Bioquímica general

25,321 views
24,847 views

Published on

0 Comments
8 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
25,321
On SlideShare
0
From Embeds
0
Number of Embeds
934
Actions
Shares
0
Downloads
330
Comments
0
Likes
8
Embeds 0
No embeds

No notes for slide

Bioquímica general

  1. 1. Bioquímica general Bioquímica generalAlberto Gómez & Laura del Olmo 1º de MedicinaAlberto Gómez & Laura del Olmo 1
  2. 2. Bioquímica generalÍndice de contenidosIntroducción: El agua………………………………………………….…………………………………….3ProteínasTema 2. Aminoácidos, péptidos y proteínas…………………………..………………………………....8Tema 3. Ejemplos de proteínas……………………………………….………………………………….37EnzimasTema 4. Cinética enzimática……………………………………………………………………….……..77Tema 5. Regulación enzimática………………………………………………………………………….96Tema 6. Coenzimas…………………………………………………………………………………...…106Otras biomoléculasTema 7. Hidratos de carbono……………………………………………………………….…………..116Tema 8. Lípidos……………………………………………………………………………….………….124Tema 9. Bioenergética……………………………………………………………………………..…….136Alberto Gómez & Laura del Olmo 2
  3. 3. Bioquímica generalLeccion 1El aguaImportancia biológicaEl agua es la sustancia inorgánica de mayor importancia biológica, esta importancia se debe engran parte a sus características, que son las siguientes: • Se trata, como ya ha sido mencionado, de una molécula inorgánica • Constituye las 2/3 partes del organismo de media, aunque existen variaciones en el porcentaje determinadas sobre todo por la edad: − El recién nacido está compuesto en un 80% de agua − El individuo adulto esta cantidad disminuye al 70% de agua − En el anciano, esta cantidad ronda el 60-65% de agua • Al ser uno de los principales componentes del organismo, forma parte de todos los líquidos del cuerpo. • Determina la estructura de numerosas macromoléculas, resaltando fundamentalmente proteínas y enzimas. • Tiene una importante función disolvente, de la que se hablara mas adelante • Participa activamente en la respiración, siendo el medio en el que se lleva a cabo el intercambio de gases por disolución de los mismos. • Participa en la digestión • Favorece la absorción de nutrientes.EstructuraEl agua es un dipolo que presenta dos cargas parciales, una carga δ+ en cada uno de loshidrógenos y una carga δ2-Alberto Gómez & Laura del Olmo 3
  4. 4. Bioquímica generalPropiedadesLas propiedades que hacen del agua imprescindible para la vida son fundamentalmente lassiguientes: • Puede formar enlaces de hidrógeno. Debido a que es una molécula que presenta un marcado momento dipolar, el agua puede formar enlaces de hidrógeno entre sí, y con otras moléculas con electronegatividad de distinto signo, este enlace de enorme importancia biológica presenta las siguientes características: − Es un enlace débil de naturaleza electrónica, pero es estable en la dirección adecuada − Es un enlace cooperativo, pues favorece la formación de otros enlaces − Es un enlace dinámico debido a que se forma y se rompe con facilidad. • El agua se trata del disolvente cuasi-universal, por tanto puede disolver las siguientes sustancias: − Sustancias iónicas, formando esferas de solvatación con los iones. El agua tiene una elevada constante dieléctrica lo que facilita la separación de cargas con distinto signo. − Sustancias polares no iónicas (p.e. OH, SH, COOH, NH2). Disuelve estas sustancias empleando enlaces iónicos o de hidrógeno y forma clatratos. − Es en cambio incapaz de disolver sustancias apolares, pero es capaz de dispersar sustancias anfóteras y anfolitos, que se disponen en micelas en un medio acuoso. • El agua es altamente termorreguladora. Esto se debe a que es preciso aportar mucha energía para romper los enlaces de hidrogeno, por ello también el agua tiene un elevado calor de vaporización, y es un excelente conductor térmico. • Distinta densidad en estado líquido/sólido. El agua líquida es mas densa que el agua sólida debido a la apertura angular que pasa de ser de 104,5º en el agua líquida, a 109,5º en el agua sólida. • El agua tiene una elevada tensión superficial debido al ordenamiento de sus moléculas. Fisiológicamente esto presenta un problema en la presión sanguínea que debería ser muy elevada, pero el organismo soluciona esto favoreciendo el intercambio de materia células/sangre, con lo que aumenta el desorden molecular, y se rompe la tensión superficial.Balance hídricoEl organismo siempre controla la concentración de sustancias perjudiciales en exceso, como laglucosa, o el agua. El organismo ha de mantener la concentración acuosa constante en la sangrey en el interior celular (mediante la homeostasis del H2O). Esta regulación depende de la ingestade sólidos y líquidos (que provienen tanto de alimentos, bebida, y agua metabólica). El exceso deagua se elimina a través de orina, piel (sudor), y respiración.En el medio celular, el intercambio de agua con el medio se realiza a través de proteínastransmembrana denominadas acuaporinas, y depende de la concentración iónica a ambos ladosde la célula. Si la concentración iónica [Ión] en el interior de la célula [Iónint] es igual a la delexterior de la célula [Ionext] y a su vez es igual al 0,9%, hablamos de un medio isotónico. Encambio si la concentración iónica exterior es mayor que la intracelular, hablamos de un mediohipertónico. Para igualar su concentración con la del medio, la célula expulsa agua al exterior,Alberto Gómez & Laura del Olmo 4
  5. 5. Bioquímica generalpudiendo producirse plasmolisis. Cuando la concentración iónica exterior es inferior a laintracelular se habla de un medio hipotónico, entrando agua al interior de la célula paracompensar la diferencia, y produciéndose turgencia celular. Ambos fenómenos (turgencia yplasmolisis) pueden conducir a la citolisis o muerte celular.Electrolitos y pHEl agua en sí es un electrolito débil que se ioniza según la formula (H2O->H3O++OH-) tiene unabaja constante de equilibrio KeqNormalmente en el agua pura, las concentraciones moleculares son las siguientes: − [H2O]= 55,55 M − [H3O+]= 10-7 M − [OH-]= 10-7Se ha definido una nueva constante, Kw, que se obtiene multiplicando [H3O+] por [OH-] y es iguala 10-14El pH se obtiene mediante el –log[H3O] (u [H+])El pH es una medida de gran importancia biológica que determina entre otras cosas la estructurade todas las moléculas del organismo, fundamentalmente las proteínas (y dentro de estas, lasenzimas), que a valores fuera de parámetros biológicos (pH= 7) se desnaturalizan.No podemos hablar de un pH fisiológico como tal, ya que en distintas partes del organismoexisten distintos pH, como por ejemplo los siguientes: − pH(sangre)= 7,35 - 7,45 − pH(intracelular)= 6,8 − pH(gástrico)= 1,5 – 3 − pH(páncreas)= 8 – 8,5TamponesLos tampones se tratan de sistemas encargados de mantener constante el pH. En el organismoexisten tres sistemas de amortiguación de pH:1.) Tampones especies químicas.En ellos coexisten en equilibrio una especie ácida y una especie básica. Según la siguientereacción, extraemos una nueva constante en los tampones: pKKeq= [A-]·[H3O+]/[AH]Keq·[AH-]=[A-]·[H3O+][H+]=Keq·[AH]/[A-]Alberto Gómez & Laura del Olmo 5
  6. 6. Bioquímica general-log[H+]=-log(Keq)+log([A-]/[AH]) [ A−]pH = pK + log [ AH ]Esta es la fórmula de Henderson-Hasselbach, que determina el comportamiento de lostampones, sabiendo su pK y sus concentraciones de especie ácida y básica [ Base]pH = pK + log [ Ácido]Los tampones cumplen las siguientes características − El pK de un tampón determina su eficacia amortiguadora con respecto al medio. Ésta capacidad es máxima cuando pK= pH ± 1 − El pH de un tampón depende de la relación entre su especie ácida, y su especie básica, y permanece invariable a la dilución − La capacidad amortiguadora de un tampón depende de su concentración totalLos principales sistemas especie química en el organismo son los siguientesMedio intracelular. Tampón fosfatoH3PO4 –(1)- H2PO4- -(2)- HPO42- -(3)- PO43- (1) pK= 1,98 (Sólo neutraliza hidroxilos) (2) pK= 6,8 (3) pK= 12 (Sólo neutraliza protones)Medio extracelular (sangre). Tampón bicarbonatoEn este tampón intervienen activamente el sistema renal, y respiratorio a pesar de ser un tampónespecie química.CO2 (pulmones) -> CO2 + H2O –(1)- H2CO3 –(2)- HCO3- (Especie bicarbonato)Este tampón tiene las siguientes características: − pK= 6,1 − Alta concentración de bicarbonato (22-26 Mm) y aproximadamente 20 veces más de bicarbonato que de dióxido de carbono − La especie ácida es el CO2 y la básica el HCO3-Alberto Gómez & Laura del Olmo 6
  7. 7. Bioquímica general − El dióxido de carbono se elimina mediante los pulmones, si estos fallan, se produce una acidosis (bajada de pH en sangre) respiratoria al aumentar la concentración de (especie acida) en sangre, en cambio, si se produce hiperventilación, se produce alcalosis (subida de pH en sangre) al eliminarse demasiada especie acida − El bicarbonato se elimina vía renal, por ello si fallan los riñones por defecto se produce una alcalosis metabólica al no eliminarse suficiente bicarbonato, y si fallan por exceso de eliminación, se producirá una acidosis metabólica. − La acidosis es una afección que consiste en que el pH sanguíneo baje por debajo de 7,35 − La alcalosis es una afección que consiste en que el pH sanguíneo suba por encima de 7,45Alberto Gómez & Laura del Olmo 7
