SlideShare a Scribd company logo
1 of 229
Download to read offline
New methodologies of Solid-State NMR and biophysical
studies of antimicrobial and designed peptides in model
and natural membranes
Barbara Perrone
Laboratoire de Biophysique et RMN des M´embranes
Universit´e de Strasbourg, Strasbourg, France
September 13th, 2011
Thesis defense
Outline
1 Introduction
Motivations
2 Solid State NMR (SS-NMR)
Solid-state NMR and Magic Angle Hole problem
Magic Angle Hole and Transient Oscillation Holes origins
3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes
Changing the shape of the contact pulse
4 Another strategy: ROtor Directed Exchange of Orientation (RODEO)
RODEO - Theory and method development
RODEO - Applications
5 Biophysical studies of the antimicrobial peptide LAH4
LAH4-membrane insertion in presence of citrate
6 Future perspective
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 2 / 55
Outline
1 Introduction
Motivations
2 Solid State NMR (SS-NMR)
Solid-state NMR and Magic Angle Hole problem
Magic Angle Hole and Transient Oscillation Holes origins
3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes
Changing the shape of the contact pulse
4 Another strategy: ROtor Directed Exchange of Orientation (RODEO)
RODEO - Theory and method development
RODEO - Applications
5 Biophysical studies of the antimicrobial peptide LAH4
LAH4-membrane insertion in presence of citrate
6 Future perspective
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 3 / 55
Motivations
Antimicrobial Resistance
threat to public health
Antimicrobial Peptides
Solid-state NMR
2011 E.coli outbreak
46 deaths, 3000 persons infected,
$2,840,000,000
Mechanisms
SS-NMR methodology
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 4 / 55
Outline
1 Introduction
Motivations
2 Solid State NMR (SS-NMR)
Solid-state NMR and Magic Angle Hole problem
Magic Angle Hole and Transient Oscillation Holes origins
3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes
Changing the shape of the contact pulse
4 Another strategy: ROtor Directed Exchange of Orientation (RODEO)
RODEO - Theory and method development
RODEO - Applications
5 Biophysical studies of the antimicrobial peptide LAH4
LAH4-membrane insertion in presence of citrate
6 Future perspective
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 5 / 55
Solid-state NMR - Anisotropy
CSA tensor
σPAF =


σ11 0 0
0 σ22 0
0 0 σ33


15
N-labeled amide in a helical peptide
σ33 ∼ 200 ppm
σ22 ∼ 85 ppm
σ11 ∼ 65 ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 6 / 55
Solid-state NMR - Anisotropy
CSA tensor
σPAF =


σ11 0 0
0 σ22 0
0 0 σ33


15
N-labeled amide in a helical peptide
σ33 ∼ 200 ppm
σ22 ∼ 85 ppm
σ11 ∼ 65 ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 6 / 55
Solid-state NMR - Anisotropy
CSA tensor
σPAF =


σ11 0 0
0 σ22 0
0 0 σ33


15
N-labeled amide in a helical peptide
σ33 ∼ 200 ppm
σ22 ∼ 85 ppm
σ11 ∼ 65 ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 6 / 55
Solid-state NMR - Anisotropy
CSA tensor
300 200 100 0 ppm
!11
!22
!33
σPAF =


