7cs   Bidding   Brand  A   Brand  B   Other  Compe77on  for  Ad  Space   Bid:  $1.60   Bids   WIN   Bids  will  differ  by  Ad  and  Micro   segment,  and  will  change  over   7me  
  27. 27.   Copyright  ©  2013.  Tiger  Analy7cs   Budget  Alloca7on   •  Increase  budget  for  high   performance  segments  and  reduce   for  low  performance  ones   –  Business  rules  around  minimum   and  maximum  limits  
  28. 28.   Copyright  ©  2013.  Tiger  Analy7cs   Methodology   Segment  Level     Observed  Data   Inferred    Performance  Indicators   Based  on  priors,  observed,  model  es6mates   Cost  per   Applica6on   Success   Rate   Dynamic  Budget  Alloca7on   Based  on  inferred  performance  indicators   and  business  constraints   Historical   Campaign  Data   Priors  of   Performance   Indicators   Weighted  Data   Click  vs.  view  through,  card  value,  applica6on   result,  recency,  delay  in  view-­‐through  appls   Cost  per   Acquisi6on   Model  Performance   as  a  func6on  of  targe6ng   dimensions   Model  Es7mates  of   Performance  Indicators   Dynamic  Bid  Alloca7on   Based  on  observed/historical   Bid-­‐Spend  rela6onships     Con7nual  monitoring  and   analysis   Business   Constraints  
  29. 29.   Copyright  ©  2013.  Tiger  Analy7cs   Results:  Increased  CTR   29 •  Overall increase in CTR by 50% across more than 100 brands
  30. 30.   Copyright  ©  2013.  Tiger  Analy7cs   Results:  Lower  costs   30 •  Overall decrease in CPA of 25% across more than 100 brands
  31. 31.   Copyright  ©  2013.  Tiger  Analy7cs   Concluding  remarks   •  Online  and  social  adver6sing  are  fast  growing  areas  with   –  Plenty  of  data   –  A  large  number  of  interes6ng  problems   •  Predic6ve  analy6cs  can  add  a  lot  value  in  this  business   –  Significant  improvement  in  CTR  means  beber  targeted  ads   –  As  much  as  25%  reduc6on  in  cost  of  media   •  Our  solu6ons  are  being  used  by  several  leading  startups  to   serve  billions  of  ads  for  Fortune  500  companies   31
  32. 32.   Copyright  ©  2013.  Tiger  Analy7cs   Ques7ons  /  Comments  ?     mahesh@7geranaly7cs.com   www.7geranaly7cs.com   32
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×