  8. 8. Bioquímica generalTema 2AMINOÁCIDOS, PÉPTIDOS y PROTEÍNAS PROTEÍNA = una de las moléculas más versátiles de nuestro organismo cuyos bloques constitutivos son los AMINOÁCIDOSExisten muchos sistemas de clasificación de las proteínas. Nosotros las clasificaremos según 3 criterios: CRITERIO I: según su FUNCIÓN 1. ESTRUCTURALES: su misión es conferir CONSISTENCIA a un orgánulo o TJ. Se pueden encontrar en la MB de las células, en las uñas o en los cabellos, en el líquido intersticial, en el ADN (dan consistencia a los CR)… 2. RECONOCIMIENTO de sustancias o moléculas que se encuentran fuera de la célula. Ej.: en un diabético la insulina actúa “metiendo” la glucosa dentro de las células.¿Cuál es la función concreta de la insulina? Avisar a las células de la existencia de glucosa en el medio que puede ser utilizada. ¿Cómo actúa? “Toca” un receptor al que se une, activando a los canales de glucosa (= funcionamiento de todas las hormonas). 3. ENZIMÁTICA: ¿qué somos? reacciones químicas catalizadas por enzimas. 4. TRANSPORTADORA: de O2 (aquoporinas), de lípidos apolares, de e- en la cadena respiratoria… a través de la MB. 5. HORMONAL 6. DE DEFENSA: proceso inmune. CRITERIO II: según su COMPOSICIÓN 1. SIMPLES: sólo por aá = HOLOPROTEÍNAS 2. CONJUGADAS: parte no proteica o grupo prostético + parte proteica (aá) = HETEROPROTEÍNAS • Tipos de grupos prostéticos (partes no proteicas): metales (citocromos), grupos hemo (hemoglobina), lípidos, glúcidos… Los iones resultan esenciales para que se unan. CRITERIO III: según su FORMA/MORFOLOGÍA 1. FIBROSAS: aspecto de fibra e INSOLUBLES en agua Ej.: colágeno 2. GLOBULARES: aspecto esférico (tridimensionales) y SOLUBLES en agua Así una proteína se puede encajar dentro de los 3 criterios de clasificación. Ej.: hemoglobina = - Según su función - Según su composición transportadora heteroproteínaAlberto Gómez & Laura del Olmo 8
  9. 9. Bioquímica general - Según su forma globular AMINOÁCIDOS (AÁ) = bloques constitutivos de las proteínas Clasificación 1. PROTEICOS = forman parte de las proteínas 2. NO PROTEICOS = jamás van a formar parte de las proteínas como los aá ornitina y citrulina, que son intermediarios en el metabolismo de algunos compuestos nitrogenados en el organismo. 1. PROTEICOS A. COMUNES: una vez transcritos forman parte tal cual de la proteína. Ej.: los 20 aá comunes en las proteínas B. NO COMUNES: una vez transcritos y que ya forman parte de la proteína sufren una modificación.Hay algunos aá raros que forman parte de algunos tipos particulares de proteínas, tales como las fibrosas. Por ejemplo, el aá hidroxiprolina se encuentra casi exclusivamente en la proteína llamada colágena. Hay otros aá que no forman parte de ninguna proteína. Estructura Constan de un grupo amino (-NH2), un grupo carboxilo (-COOH), un átomo de hidrógeno y un grupo distintivo R (cadena lateral), unidos al átomo de carbono α. El grupo distintivo R o cadena lateral determinará su clasificación. CLASIFICACIÓN DE LOS AÁ COMUNES I. Según la polaridad de la cadena lateral distinguimos 2 grandes grupos: POLARES - Sin carga neta - Con carga neta APOLARES = Ø carga ¡OJO! la Glycina es APOLAR (así lo consideramos en clase aunque en alguno sitios la consideren polar) Características aá APOLARESTodas las cadenas laterales ® apolares están formadas por CADENAS HIDROCARBONADASALIFÁTICAS (no se pueden ionizar) y se encuentran separadas por un C de la estructura común 3 Excepciones: • Glycina • Prolina = su cadena lateral se encuentra directamente unida al Cα • Alanina y al α-amino Aparecen otros grupos que según el giro: • Grupos benceno = fenialanina • Grupos indol = triptófanoAlberto Gómez & Laura del Olmo 9
  10. 10. Bioquímica general Características aá POLARES - Todos separados - Aparecen otros grupos que se pueden ionizar: -OH, amida, tiol… Casi nunca van a aparecer ionizados porque no van a tener carga en nuestro cuerpo AÁ POLARES SIN CARGA CON CARGA HYSTIDINA = grupo IMIDAZOL Hay otros grupos que sí aportan cargas: • ÁCIDOS = cadena lateral negativa • BASES = cadena lateral positiva Existen otros grupos –COO- y –NH3+ en las cadenas laterales que no se deben confundir con el Cα Ej.: Cα-CβH2-COO- = β-carboxilo II. Según la NATURALEZA de los GRUPOS FUNCIONALES que se encuentran dentro de las CADENAS LATERALES - Alifáticos - Cíclicos - Aromáticos = benceno - Carboxílicos - Azufrados - Aminos - *Hidroxílicos* = los más - Imidazol importantes porque permiten unir el P, lo que determina que las … cadenas metabólicas funcionen o no III. Según su OBTENCIÓN ESENCIALES: dependemos de la dieta para adquirirlos NO ESENCIALES: los sintetizamos sin ningún problema Hay aá esenciales cuyo carácter “esencial” puede variar a lo largo de las etapas de la vida. Ejemplo.: - His = esencial en niños y jóvenes - Lys = esencial en adultos - Arg = esencial en niños EstructuraLos 20 tipos de cadenas laterales de los aminoácidos que conforman las proteínas, varían en tamaño, forma, carga, capacidad de formar puentes de hidrógeno y reactividad química. LaAlberto Gómez & Laura del Olmo 10
  11. 11. Bioquímica general clasificación de aminoácidos se hace con base en la estructura y polaridad de sus cadenas laterales. Aminoácidos con cadenas laterales alifáticas Glicina Alanina Valina Leucina Isoleucina Prolina(Gly, G) (Ala, A) (Val, V) (Leu, L) (Ile, I) (Pro, P) Aminoácidos con cadenas laterales aromáticas Fenilalanina Tirosina Triptófano (Phe, F) (Tyr, Y) (Trp, W) Aminoácidos con cadenas laterales azufradas Cisteína Metionina (Cys, C) (Met, M) Aminoácidos con cadenas laterales hidroxiladas Alberto Gómez & Laura del Olmo 11
  12. 12. Bioquímica general Serina Treonina (Ser, S) (Thr, T) Aminoácidos con cadenas laterales básicas Lisina Arginina Histidina (Lys, K) (Arg, R) (His, H) pKa=10.8 pKa=12.5 pKa=6.0 Aminoácidos con cadenas laterales ácidas y sus amidas respectivas Aspartato Glutamato Asparagina Glutamina (Asp, D) (Glu, E) (Asn, N) (Gln, Q) pKa=4.0 pKa=4.3 1/10/2010 ESTRUCTURA DE LOS AÁ COMUNES PROPIEDADES FÍSICASAlberto Gómez & Laura del Olmo 12
  13. 13. Bioquímica general En todos los aminoácidos, *excepto la glicina = glicocola*, el carbono-a está unido a cuatro sustituyentes/radicales diferentes: grupo amino, carboxilo, cadena lateral (R) e hidrógeno Debido a esto, el carbono-a constituye un centro quiral = sitio donde es posible tener 2 configuraciones diferentes, que son imágenes especulares no superponibles, llamadas ENANTIÓMEROS Los enantiómeros se pueden distinguir porque rotan de manera diferente el plano de la luz polarizada. Todos los aminoácidos que forman parte de las proteínas son enantiómeros L. Algunos D-aminoácidos se encuentran en péptidos sintetizados fuera de los ribosomas. La forma química correcta de “escribir” un aá es colocando el grupo α-carboxilo en la parte superior porque es el grupo más oxidado. Características del Cα - Es un carbono asimétrico porque posee 4 sustituyentes o radicales distintos *Excepto la glicina o glicocola porque su cadena lateral es un H, así que posee 2 sustituyentes iguales* - Debido a ello constituye un centro quiral, por lo que los aá pueden existir como IMÁGENES ESPECULARES NO SUPERPONIBLES - Esto confiere una propiedad física, la ENANTIOMERÍA Formas en las que el grupo 3HN+α puede adquirir una orientación concreta en el espacio Hay 2 formas de representar a los ENANTIÓMEROS MODELO CONVENCIONAL 2 tipos: 1. Según a dónde desvíen el plano de la luz polarizada a) (+) Dextrógiro = hacia la b) (-) Levógiro = hacia la derecha izquierda No posee ninguna trascendencia fisiológica ya que el organismo no tiene haces de luz polarizada 2. Según la orientación que adopte 3HN+α con respecto a un eje imaginario CONVENCIÓN DE FISCHER = ¡trascendencia fisiológica! Gliceraldehído primero que se descubrió + Si el grupo 3HN α se queda hacia la IZQUIERDA = L aminoácido + 3HN -Cα ¡¡¡Gran trascendencia fisiológica!!! Todos nuestros aá son de la forma L Si el grupo 3HN+α se queda hacia la DERECHA = D aminoácido Cα -3HN+Alberto Gómez & Laura del Olmo 13