σ11 0 0
0 σ22 0
0 0 σ33


15
N-labeled amide in a helical peptide
σ33 ∼ 200 ppm
σ22 ∼ 85 ppm
σ11 ∼ 65 ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 6 / 55
Oriented SS-NMR
Mechanically Oriented Samples
B0
200 ppm ca
B0
80 ppm ca
Drawbacks
Low coil
filling-factor due to
support
Problematic
environmental
control
Not suitable for
complex membrane
or in cell studies
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 7 / 55
Oriented SS-NMR
Mechanically Oriented Samples
B0
200 ppm ca
B0
80 ppm ca
Drawbacks
Low coil
filling-factor due to
support
Problematic
environmental
control
Not suitable for
complex membrane
or in cell studies
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 7 / 55
Oriented SS-NMR
Mechanically Oriented Samples
B0
200 ppm ca
B0
80 ppm ca
Drawbacks
Low coil
filling-factor due to
support
Problematic
environmental
control
Not suitable for
complex membrane
or in cell studies
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 7 / 55
Oriented SS-NMR
Mechanically Oriented Samples
B0
200 ppm ca
B0
80 ppm ca
Drawbacks
Low coil
filling-factor due to
support
Problematic
environmental
control
Not suitable for
complex membrane
or in cell studies
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 7 / 55
Unoriented SS-NMR
Fast uniaxial rotational diffusion around the bilayer normal
Figure: Prongidi-Fix et al., J. Am. Chem. Soc., 2007
15N−KALP in
unoriented POPC,
310 K
300 200 100 0 ppm
MAH
Distortion at the isotropic
frequency =“Magic Angle
Hole”(MAH)
Major problems with
line-shape fitting
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 8 / 55
Origins of MAH
Cross-Polarization (CP)
Magnetization transfer: 1H −→13 C,15 N
Dipolar coupling constant:
b = −γI γS 
2r3 (3 cos2 θ − 1) b(θ∗) = 0 θ∗ = 54.7° Magic Angle
Chemical Shift Anisotropya: ∆σ ∝ (3 cos2 θ − 1) σ(θ∗) = σiso
a
hypothesis: symmetric chemical shift tensor σ parallel to the dipolar vector
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 9 / 55
Static CP under fast uniaxial motion
Static CP of ferrocene
150 100 50 ppm
τcp = 50 µs
Magic Angle Hole (MAH)
at the isotropic frequency
Transient Oscillation
Holes (TOHs)
At long contact times, a
quasi-equilibrium state is
reached, and the powder
pattern line-shape is
recovered; too long to be
used in biological samples
(short T1ρ)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 10 / 55
Static CP under fast uniaxial motion
Static CP of ferrocene
150 100 50 ppm
τcp = 50 µs
Magic Angle Hole (MAH)
at the isotropic frequency
Transient Oscillation
Holes (TOHs)
At long contact times, a
quasi-equilibrium state is
reached, and the powder
pattern line-shape is
recovered; too long to be
used in biological samples
(short T1ρ)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 10 / 55
Static CP under fast uniaxial motion
Static CP of ferrocene
150 100 50 ppm
τcp = 150 µs
Magic Angle Hole (MAH)
at the isotropic frequency
Transient Oscillation
Holes (TOHs)
At long contact times, a
quasi-equilibrium state is
reached, and the powder
pattern line-shape is
recovered; too long to be
used in biological samples
(short T1ρ)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 10 / 55
Static CP under fast uniaxial motion
Static CP of ferrocene
150 100 50 ppm
τcp = 350 µs
Magic Angle Hole (MAH)
at the isotropic frequency
Transient Oscillation
Holes (TOHs)
At long contact times, a
quasi-equilibrium state is
reached, and the powder
pattern line-shape is
recovered; too long to be
used in biological samples
(short T1ρ)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 10 / 55
Static CP under fast uniaxial motion
Static CP of ferrocene
150 100 50 ppm
τcp = 1 ms
Magic Angle Hole (MAH)
at the isotropic frequency
Transient Oscillation
Holes (TOHs)
At long contact times, a
quasi-equilibrium state is
reached, and the powder
pattern line-shape is
recovered; too long to be
used in biological samples
(short T1ρ)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 10 / 55
Static CP under fast uniaxial motion
Static CP of ferrocene
150 100 50 ppm
τcp = 3 ms
Magic Angle Hole (MAH)
at the isotropic frequency
Transient Oscillation
Holes (TOHs)
At long contact times, a
quasi-equilibrium state is
reached, and the powder
pattern line-shape is
recovered; too long to be
used in biological samples
(short T1ρ)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 10 / 55
Static CP under fast uniaxial motion
Static CP of ferrocene
150 100 50 ppm
τcp = 10 ms
Magic Angle Hole (MAH)
at the isotropic frequency
Transient Oscillation
Holes (TOHs)
At long contact times, a
quasi-equilibrium state is
reached, and the powder
pattern line-shape is
recovered; too long to be
used in biological samples
(short T1ρ)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 10 / 55
Origin of the Transient Oscillation Holes (TOHs)
Classical ”I-S”model MBKE I-I*-S model
ferrocene
M¨uller et al., Phys. Rev. Lett.,
1974
Figures adapted from
Kolodziejski et al., Chem.Rev., 2002
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 11 / 55
Outline
1 Introduction
Motivations
2 Solid State NMR (SS-NMR)
Solid-state NMR and Magic Angle Hole problem
Magic Angle Hole and Transient Oscillation Holes origins
3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes
Changing the shape of the contact pulse
4 Another strategy: ROtor Directed Exchange of Orientation (RODEO)
RODEO - Theory and method development
RODEO - Applications
5 Biophysical studies of the antimicrobial peptide LAH4
LAH4-membrane insertion in presence of citrate
6 Future perspective
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 12 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
ramp
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
s45
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
s65
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
s75
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
s84.3
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
s88
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
s89.5
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
s89.9
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
rectangular
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
rectangular
100 50 ppm
Figure: s75 CP, tCP = 50 µs
100 50 ppm
Figure: rectangular CP, tCP = 50 µs
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
rectangular
100 50 ppm
Figure: s88 CP, tCP = 150 µs
100 50 ppm
Figure: rectangular CP, tCP = 150 µs
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Changing the shape of the contact pulse
Shaped-pulse CP Conclusions
tCP =50 µs: MAH
tCP =150-350 µs: MAH TOHs + 30%S/N
tCP =1-3 ms: MAH
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
rectangular
100 50 ppm
Figure: s75 CP, tCP = 3 ms
100 50 ppm
Figure: rectangular CP, tCP = 3 ms
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 13 / 55
Outline
1 Introduction
Motivations
2 Solid State NMR (SS-NMR)
Solid-state NMR and Magic Angle Hole problem
Magic Angle Hole and Transient Oscillation Holes origins
3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes
Changing the shape of the contact pulse
4 Another strategy: ROtor Directed Exchange of Orientation (RODEO)
RODEO - Theory and method development
RODEO - Applications
5 Biophysical studies of the antimicrobial peptide LAH4
LAH4-membrane insertion in presence of citrate
6 Future perspective
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 14 / 55
ROtor Directed Exchange of Orientation (RODEO)
RODEO-CP pulse sequence
Cross-Polarization
RODEO
Hahn’s echo
Acquisition
!
!
#
!!# #
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 15 / 55
ROtor Directed Exchange of Orientation (RODEO)
RODEO-CP pulse sequence
Cross-Polarization
RODEO
Hahn’s echo
Acquisition
!
!
#
!!# #
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 15 / 55
ROtor Directed Exchange of Orientation (RODEO)
RODEO-CP pulse sequence
Cross-Polarization
RODEO
Hahn’s echo
Acquisition
!
!
#
!!# #
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 15 / 55
ROtor Directed Exchange of Orientation (RODEO)
RODEO-CP pulse sequence
Cross-Polarization
RODEO
Hahn’s echo
Acquisition
!
!
#
!!# #
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 15 / 55
ROtor Directed Exchange of Orientation (RODEO)
RODEO-CP pulse sequence
Cross-Polarization
RODEO
Hahn’s echo
Acquisition
!
!
#
!!# #
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 15 / 55
MAT(Magic Angle Turning) provide the
orientation-exchange
Orientation of the MA cone before and after the mixing time
Figure: before tmix
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 16 / 55
MAT(Magic Angle Turning) provide the
orientation-exchange
Orientation of the MA cone before and after the mixing time
Figure: after tmix
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 16 / 55
MAT(Magic Angle Turning) provide the
orientation-exchange
Orientation of the MA cone before and after the mixing time
Figure: intersection (no exchange)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 16 / 55
RODEO-Theory
RODEO Signal:
G(t) = Sz(tCP)  ·
· exp