  14. 14. Bioquímica general En humanos los D aminoácidos son TÓXICOS; el organismo los discrimina y los elimina por la orina, por lo que no debe haber Daá en nuestras proteínas ya que todas las reacciones enzimáticas de nuestro organismo son ESTEREOESPECÍFICAS, es decir, todas las reacciones químicas son capaces de diferenciar si el grupo α-amino se encuentra a la derecha o a la izquierda. Podemos encontrar Daá en la pared celular de las bacterias. Cuando éstas entran en nuestro organismo las atacamos rompiendo su pared. Si los acumulamos se almacenan en forma libre en nuestro organismo, por eso son tóxicos, porque aumenta la concentración y el organismo no sabe qué hacer con ellos. PROPIEDADES QUÍMICAS Derivan de su estructura; por tener un grupo amino y un grupo carboxilo = SUSTANCIAS ANFÓTERAS Se pueden comportar como ácido o como basePor tanto los aá ionizables se pueden describir a través de equilibrios de ionización y poseerán pK (valor del pH en el que tengo la misma cantidad de ácido y de base) a) Aminoácidos APOLARESPartimos de un aá común, con su grupo α-amino protonado, es decir, cargado positivamente, en un medio ácido (exceso de H+) + 3HN - CαH – COOH 1. El grupo α-carboxilo perderá 1 protón (y se desprenderá 1 H2O) dando lugar a una especie neutra capaz de captar un exceso de H+, y manteniéndose constante el pH: + - 3HN - CαH – COO pK1 = 1.5 – 2.5 - Hace referencia a la pérdida del H+ del Ácido carboxílico - 2. El siguiente grupo en perder 1 protón será el α-amino (y se desprenderá otra molécula de H2O) dando lugar a una especia cargada negativamente: - 2HN – CH – COO pK2 = 8 – 9.0 - Hace referencia al valor aproximado del pH en el que se pierde el H+ del grupo α-amino – Así podemos definir el PUNTO ISOELÉCTRICO (pI) = pH del aá sin q Valor del pH al cual el aá NO TIENE CARGA NETA, apareciendo la especie ZWITTERION Cálculo del pI (es un pH) = en este punto el aá no tiene carga Media de los valores de pH (a ambos lados) adyacentes a la especie sin carga (q) o especie ZWITTERION (q0): pI = pK1 + pK2 / 2 Propiedades ácido-base (derivan de las propiedades químicas = anfóteros) Todos los aminoácidos tienen por lo menos 2 grupos ionizables, y por lo tanto, su carga neta depende del pH del entorno - Los grupos carboxilo del Cα tienen valores de pKa entre 1.8 - 2.8Alberto Gómez & Laura del Olmo 14
  15. 15. Bioquímica general - Los valores de pKa de los grupos α-amino varían entre 8.8 - 10.6A pH neutro, los aminoácidos en disolución se encuentran como iones dipolares (zwitteriones), es decir, el grupo amino se encuentra protonado y el grupo carboxilo disociado Los aminoácidos ácidos y básicos también tienen grupos ionizables en su cadena lateral. Sus valores de pKa se encuentran tabulados. Para ilustrar la dependencia de la carga neta de un aminoácido con respecto al pH del entorno, se considerará al aminoácido histidina (curva de titulación de la His). Además de los grupos carboxilo y amino en el Cα, (valores de pKa de 1.8 y 9.2, respectivamente), la histidina tiene un anillo de imidazol en su cadena lateral con un valor de pKa de 6.0. Por lo tanto, la carga neta (la suma de las cargas positivas y negativas) cambia de +2 a -1 a medida que se incrementa el pH. A pH de 7.6, la carga neta es cero aunque la molécula contiene dos grupos casi completamente ionizados bajo estas condiciones. Al valor de pH donde la carga neta es cero, se llama punto isoeléctrico. El pI se calculará considerando los grupos imidazol (grupo R) y el grupo α-amino: - El primero al ionizarse da lugar a la especie con carga neta 0 pK2 = 6.0 - El segundo al ionizarse convierte a esta especie en una con carga neta -1 pK3 = 9.2 Así, el pKa será (6.0 + 9.2)/2 = 7.6 b) Aminoácidos POLARES SIN CARGA Ej.: Tyr posee un grupo –OH en la cadena lateral, así que la pérdida del protón se producirá en el siguiente orden 1. – OH C O 2. –OH de la cadena lateral 3. -3HN ¡OJO! Aunque tengan en una cadena lateral 1 grupo polar sin carga, NO SE IONIZA FISIOLÓGICAMENTE, sino que SIGUE LAS MISMAS PAUTAS queAlberto Gómez & Laura del Olmo 15
  16. 16. Bioquímica general los AMINOÁCIDOS APOLARES c) Aminoácidos POLARES CON CARGA ÁCIDOS (R-COOH) 1. El 1er H+ que siempre se pierde sin excepción es el del grupo α-carboxilo = pK1 El grupo α-amino va a tirar del grupo α-carboxilo facilitando que éste pierda su protón 2. En siguiente grupo en perder el protón será el grupo polar cargado de la cadena lateral del aá ÁCIDO = pKR 3. Por último el grupo α-amino perderá su protón = pK2 El rango sigue siendo el mismo que el de los aá apolares sin carga: - pK1 = 1.5-2.5 - pKR = ¿? - pK2 = 8-9 pI = pK1 + pKR / 2 Curva de Ionización 4-6/10/2010Alberto Gómez & Laura del Olmo 16
  17. 17. Bioquímica general Recordatorio: un aminoácido es una SUSTANCIA ANFÓTERA - En un medio ácido exceso de H+ - En un aá neutro (apolar o polar sin carga): - α-COOH = 1º en desprotonar SIEMPRE - α-NH3+ = 2º en desprotonar pI = pK1 + pK2 / 2 En un aá ácido (polar con q) se desprotonará primero el grupo ácido de la cadena lateral (R-COOH) que el grupo α-NH3+ pI = pK1 + pKR / 2 En un aá básico (polar con q) se desprotonará primero el grupo α- NH3+ que el grupo básico de la cadena lateral (R-NH3+) pI = pK2 + pKR / 2 d) Aminoácidos POLARES CON CARGA BÁSICOS (R-NH3+) 1. El 1er H+ que siempre se pierde sin excepción es el del grupo α-carboxilo = pK1 2. El siguiente grupo en perder el protón será el grupo α-amino = pK2 3. Por último el grupo polar cargado de la cadena lateral del aá BÁSICO perderá su protón = pKR pI = pK2 + pKR / 2 Tampones orgánicos: Las proteínas y aminoácidos como tampón Los aminoácidos y proteínas son electrolitos anfóteros, es decir, pueden tanto ceder protones(ácidos) como captarlos (bases) y, a un determinado pH (en su pI), tener ambos comportamientos al mismo tiempo. La carga depende del pH del medio: • En un medio muy básico se cargan negativamente • En un medio muy ácido se cargan positivamente Desde el punto de vista fisiológico este tipo de amortiguador resulta de especial interés a nivel tisular. Casi ningún aminoácido puede comportarse como un tampón en la sangre o en el medio intracelular; sí en el jugo gástrico. • A pH = 8-9 (básico) todos los aminoácidos actuarán como tampón se cargarán negativamenteAlberto Gómez & Laura del Olmo 17
  18. 18. Bioquímica general • A pH < 7 (ácido) los aminoácidos se cargarán positivamente *Excepción*: HISTIDINA (His) pKR = 6Posee en su cadena lateral (R) 1 Grupo IMIDAZOL ciclado, con 2 grupos amino (captan 1 H+ demás)Es un IMINOÁCIDO = molécula que contiene tanto un grupo funcional imino (>C=NH) comoun carboxilo (-COOH). - 1er H+ en desprotonar -COOH - 2º H+ en desprotonar uno de los grupos amino de la cadena lateral -NH ¡Único aminoácido que en la sangre y en el medio intracelular puede actuar como acidificador (dador de protones H+)! Enorme importancia en la funcionalidad de la hemoglobina – Hb – (en los glóbulos rojos) = transporte de O2 La histidina contiene un grupo IMIDAZOL, un anillo aromático que también puede estar cargado positivamente. Con un valor de pKR cercano a 6, el grupo imidazol puede estar sin carga o cargado positivamente en las proximidades del pH neutro, dependiendo del entorno local. Por ello, la histidina se encuentra a menudo en los centros activos enzimáticos, donde el anillo de imidazol puede unir y liberar protones durante las reacciones que se dan en ellos. Los aminoácidos se pueden clasificar según su grupo R 5 clases principales basadas en las propiedades de sus grupos R, en especial su polaridad, o tendencia a interaccionar con el agua a pH biológico (cerca de pH = 7.0).La polaridad de los grupos R varía enormemente desde totalmente apolar o hidrofóbico (insoluble en agua) a altamente polar o hidrofílico (soluble en agua). Dentro de c/clase existen gradaciones de polaridad, tamaño y forma de los grupos R. 1. Grupos R apolares alifáticos = glicina, alanina, prolina, valina, leucina, isoleucina y metionina 2. Grupos R aromáticos = fenilalanina, tirosina y triptófano 3. Grupos R polares sin carga = serina, treonina, cisteína, asparagina y glutaminaSon más solubles en agua, o más hidrofílicos, que los de los aá apolares, debido a que contienengrupos funcionales que forman puentes de H con el agua. Fisiológicamente no pierden el H+ del grupo -OH *Excepciones*La serina (ser) y la cisteína (cys), en el plegamiento de la proteína se encuentran localizadas en el centro activo de la proteína; por lo que, en condiciones adecuadas y en determinadas proteínas sí se puede perder ese H+ del grupo –OH o tiol (-SH) Serina (ser)Su polaridad proviene de sus grupos –OH Cisteína (cys)Alberto Gómez & Laura del Olmo 18
  19. 19. Bioquímica generalSu polaridad proviene de su grupo sulfhidrilo -SH = ácido débil que puede establecer enlaces deH débiles con el O2 o el N2La cisteína se oxida con suma facilidad formando un aminoácido dimérico unido covalentementellamado cistina, en el que 2 moléculas de cisteína están unidas a través de un enlace disulfuro.Los residuos unidos por un enlace disulfuro son fuertemente hidrofóbicos o apolares.Desempeñan un papel esencial en la estructura de muchas proteínas puesto que forman unionescovalentes entre partes de una molécula de proteína o entre dos cadenas proteica diferentes 4. Grupos R cargados positivamente (básicos) = lisina, arginina e histidina*Aunque el grupo R de la histidina se muestra sin carga, su pKR es tal que una fracción pequeñapero significativa de estos grupos está cargada positivamente a pH = 7.0Al ser el único aminoácido común que posee una cadena lateral ionizable con un pKR próximo ala neutralidad, la histidina tanto puede estar cargada positivamente (forma protonada) como notener carga a pH = 7.0 Los residuos de His facilitan muchas reacciones catalizados por enzimas al servir de dadores/aceptores de protones. 5. Grupos R cargados negativamente (ácidos) = aspartato y glutamatoLos 2 aminoácidos que tienen grupos R con una carga neta negativa a pH 7.0 son el aspartato yel glutamato, cada uno de los cuales tiene un 2º grupo carboxilo. Otra propiedad: CAPACIDAD DE ABSORBANCIA DE LA LUZ Los aminoácidos pueden absorber la luz a una longitud de onda (λ) determinada: λ = 220 nm máximo de absorbancia característico Los aminoácidos con grupos R aromáticos, debido a su estructura hexagonal, poseen un máximo de absorbancia mayor: λ = 280 nm SUSCEPTIBLES DE SUFRIR REACCIONES QUÍMICAS Los aminoácidos, debido a sus grupos –COOH y –NH3 son susceptibles de sufrir reacciones químicas. A. Debidas al grupo α-COOH: 1. ESTERIFICACIÓN: proceso por el cual se sintetiza un éster (compuesto derivado de la reacción química entre un ácido carboxílico y un alcohol) y se desprende 1 molécula de H2O. Es una de las formas que tienen las moléculas para interaccionar con los aminoácidos. 2. “AMIDACIÓN”: proceso por el cual se sintetiza una amida por sustitución del grupo — OH del ácido por un grupo —NH2, —NHR o —NRR (llamado grupo amino) y se desprende 1 molécula de H2O. 3. DESCARBOXILACIÓN a AMINAS: proceso por el cual se sintetiza una AMINA mediante una reacción química en la cual el grupo carboxilo es eliminado del compuesto en forma de dióxido de carbono (CO2) con la pérdida de 1 molécula de H2O. Ej.: histidina histamina Es una reacción NO ESPONTÁNEA, catalizada por ENZIMAS del tipo DESCARBOXILASAS.Alberto Gómez & Laura del Olmo 19
  20. 20. Bioquímica general B. Debidas al grupo α-NH3: 1. Adición de ÁCIDOS ORGÁNICOS (otro aminoácido R-COOH) con la formación de un ENLACE AMIDA o PEPTÍDICO (O=C-N-H) y con la pérdida de 1 molécula de H2O. 2. Adición de ALDEHÍDOS (R-CH=O) con la formación de una BASE de SCHIFF = grupo funcional que contiene un enlace doble carbono-nitrógeno el cual constituye un enlace fisiológico muy fuerte; y pérdida de 1 molécula de H2O. 3. DESAMINACIÓN OXIDATIVA (en presencia de una enzima) con pérdida de 1 molécula de H2O. Consiste en una deshidrogenación enzimática del aminoácido, el cual se hidroliza por una reacción no enzimática, formando el ácido α cetónico correspondiente y amoniaco. C. Debido a grupos reactivos en las CADENAS LATERALES (R): Grupo HIDROXILO (-OH) Grupo TIOL o Sulfhidrilo (muy reactivo): compuesto que contiene el grupo funcional formado por un átomo de azufre y un átomo de hidrógeno (-SH). - El grupo tiol es el análogo del azufre al grupo hidroxilo (-OH), que se encuentra en los alcoholes • CISTEÍNA (tiol muy importante): se oxida formando un ENLACE DISULFURO. Para formarlo necesita energía, y una vez constituido cuesta mucho romperlo. - Gran importancia fisiológica: refuerza la estructura terciaria o cuaternaria de las proteínas, además de formar parte de centros activos enzimáticos. Cuando los grupos tiol de 2 residuos de cisteína (como en monómeros o unidades constituyentes) se acercan uno al otro durante el plegamiento de proteínas, una reacción de oxidación puede crear una unidad de cistina con un enlace disulfuro (-S- S-). Importancia biológico-fisiológica del enlace disulfuroAlberto Gómez & Laura del Olmo 20
  21. 21. Bioquímica general - Pueden contribuir a la estructura terciaria de una proteína si las císteinas forman parte de una misma cadena peptídica o contribuir a la estructura cuaternaria de proteínas multiméricas formando fuertes enlaces covalentes entre diferentes cadenas de péptidos. - Las cadenas pesadas y ligeras de los anticuerpos se mantienen unidas por puentes disulfuro. - Los pliegues en el pelo rizado son producto de la formación de cistina. - Los productos químicos utilizados en el alisamiento del cabello son reductores de puentes disulfuro de cistina a cisteína con grupos sulfhidrilo libres, mientras que los productos químicos utilizados en el cabello rizado son oxidantes que oxidan los grupos sulfhidrilo de la cisteína y forman puentes disulfuro de cistina. - Los grupos sulfhidrilo en el sitio activo de una enzima pueden formar enlaces no covalentes con la enzima y el sustrato, lo que contribuye a la actividad catalítica. AÁ NO COMUNES O MODIFICADOS Una vez transcritos y que ya forman parte de la proteína sufren una modificación. En realidadpodríamos hablar de aá comunes que sufren una modificación una vez incorporados a la proteína. a) PROTEICOS. Sufren modificación por: - CARBOXILACIÓN de un grupo fosfato (P) regula la actividad enzimática - HIDROXILACIÓN - METILACIÓN: adición de un grupo - FOSFORILACIÓN (una de las metilo metilcisteína, metilserina reacciones químicas más importantes del organismo): adición - ACETILACIÓN acetilglutámicoPor ej.: el aá hidroxiprolina y la hidroxilisina (modificados por hidroxilación) se encuentran casi exclusivamente en el colágeno (proteína). Comentado en clase: ¿Por qué es importante la glucosa (hígado músculo, cerebro)? - Proporciona energía a nuestras células de forma rápida - Es la única fuente de energía del cerebro ¿Cómo sabe la célula que tiene glucosa? - Será necesario fosforilar esa glucosa para que la célula sepa que la tiene que degradarla b) NO PROTEICOS. No forman parte de ninguna proteína. Funciones • HORMONAL. Por ej.: tiroxina tirosina • NEUROTRANSMISORA. Por ej.: ácido glutámico (descarboxilación) ácido gamma- aminobutírico (GABA) = principal neurotransmisor inhibitorio cerebral • ANTIOXIDANTEAlberto Gómez & Laura del Olmo 21
  22. 22. Bioquímica general NIVELES ESTRUCTURALES DE LAS PROTEÍNAS ¿Cómo se van a unir los aminoácidos? ENLACES PEPTÍDICOS = enlace covalente fuerte y resistente que permite unir ≠ aá entre sí - Formación: • Catalizado enzimáticamente • Hay un gasto de energía (ATP/GTP) • En una zona concreta de la célula: los ribosomas • Siempre interviene: α-Carboxilo de un aá α-Amino del siguiente = Reacción de deshidratación con la pérdida de 1 molécula de H2O - Nomenclatura: la unión de 2 aá da lugar a un DIPÉPTIDO; 3aá = tripéptido; 4aá = tetrapéptido… Conclusión: como resultado de la unión de 2 aminoácidos a través del enlace peptídico se forman PÉPTIDOS - Características 1. Presenta una particularidad, es un HÍBRIDO DE RESONANCIA; es decir, tiene carácter de ENLACE SENCILLO y ENLACE DOBLE (oscila entre una forma sencilla-doble), lo que resulta fisiológicamente importante. • 60% = simples 60 simples > 40 dobles • 40% = dobles Esto condiciona que los elementos que forman parte del enlace peptídico se encuentren en un MISMO PLANO 2. Ø CAPACIDAD de GIRO. Derivado de la oscilación simple-doble, los elementos que forman parte del enlace peptídico (O=C-NH) se encuentran en un MISMO PLANO constituyendo un enlace rígido, por lo que no pueden girar. Al no poder girar, el péptido resultante limita su capacidad de giro a los enlaces del Canomérico o Cα. 3. La capacidad de giro del péptido resultante se limita al CαAlberto Gómez & Laura del Olmo 22
  23. 23. Bioquímica general 4. El oxígeno (O) y el hidrógeno (H) que se encuentran dentro del plano adoptan una disposición TRANS: - O a un lado del plano - H al otro lado del plano (lado opuesto al O) *CYS: en un mismo plano 5. Siempre que la proteína pueda las cadenas laterales (R) de los aminoácidos adyacentes se sitúan a ambos lados del eje imaginario que podríamos establecer. 6. Capacidad de formar enlaces de hidrógeno con otros elementos electronegativos (O, S, P) LÍMITE PÉPTIDO-PROTEÍNA (convenio) PÉPTIDO: resultado de la asociación de < de 50 aá PROTEÍNA: asociación de > de 50 aá Hay excepciones. Ej.: la insulina (secuencia de 51 aá) se considera un péptido PÉPTIDOS. Capacidad de IONIZACIÓN Capacidad de ionización debido a sus grupos: • α-amino • Grupos amino y carboxilo de las cadenas laterales (R) • α-carboxilo Se sintetizan siempre: Nt Ct - Grupo α amino-terminal = izquierda - Grupo α carboxilo-terminal = derecha Conclusión: la ionización queda limitada a estos extremos terminales y a los grupos amino y carboxilo de las cadenas laterales (R) Excepción: grupo hidroxilo (-OH) y grupo TIOL (-SH) de la cisteína PROTEÍNAS. PUNTO ISOELÉCTRICO (Pi)Todas las proteínas tienen un pI característico, determinado por los grupos que se pueden ionizar en esa proteína. HORMONAS = PÉPTIDOS INSULINA: indica a las células de los TJ que hay glucosa en circulación (sangre) que pueden utilizar. • 2 Tejidos que si usan glucosa no la devuelven a la sangre: muscular y adiposoAlberto Gómez & Laura del Olmo 23
  24. 24. Bioquímica general • En cambio, la glucosa que entra en el hígado es devuelta a la sangre por la vena porta GLUCAGÓN (sintetizado en el páncreas): indica los niveles de glucosa en sangre. Es complementario a la insulina, ya que indica a las células de los TJ que no tienen glucosa homeostasis • Insulina = hay glucosa • Glucagón = no hay glucosa Desmayo = llega poca glucosa al cerebro levantar piernas para facilitar la circulación de la glucosa hasta el cerebro OXITOCINA (5 aá): regula la contracción uterina – importante para la dilatación cervical previa al parto. VASOPRESINA (9 aá): regula la presión, y por tanto, la tensión arterial Hormona antidiurética (ADH), o arginina vasopresina (AVP) Liberada principalmente en respuesta a cambios en la osmolaridad sérica o en el volumen sanguíneo - Hace que los riñones conserven agua mediante la concentración de orina y la reducción de su volumen, estimulando la reabsorción de agua. - También tiene funciones en el cerebro y en los vasos sanguíneos. Curiosidad: el consumo de alcohol hace que esta hormona se inhiba y no se produzca la reabsorción del agua. Esta agua es desechada por la orina, razón por la cual se acude tanto al servicio cuando se bebe alcohol. NEUROTRANSMISORES = PÉPTIDOS Endorfinas (“hormona de la alegría”) Encefalinas Neurotransmisores opioides producidos en el Sistema Nervioso Central como moduladores del dolor, reproducción, temperatura corporal, hambre y funciones reproductivas. Sustancia P: participa en la percepción del dolor.AGENTES VASOACTIVOS: reguladores de la presión y tensión en el interior de venas y arterias = PÉPTIDOS Bradiquinina (9 aá): causa vasodilatación disminuye la PA y la TA Angiotensina: causa vasoconstricción aumenta la PA y la TA ANTIOXIDANTES = PÉPTIDOS GLUTATIÓN (3 aá - tripéptido): principal antioxidante intracelular que ayuda a proteger las células de especies reactivas de oxígeno (como los radicales libres o peróxidos). - Ác. glutámico (Glu) - Glicina (Gly) - Cisteína (Cys) ANTIBIÓTICOS = PÉPTIDOS Valinomicina: rompe la pared D de las bacteriasAlberto Gómez & Laura del Olmo 24
  25. 25. Bioquímica general - Péptido cíclico con acción antibiótica que contiene aminoácidos de la serie D - Es un ionóforo: capaz de transportar iones potasio a través de las MB biológicas. Amanita = PÉPTIDO TÓXICO 8/10/2010 NIVELES ESTRUCTURALESLas proteínas tienden a adoptar en el espacio una estructura de máxima estabilidad que guiará al resto de estructuras = ESTRUCTURA NATIVA - Características de la estructura nativa: • Estructura de máxima estabilidad de una proteína • Funcional • Supone la disposición final de la proteína en el espacio • El alcanzarla condiciona todos los niveles estructurales que tiene esa proteínaLos aá polares se disponen esencialmente en el exterior, y tienden a estar separados para queno aparezcan interacciones entre ellos (cargas) o con el H2O, que conducirían al plegamiento de la proteína y su consecuente pérdida de funcionalidad (desnaturalización). El pI no tiene por qué coincidir con los valores de pK de los aá individuales, porque interaccionan entre ellos o con el medio, lo que hace que varíe este pI: - Si un aá posee un pK/pH < pI + (no hay carga suficiente para que la proteína pueda interactuar con el medio) - Si un aá posee un pK/pH = pI igual nº de cargas + que – por lo que no tiene carga neta (q0) - Si un aá posee un pK/pH > pI - Todas las proteínas alcanzan 3 niveles estructurales (hasta la estructura terciaria) pero solo algunas alcanzan un 4º nivel, la estructura cuaternaria. A. ESTRUCTURA PRIMARIA = estructura COVALENTE de las proteínas Secuencia de aá, orden en el que se encuentran colocados en la cadena peptídica. - Va a determinar indirectamente la función de la proteína, ya que determina su forma. - Va a determinar directamente: • La forma de la proteína • Su vida media • Su localización • La unión de otras moléculas a esa proteína (glúcidos, metales…grupos prostéticos o no aminoacídicos) y la presencia de modificaciones.Alberto Gómez & Laura del Olmo 25
  26. 26. Bioquímica general ¿Qué aá? ¿En qué orden? ¿Qué grupos prostéticos? Clasificación de las proteínas según su estructura primaria Las secuencias de aá de las proteínas pueden ser semejantes o no: Las proteínas con una estructura primaria semejante (muy conservada) = HOMÓLOGAS Las proteínas con una estructura primaria no semejante, que no se parece en nada (no conservada) = HETERÓLOGAS Clasificación de los aá que forman parte de la estructura primaria Dentro de la estructura primaria puede haber aá: Fundamentales para el funcionamiento de esa proteína, es decir, si fueran sustituidos por otros la proteína perdería su función = INVARIABLES No esenciales para el funcionamiento de la proteína = VARIABLES Gran importancia fisiológica: por ej., una de las teorías que se “baraja” acerca del origen del cáncer, es la mutación de los aá invariables de la proteína. Otra enfermedad debida a un cambio en 1 solo aá (invariable) es la anemia falciforme o drepanocítica, ya que la mutación en ese aá hace que la hemoglobina (Hb) cambie su forma, por tanto el eritrocito cambia también la suya (de forma normal bicóncava forma patológica de media luna) lo que hace que se “atasque”, provocando obstrucciones o trombos.Es una hemoglobinopatía, enfermedad que afecta a la hemoglobina, una proteína que forma parte de los glóbulosrojos y se encarga del transporte de oxígeno.Es de origen genético y se da por la sustitución de un aminoácido en su conformación, lo que provoca que a bajatensión de oxígeno la hemoglobina se deforme y el eritrocito adquiera apariencia de una hoz o media luna.La nueva forma provoca dificultad para la circulación de los glóbulos rojos, por ello se obstruyen los vasossanguíneos y causan síntomas como dolor en las extremidades.Los glóbulos rojos también padecen de una vida más corta provocando anemia por no ser reemplazados atiempo.La estructura primaria está sujeta fisiológicamente a alteraciones/modificaciones producidas porenzimas específicas PEPTIDASAS, que rompen la estructura “cortando” el enlace peptídicoentre bastante aá Distintos tipos de peptidasas según donde actúen: Si actúan en los extremos (carboxilo) de la cadena peptídica (los más habituales) = CARBOXIPEPTIDASAS A, B y C - Carboxipeptidasa A: rompen el enlace peptídico (por el extremo carboxilo terminal) del último aminoácido si no es prolina (Pro), lisina (Lys) ni arginina (Arg) - Carboxipeptidasa B: exclusivamente si el último aminoácido es Pro, Lys o Arg Carboxipeptidasa A (complementaria) ~ de la Carboxipeptidasa B - Carboxipeptidasa C: exclusivamente si el último aminoácido es PROLINA, ya que se trata de un aá “difícil” debido a su cadena lateral alifática Las carboxipeptidasas pueden llegar a romper por completo la estructura proteica, y no se encuentran de forma libre en el organismo, sino que se sintetizan por un precursor activado por 1 señal.Alberto Gómez & Laura del Olmo 26
  27. 27. Bioquímica general Si actúan en el interior de la cadena peptídica = ENDOPEPTIDASAS c y n - Endopeptidasa c: reconoce al aá que aporta el grupo carboxilo al enlace peptídico TRIPSINA y QUIMIOTRIPSINA • TRIPSINA o AÁ básicos: Arg ó Lys Enzima endopeptidasa c, que rompe los enlaces de las proteínas mediante hidrólisis para formar péptidos de menor tamaño y aminoácidos. Es producida en el páncreas y secretada en el duodeno, donde es esencial para la digestión. Es una enzima específica ya que liga al péptido en las posiciones del carboxilo de residuos Arginina (Arg) oLisina (Lys) en la cadena, ambos aminoácidos con grupos R cargados positivamente, fragmentando al péptido inicial. • QUIMIOTRIPSINA (tinción específica) o AÁ aromáticos: Trp ó Phe o AÁ alifáticos con cadenas voluminosas ramificadas: Val ó Leu Facilita la rotura de enlaces peptídicos por reacciones hidrolíticas El principal sustrato de la quimotripsina incluye el triptófano, tirosina, fenilalanina y metionina (cadena lateral azufrada), que son hidrolizados en el carboxilo terminal. - Endopeptidasa n: reconoce al aá que aporta el grupo amino al enlace peptídico TERMOLISINA y PEPSINA • TERMOLISINA (carácter apolar) o AÁ hidrofóbicos Es un termoestable neutral metaloproteinasas de la enzima producida por el gramo-positivas Bacillus (bacterias). Necesita 1 ión Zn para la actividad enzimática y 4 iones Ca para la estabilidad estructural. Cataliza específicamente la hidrólisis del enlace peptídico que contiene, en el extremo amino, aminoácidos hidrofóbicos.Pero la termolisina es utilizada a menudo para la formación de enlaces peptídicos por la reacción inversa de hidrólisis. • PEPSINA o AÁ aromáticos: Phe, Tyr ó Trp o AÁ alifáticos voluminosos Es una endopeptidasa n que corta a los aá Phe, Tyr y al Trp en los grupos amino. Es una enzima digestiva que degrada proteínas en el estómago. Las otras enzimas digestivas importantes son la tripsina y la quimiotripsina. Se produce en el estómago, actúa sobre las proteínas degradándolas, y proporciona péptidos y aá en un ambiente muy ácido. El pepsinógeno es un precursor de la pepsina; cuando actúa el HCl sobre el pepsinógeno, éste pierde aá y queda como pepsina, de forma que ya puede actuar como proteasa. Es más activa con un pH de entre 2 y 4; y se desactiva permanentemente con un pH > 6. PEPSINA (extremo izquierdo Nt) & QUIMIOTRIPSINA (extremo derecho Ct) = COMPLEMENTARIAS: se diferencian en la localización La mayor parte de las PEPTIDASAS se forman en el PÁNCREAS pero no se encuentran libres en el organismo, sino que se activan dentro del bolo alimenticio Pancreatitis = inflamación del páncreasAlberto Gómez & Laura del Olmo 27
  28. 28. Bioquímica general - Mecanismo normal: las peptidasas se sintetizan en el páncreas en proforma (como precursoras) no activa y se liberan al intestino; solo se sintetizarán cuando hay alimento que degradar, y cuando no lo hay se autodegradan, pero todo ello ya en el intestino. - Mecanismo patológico: si las peptidasas se activan en el páncreas irán a degradar a las proteínas (molécula básica de todo TJ), y producirán la inflamación. Conclusión: uno de los motivos de la pancreatitis es que las peptidasas se activen en el páncreas (cuando el mecanismo normal sería que se activasen en el intestino) 14/10/2010 B. ESTRUCTURA SECUNDARIA: estructura tridimensional que adopta un segmento de la proteína (un nº limitado de aá) en el espacio, repetitiva y ordenada. Mismo plano Misma cadena peptídica Está condicionada por la limitación de giro del enlace peptídico CARÁCTER PLANAR + • Enlace Ф: 3HN – Cα • Enlace ψ: Cα – COOHDe modo que la cadena peptídica solo podrá girar a través de estos enlaces - de los extremos α-aminoterminal (Ф) y α-carboxiloterminal (ψ) – lo que condiciona el nº de estructuras secundarias, mayoritariamente de 2 tipos (aunque existen más): α-HÉLICE LÁMINA β Todas vienen indicadas en las representaciones tabuladas de RAMACHANDRAN (posibles variaciones en los giros de los enlaces Ф y ψ) α-HÉLICE: disposición helicoidal que adopta un fragmento de aá en el espacio, constituido entre 11-17 aá. - Dimensiones estructurales que siempre se cumplen: • Hélice dextrógira • 3.6 aá x vuelta aprox. (5.4 Å) • Diámetro (Ø): 5 Å - ¿Cómo se ESTABILIZA? A través de ENLACES de HIDRÓGENO intracatenarios (se forman dentro de la cadena peptídica) = estabilización COOPERATIVA (“efecto cremallera”) • Se forman entre los elementos del enlace peptídico: o Entre el grupo amino del enlace peptídico de un aá o El grupo carboxilo de otro enlace peptídico de otro aá separados el uno del otro por 4 aá (i i + 4) Ej.: entre 1-5, 2-6, 3-7… Solo cuando ocurre esta distribución se permite que los enlaces de hidrógeno estén perfectamente orientados en paralelo (alineados) al eje imaginario de esa α-hélice - Las cadenas laterales (R) siempre quedan en el exterior, lo que genera impedimentos pues habrá aá que debido a su R no podrán adoptar una estructura en α-hélice.Alberto Gómez & Laura del Olmo 28
  29. 29. Bioquímica general Tipos de aá que dificultan la estructura en α-hélice: • Cadenas laterales VOLUMINOSAS en la estructura primaria: 5 ó + aá • Fragmentos con aá muy PEQUEÑOS: glicina (Gly) ó alanina (Ala) • AÁ IONIZADOS (con q) - NO ADOPTARÁN la estructura en α-hélice – - ¿Dónde se encuentran las α-hélice? • Mayoritariamente en las proteínas FIBROSAS (> 70 %) • También en las proteínas globulares LÁMINA β: fragmentos de aá que adoptan una disposición en ZIGZAG en el espacio (dentro de una misma proteína): Se asocian en el espacio con otras, y estas se pueden apilar a su vez dando lugar a 2 tipos de Láminas β: A. PARALELAS: cuando los extremos aminoterminal (Nt) y carboxiloterminal (Ct) de cada una de esas láminas β coinciden en la misma orientación - ¿Cómo se estabilizan? Mediante enlaces de hidrógeno de disposición cruzada - Las cadenas laterales (R) se disponen a ambos lados del plano definido por las Lβ (hacia arriba ó hacia abajo) - Unión entre las distintas Lβ = LAZOS heterogéneos (pueden tener o no tener una estructura secundaria concreta) B. ANTIPARALELAS: cuando sus extremos aminoterminal (Nt) y carboxiloterminal (Ct) no coinciden en la misma orientación - ¿Cómo se estabilizan? Mediante enlaces de hidrógeno de disposición paralela - Unión entre las distintas Lβ = GIROS muy concretos (formados siempre por aá pequeños o con impedimento de giro: glicina -Gly- y prolina –Pro-) Mucho MÁS ESTABLES que las Lβ PARALELAS debido a la orientación alineada de sus enlaces de hidrógeno Tipos de aá que dificultan la estructura en lámina β: • AÁ VOLUMINOSOS • AÁ CARGADOS ó IONIZADOS (se repelen) ¿Dónde se encuentran las lámina β? • Mayoritariamente en las proteínas GLOBULARESAlberto Gómez & Laura del Olmo 29
  30. 30. Bioquímica general • También en las proteínas fibrosas Subtipos de α-hélice: - Hélice 310 - Hélice ЛAlberto Gómez & Laura del Olmo 30
  31. 31. BIOQ GENERAL Poseen menor probabilidad de que se establezcan enlaces de hidrógeno entre los elementos del enlace peptídico de sus aá por lo que disminuye su estabilidad Estructura SUPERSECUNDARIA: asociaciones repetitivas de estructura secundaria 15/10/2010 C. ESTRUCTURA TERCIARIA: plegamiento de la estructura secundaria, es decir, disposición de toda la cadena peptídica en el espacio. - ¿Cómo se estabiliza? Por enlaces débiles: • Enlaces de hidrógeno • Interacciones electroestáticas/iónicas/dipolo-dipolo/hidrofóbicas • Enlaces de Van der WaalsCuando la proteína alcance su conformación nativa (de máxima estabilidad) podrán aparecen enlaces covalentes disulfuro con el objetivo de reforzar esta estructura una vez que ya está estabilizada. o Enlaces covalentes disulfuro: refuerzan la estructura terciaria, NO ESTABILIZAN - Objetivo de la estructura terciaria: “esconder” a los aá con cadenas laterales apolares • Los aá con cadenas polares se orientan hacia el exterior • Los aá con cadenas apolares se orientan hacia el interior o Los aá con cadenas polares sin q pueden orientarse hacia el interior No siempre será así, ya que por ej., hay proteínas fibrosas con gran nº de aá apolares, así que alguno de ellos estará en contacto con el agua. “TODAS” las proteínas alcanzan una estructura terciaria; sin embargo, no todas llegan a adoptar una estructura cuaternaria. D. ESTRUCTURA CUATERNARIA: sólo en proteínas con más de 1 cadena proteica = proteína OLIGOMÉRICA PROTÓMERO = cada una de las cadenas polipeptídicas de una proteína oligomérica - ¿Cómo se estabiliza? Mediante enlaces débiles *¡”nunca” covalentes!* Excepcionalmente, en proteínas muy concretas (funcionales) es necesaria la aparición de un enlace covalente entre los protómeros. - Objetivo de la estructura cuaternaria: 31
  32. 32. BIOQ GENERAL 1. Facilitar la síntesis proteica en el organismo, pues es más fácil sintetizar varios protómeros que una cadena polipeptídica larga. Ej.: 4 subunidades en vez de una cadena muy larga 2. Facilitar la solución de daños/modificaciones o mutaciones de la proteína. En el caso de que 1 protómero esté dañado es fácil solucionar ese daño, cambiando un protómero por otro; en cambio en una cadena larga habría que modificar toda la proteína 3. Facilitar la regulación de la actividad de estas proteínas en reacciones concretasFACTORES QUE PODRÍAN DESESTABILIZAR LA ESTRUCTURA NATIVA DE LA PROTEÍNA (Agentes desnaturalizantes) Los agentes que provocan la desnaturalización de una proteína se llaman agentes desnaturalizantes. Se distinguen agentes físicos (calor) y químicos (detergentes, disolventes orgánicos, pH, fuerza iónica). Como en algunos casos el fenómeno de la desnaturalización es reversible, es posible precipitar proteínas de manera selectiva mediante cambios en: 1) TEMPERATURA: un aumento de la temperatura hace que se rompan los enlaces débiles que mantienen la estructura terciaria, perdiendo la estructura de forma irreversible. • Formará otros enlaces débiles (no suficientemente estables) para esconder los aá apolares, para lo que se volverá a plegar. Cuando la temperatura es elevada aumenta la energía cinética de las moléculas con lo que se desorganiza la envoltura acuosa de las proteínas, y se desnaturalizan. Asimismo, un aumento de la temperatura destruye las interacciones débiles y desorganiza la estructura de laproteína, de forma que el interior hidrofóbico interacciona con el medio acuoso y se produce la agregación y precipitación de la proteína desnaturalizada. Una desnaturalización producida por calor es siempre IRREVERSIBLE. Únicamente, una proteína extremadamente soluble en medio básico (como por ej. la albúmina) podría redisolverse lentamente en medio básico. 2) pH: los cambios bruscos de pH provocan un cambio de carga, principalmente en las cadenas laterales polares (R), lo que produce un cambio de estructura: • + — + = cargas eléctricas de tipo repulsivo: se repelen mantienen la estructura • - — + = se atraen: facilitan la agregación intermolecular precipitación - pH < pI proteínas + 32
  33. 33. BIOQ GENERAL 0 - pH = pI no hay carga neta (q ) - pH > pI proteínas – + -Los iones H y OH del agua, además de afectar a la envoltura acuosa de las proteínas, también afectan a la carga eléctrica de los grupos ácidos y básicos de las cadenas laterales de los aminoácidos.Esta alteración de la carga superficial de las proteínas elimina las interacciones electrostáticas que estabilizan laestructura terciaria y a menudo provoca su precipitación. La solubilidad de una proteína es mínima en su punto isoeléctrico, ya que su carga neta es cero y desaparece cualquier fuerza de repulsión electrostática que pudiera dificultar la formación de agregados. 3) SALES NEUTRAS: se disuelven con el agua (disociación) “robando” la esfera de solvatación que rodea a las proteínas, produciéndose una pérdida de solubilidad drástica al aumentar la concentración de la sal. Así estos solutos compiten por el agua, rompiendo los enlaces débiles o interacciones electroestáticas y por tanto, la proteína pierde su estructura (se expande) y función. - Redisolución y Renaturalización. Serían posibles simplemente recuperando el agua (añadiendo agua) - Constituye un excelente método de purificación 4) FUERZA IÓNICA — Adición de ácidos o bases muy concentradosUn aumento de la fuerza iónica del medio (por adición de sulfato amónico, urea o hidroclorurode guanidinio, por ejemplo) también provoca una disminución en el grado de hidratación de los grupos iónicos superficiales de la proteína, ya que estos solutos: • Compiten por el agua • Rompen los puentes de hidrógeno o las interacciones electrostáticas de forma que las moléculas proteicas se agregan y precipitan - Redisolución y renaturalización. En muchos casos, la precipitación provocada por el aumento de la fuerza iónica es reversible. Mediante una simple diálisis se puede eliminar el exceso de soluto y recuperar tanto la estructura como la función original. A veces es una disminución en la fuerza iónica la que provoca la precipitación. Así, las proteínas que se disuelven en medios salinos pueden desnaturalizarse al dializarlas frente a agua destilada, y se renaturalizan cuando se restaura la fuerza iónica original - Ejemplo: tenemos 3 tubos de ensayo con una proteína soluble en el agua; en 2 de ellos añadimos un ácido fuerte y ambas precipitan; en otro añadimos una base fuerte (NaOH) y no precipita. 33
  34. 34. BIOQ GENERAL En los 2 primeros tubos la proteína precipita porque se le han agregado o ha interaccionado con aniones muy voluminosos (-) su redisolución se producirá en medio básico para que deje de tener carga + (y así no interaccionará); sin embargo la proteína se hallará totalmente desnaturalizada: soluble pero inservible En el tubo con NaOH la proteína no precipita porque se le ha agregado un catión poco voluminoso (Na+ = catión ligero), por lo que no se supera el producto de solubilidad. 5) SOLVENTES ORGÁNICOS — POLARIDAD • Disminuyen la cte. dieléctrica del medio = capacidad solvente capacidad de oponerse a la atracción de las moléculas (q1 x q2) Fuerza de interacción (Fe) = K q1 x q2 / r2 Cuanto más fuerte la interacción entre las cargas (q1 x q2) menos capacidad solvente • “Roban” también la esfera de solvatación • Favorecen las interacciones entre las cadenas laterales apolares (R) del interior sacándolas al exterior = pérdida de solubilidad Casi siempre IRREVERSIBLE - Ejemplo: el agua posee una elevadísima cte. dieléctrica, mucho más elevada que la del etanol-acetona, así que al ser añadido éste, rebajamos la potencia del agua como solvente, disminuyendo la interacción proteína-disolvente las cadenas peptídicas se acercan y la proteína precipita. - Redisolución y renaturalización. Si se hubiera trabajado en condiciones de frío (a -20ºC) no se hubiera alterado su estructura, y por tanto se redisolvería en agua; por otro lado, en condiciones de frío algo superiores a la anterior (0ºC), se hubiera podido redisolver forzando el medio hacia ácido. Sin embargo, si hubiéramos necesitado forzar mucho el medio hacia ácido significaría que habríamos producido mucho desnaturalización.La polaridad del disolvente disminuye cuando se le añaden sustancias menos polares que el aguacomo el etanol o la acetona.Con ello disminuye el grado de hidratación de los grupos iónicos superficiales de la moléculaproteica, provocando la agregación y precipitación.Los disolventes orgánicos interaccionan con el interior hidrofóbico de las proteínas ydesorganizan la estructura terciaria, provocando su desnaturalización y precipitación.La acción de los detergentes es similar a la de los disolventes orgánicos. 6) METALES PESADOS: interaccionan con los enlaces débiles, pudiendo llegar a: • Oxidar a cadenas laterales (R) • Intercalarse en la estructura proteica de forma IRREVERSIBLE formando enlaces covalentes; además, al ser voluminosos, pueden superar el producto de solubilidad de la proteína con su consecuente precipitación 34
  35. 35. BIOQ GENERAL7) AGENTES REDUCTORES: rompen los enlaces covalentes disulfuro, que están reforzando a la estructura proteica.- Casi ninguna estructura se recupera = IRREVERSIBLE; aunque por ej., con las sales neutras a veces se puede recuperar la estructura nativa *Recordatorio* Objetivo de la adopción de una estructura terciaria o cuaternaria: llegar a una estructura de máxima estabilidad, la cual está proporcionada por los enlaces débiles; si se rompen = pérdida de función Las cadena laterales (R) se disponen separadas para que no interaccionen entre sí, pero sí con el agua, formándose la esfera de solvatación, que permite el mantenimiento de esta estructura nativa o de máxima estabilidad. Todo lo que cambie esto llevará a la pérdida de estructura. Aquí es donde actúan los agentes reductores, “robando” la esfera de solvatación a la proteína, lo que provoca: • Plegamientos de la molécula proteica que hacen que los R se dispongan más “juntos” y que interaccionen entre sí • Además, al perder la esfera de solvatación se condiciona que las cadenas laterales (R) de la proteína pueden interaccionar con los R de otras proteínas aumenta interacción proteína-proteína = precipitación Ej.: etanol, agua oxigenada… Comentado en clase Problema actual con los metales pesados: debido a la contaminación presente en nuestros mares, cada vez son más los peces contaminados con mercurio, plomo… que son metales pesados, muy peligrosos para nuestro organismo por su interacción con las proteínas. ¿Qué ocurre entonces? No hay manera de saber si el pescado que consumimos está contaminado o no, a no ser que provenga de piscifactoría. Si lo consumimos, el mercurio y el plomo se intercalarán en la estructura nativa de nuestras proteínas, y oxidarán a los aminoácidos de las cadenas peptidicas, lo que impedirá que la proteína lleve a cabo su función. Falsos mitos sobre la desinfección de heridas mediante soluciones orgánicas: “El agua oxigenada y el alcohol son buenos desinfectantes”- El agua oxigenada destruye a los tejidos (necrosis tisular).- El alcohol produce vasodilatación. • Cómo desinfectar una herida correctamente: limpiar con agua y jabón, del centro a la periferia. Si la herida es profunda, utilizar suero fisiológico. "La saliva es un buen desinfectante" (base fundamental en la imitación animal). Está compuesta por una enzima, la lisozima, que rompe las paredes celulares de las bacterias contenidas en los alimentos, protegiendo en parte a los dientes de las caries y de las 35
  36. 36. BIOQ GENERAL infecciones. Sin embargo, su poder bactericida es muy bajo y lo más probable es que la aplicación de saliva en las heridas favorezca el transporte de gérmenes más agresivos que aumenten el riesgo de infección de las mismas. Todo este plegamiento (conformación de las estructuras en el espacio) se produce en los seres vivos de forma natural, simplemente por la interacción del agua con las cadenas polipeptidicas. REPLEGAMIENTO DE LAS PROTEÍNAS: CHAPERONAS En ocasiones es necesario plegar proteínas que han sufrido un desplegamiento parcial; Ej.: las proteínas de transmembrana se han de “desplegar” un poco para atravesar la membrana plasmática. Este REPLEGAMIENTO es realizado por las CHAPERONAS =cilindros ( chaperoninas). Así las proteínas incapaces de adoptar su estructura nativa requieren de ellas.Además, en el RER forman parte del CONTROL de CALIDAD en la síntesis proteica. Así las proteínas mal plegadas son bloqueadas por chaperonas, uniéndose a ellas y estabilizando la proteína. Las mantiene desplegadas hasta que se corrige el plegamiento. Son un conjunto de proteínas presentes en todas las células, muchas de las cuales son proteínas de choque térmico. Función: ayudar al plegamiento de otras proteínas recién formadas en la síntesis de proteínas. No forman parte de la estructura primaria de la proteína funcional, sino que sólo se unen a ella para ayudar en su plegamiento, ensamblaje y transporte celular a otra parte de la célula donde la proteína realiza su función. Los cambios de conformación tridimensional de las proteínas pueden estar afectados por un conjunto de varias chaperonas que trabajan coordinadas, dependiendo de su propia estructura y de la disponibilidad de las chaperonas. 36
  37. 37. BIOQ GENERALTema 3EJEMPLOS DE PROTEÍNAS La estructura condiciona la función.Así como los polisacáridos se reducen a ser sustancias de reserva o moléculas estructurales, las proteínas asumen funciones muy variadas gracias a su gran hetereogeneidad estructural(derivada de sus cadenas laterales). Describir las funciones de las proteínas equivale a describir en términos moleculares todos los fenómenos biológicos. Podemos destacar las siguientes: • función enzimática • función de defensa • función hormonal • función de movimiento • función de reconocimiento de señales • función de reserva • función de transporte • transducción de señales • función estructural • función reguladora *Transducción de señales: proceso por el que una célula convierte una determinada señal o estímulo exterior, en otra señal o respuesta específica. Muchas proteínas ejercen a la vez más de una de las funciones enumeradas:Las proteínas de membrana tienen tanto función estructural como enzimática; la ferritina es una proteína que transporta y, a la vez, almacena el hierro; la miosina interviene en la contracción muscular, pero también funciona como un enzima capaz de hidrolizar el ATP… Podemos agruparlas en 2 grandes grupos que se subdividen en otros 2 grupos: 1) FIBROSAS 2) GLOBULARES MATRIZ CONTRÁCTILES DEFENSA UNIÓN AL O2 EXTRACELULAR COLÁGENO ACTINA INMUNO- HEMO- GLOBULINAS GLOBINA ELASTINA MIOSINA (transporte y QUERATINA (componentes del almacenamiento) citoesqueleto de las células del TJ muscular, huso mitótico…) 1) FIBROSAS A. MATRIZ EXTRACELULAR (se hallan formando parte de ella) - Función = principalmente ESTRUCTURAL • ESTABILIZACIÓN de todas las células del TJ (conglomerado) • DELIMITACIÓN • CONSISTENCIA resistencia mecánica • Permite FIJAR IONES (Ca2+, Mg2+…) 37
  38. 38. BIOQ GENERAL - Composición: • Glúcidos o Minoritarias = lamininas y • Proteínas = COLÁGENO, proteoglicanos ELASTINA y QUERATINA que se implican entre sí, por lo que es difícil establecer qué es proteína y qué es glúcido; no es posible delimitarlas porque ambas van a formar parte entre sí. Ej. de estructura no delimitable = proteoglicanos (compuesto proteico y glucídico): los clasificamos como hidratos de carbono, ya que estos tienen mayor peso en la molécula. COLÁGENOEs una de las proteínas mayoritarias del organismo (constituye más de 1/3 del total de lasproteínas)Se sintetiza en las células del TJ CONJUNTIVO, pero no se queda dentro de las células, sino quese exporta a la matriz extracelular del TJ celular, en especial del TJ conjuntivo.Es el componente fundamental de: vasos sanguíneos, tendones, huesos, cartílagos, córnea… (TJconjuntivo o conectivo, óseo, cartilaginoso…) de todas aquellas estructuras de granelasticidad pero que precisan de una gran resistencia (por eso es una de las más abundantes)ESTRUCTURA El colágeno propiamente dicho es una MACROESTRUCTURA formado por apilamiento de FIBRAS - Compleja y fibrosa - Elevado carácter de insolubilidad en H2O - Elevado carácter apolar a) Estructura primaria presenta una particularidad, exclusiva del colágeno, que es la que lo hace tan APOLAR = repeticiones sucesivas de 1 triplete de aá que siempre será: GLY – X – Y pudiendo ser X ó Y mayoritariamente (58-60%) = • Ala • Pro – OHPro • Lys – OHLys La Pro y la Lys son hidroxiladas una vez sintetizada la proteína dando lugar a la OHPro y la OHLys = ejemplo de aá modificados dentro de una estructura proteica (aá no comunes) Esta particular estructura primaria condiciona la estructura secundaria. b) Estructura secundaria = CADENA α Debido principalmente a la abundancia de Pro en el triplete de aá que se repite sucesivamente y a la apolaridad de los aá que forman la cadena, la cadena peptídica adopta una estructura helicoidal, ya que no puede ser de otra forma: Pro giro; Pro giro… Surge así un subtipo de estructura secundaria exclusiva del colágeno = CADENA α Características de la CADENA α — muy distinta de la α-hélice 38
  39. 39. BIOQ GENERAL • Levógira — α-hélice dextrógira • Muy estrecha, diámetro (Ø) = 3.8Å — α-hélice Ø = 5Å • 3 aá por vuelta — α-hélice 3.6 casi 4 aá por vuelta • NO ESTABILIZADA POR NINGÚN TIPO DE ENLACE — α-hélice estabilizada por enlaces débiles ¿Por qué no se encuentra estabilizada por ningún tipo de enlace?Porque la estructura primaria del colágeno, a consecuencia de ese triplete de aá característico y exclusivo, no puede adoptar otro tipo de estructura; la Pro (muy abundante, casi 1 Pro c/3 aá) impone el giro, es decir, el hecho de esa particular estructura primaria impone una estructura obligatoria, que es la cadena α.Aunque no se estabilice por enlaces (débiles) de hidrógeno, no significa que no los pueda formar. • Puede formar enlaces de hidrógeno (que no han contribuido a su estabilización) Conclusión: la CADENA α es estable por sí misma porque es la única estructura que puede adoptar la estructura primaria a consecuencia de los giros provocados por la abundante prolina (Pro). • Las cadenas laterales (R) de los aá que forman la cadena α (estructura secundaria del colágeno) quedan en el EXTERIOR La estructura secundaria o cadena α no es la estructura definitiva. c) “Estructura terciaria indefinida”No carece de estructura terciaria, pero no podemos aislarla del conjunto, ya que se trata de unamacromolécula (las fibras de colágeno no constituyen el colágeno propiamente dicho, sino suconjunto). Conclusión: resulta difícil identificar a la estructura terciaria, ya que ésta se encuentra entre la estructura secundaria (cadena peptídica o cadena α ya plegada) y la estructura cuaternaria (cadena polipeptídica/oligomérica o triple asociación de cadenas α = tropocolágeno). ¿Dónde se encuentra la separación? No se puede saber. d) Estructura cuaternaria = TROPOCOLÁGENO Asociaciones triples de cadenas α o cadenas peptídicas TRIPLE HÉLICE de cadenas α = TROPOCOLÁGENO El tropocolágeno constituye uno de los últimos pasos para llegar a la estructura definitiva. • La triple hélice gira a derechas = *DEXTRÓGIRA* esto es lo que le da la tremenda RESISTENCIA/CONSISTENCIA al colágeno ¿Por qué? El tropocolágeno o triple hélice tendrá un sentido de giro (derecha) contrario al de las cadenas α (izquierda), lo que hace que actúe como una cuerda de 3 cabos; si se intenta “desmontar” se enrrollará aún más. • Se estabiliza simplemente por su estructura: o levógiro-helicoidal (cadenas o tropocolágeno dextrógiro α) 39
  40. 40. BIOQ GENERAL • Además, también contribuyen a su estabilización, y resultan totalmente fundamentales y necesarios: - Enlaces de hidrógeno intercatenarios: aparecen entre los elementos de los enlaces peptídicos de las 3 cadenas α - Residuos de OHPro e OHLys de distintas cadenas permiten la formación de los enlaces de hidrógeno intercatenarios - Interacciones hidrofóbicas: al tratarse de cadenas polipeptídicas apolares se dispondrán intentando repeler el agua, para lo que se juntarán y pegarán mucho entre sí, intentando exponer el menor número de aá apolares posibles al agua (aunque siempre habrá algún aá que contacte con el agua) ¿Cómo se hidroxila la Pro y la Lys?*HIDROXILACIÓN: reacción química en la que se introduce un grupo hidroxilo (-OH) en un compuesto reemplazando un átomo de hidrógeno, oxidando al compuesto. En la hidroxilación de las proteínas, el principal receptor del grupo hidroxilo suele ser la prolina, formándose hidroxiprolina, uno de los principales componentes del colágeno. - Las hidroxilaciones de la cadena primaria se llevan a cabo en estructura secundaria, cuando la cadena peptídica ya ha adoptado la cadena α. - Las reacciones de hidroxilación de las proteínas son facilitadas (catalizadas) por enzimas específicas: • PROLIL HIDROXILASA • LISIL HIDROXILASA Reconocen específicamente en una cadena α cuando hay un residuo de Pro o Lys ya que al añadir el grupo –OH marcan a los aminoácidos (si están presentes se hidroxilarán, recibirán el grupo -OH) Lo único que las diferencia es la especificidad de la enzima hidroxilasa: prolil ó lisil Añaden un grupo –OH (la lisil hidroxilasa podrá hacerlo en 2 disposiciones, pero no tendrá mayor trascendencia) Ambas enzimas requerirán de unos elementos esenciales, que les ayudarán a añadir ese grupo –OH, y sin los que no podrán realizar la hidroxilación: o α-cetoglutarato (αKG) o Fe2+ o O2 o *Vit. C* = propensa a la oxidación La Vit. C resulta FUNDAMENTAL para que la prolil o lisil hidroxilasa añada ese grupo –OH a esa Pro ó Lys, es decir, ambas necesitarán la participación esencial de la vitamina C (su estructura es inestable, por eso al zumo se le “va” la Vit. C, porque al estar en contacto con el aire se oxida y se va perdiendo progresivamente) para hidroxilar al aminoácido. 22/10/2010 40
  41. 41. BIOQ GENERAL*Curiosidad*: El Ciclo del ácido cítrico o de los ácidos tricarboxílicos recibe erróneamente elnombre del Ciclo de Krebs, cuando en realidad el señor Hans Adolf Krebs dedicó su trabajo alestudio del Ciclo de la Urea. Resumen: COLÁGENO Estructura primaria GLY-X-Y = Pro-giro Estructura secundaria = cadena α Estructura terciaria indefinida Estructura cuaternaria = tropocolágeno (triple hélice = asociación de 3 cadenas α) - Residuos = grupos –OH derivados de la prolil-lisil hidroxilasas - Permiten la formación de enlaces de H intercatenarios que estabilizan al tropocolágeno - A su vez estos permitirán la UNIÓN DE GLÚCIDOS al tropocolágeno Los enlaces de hidrógeno intercatenarios (formados gracias a los grupos –OH de los residuos de OHPro e OHLys) van a permitir la unión de glúcidos. UNIÓN DE GLÚCIDOS AL TROPOCOLÁGENO Así clasificamos al colágeno (todavía no constituido completamente) dentro del grupo de las: • OLIGOPROTEÍNAS (varias cadenas polipéptidicas o tropocolágenos) • HETEROPROTEÍNAS (criterio II: según su composición conjugadas = parte no proteica o grupo prostético + parte proteica) Las 3 cadenas α (estructura secundaria) pueden ser = ó ≠: - Pueden variar en su secuencia/orden de aá - Pueden variar en el nº de hidroxilaciones y su posición - Pueden variar en la proporción y en el tipo de glúcidos que tengan asociados Así surgen DISTINTOS TIPOS DE TROPOCOLÁGENO (estructura cuaternaria): - Los más habituales se diferencian según su secuencia u orden de los aá: a) Cadenas α 1 b) Cadenas α 2 - Según el nº y posición de las hidroxilaciones y la proporción y el tipo de glúcidos surgen SUBTIPOS de las cadenas α 1 y 2: • α1 (Tipo I), α1 (Tipo II), α1 (Tipo III)… α1 (Tipo XI) 41

×