iδω0
2ωr

sin2
β
2 [sin 2(γ + ωr (t + τm)) − sin 2(γ + ωr τm)]
−
√
2 sin 2β [sin(γ + ωr (t + τm)) − sin(γ + ωr τm)]


MBKE Solutionab:
 Sz(t) = 1 − 1
2 exp(−Rdf t) − 1
2 exp

−

Rdf +
Rdp
2

t

cos(bt)
ϕ = ωr τm between the evolution (CP) and detection (CS) frequencies
a
M¨uller, Kumar, and Baumann, and Ernst (M¨uller et al., Phys. Rev. Lett., 1974)
b
δ=CSA, ω0 =Larmor freq., r=angle between rIS and B0, ωr /2π =spinning freq.,
β=angle between r and the spinning axis, γ=azimuth of r about the spinning axis,
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 17 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = 0.1 Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = 0.2 Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = 0.3 Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = 0.4 Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = 0.5 Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = 0.6 Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = 0.7 Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = 0.8 Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of τm
RODEO-CP, MAT @ 55 Hz, τcp = 150 µs
As long as τm = nTr nN, RODEO refill the MAH and TOH
In black, experimental spectra. In red, theoretical powder-pattern.
−20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τm = 0.9 Tr
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 18 / 55
RODEO-CP: effect of tCP
RODEO-CP, τmix = Tr /2, MAT @ 50 Hz
In black the experimental spectra, in red the theoretical fit.
150 100 50 0 ppm150 100 50 0 ppm
Figure: τcp = 50µs
RODEO-CP removes distortions −→ line-shape fitting −→ δii
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 19 / 55
RODEO-CP: effect of tCP
RODEO-CP, τmix = Tr /2, MAT @ 50 Hz
In black the experimental spectra, in red the theoretical fit.
150 100 50 0 ppm150 100 50 0 ppm
Figure: τcp = 150µs
RODEO-CP removes distortions −→ line-shape fitting −→ δii
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 19 / 55
RODEO-CP: effect of tCP
RODEO-CP, τmix = Tr /2, MAT @ 50 Hz
In black the experimental spectra, in red the theoretical fit.
150 100 50 0 ppm150 100 50 0 ppm
Figure: τcp = 350µs
RODEO-CP removes distortions −→ line-shape fitting −→ δii
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 19 / 55
RODEO-CP: effect of tCP
RODEO-CP, τmix = Tr /2, MAT @ 50 Hz
In black the experimental spectra, in red the theoretical fit.
150 100 50 0 ppm150 100 50 0 ppm
Figure: τcp = 1 ms
RODEO-CP removes distortions −→ line-shape fitting −→ δii
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 19 / 55
Spin diffusion contribution
Static RODEO-CP, τcp = 50 µs.
150 100 50 0 ppm
Figure: τm = 1s
!
!
#
!!
Spin diffusion in ferrocene is not sufficient to refill the MAH.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 20 / 55
Spin diffusion contribution
Static RODEO-CP, τcp = 50 µs.
150 100 50 0 ppm
Figure: τm=5 s
!
!
#
!!
Spin diffusion in ferrocene is not sufficient to refill the MAH.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 20 / 55
Spin diffusion contribution
Static RODEO-CP, τcp = 50 µs.
150 100 50 0 ppm
Figure: τm=10 s
!
!
#
!!
Spin diffusion in ferrocene is not sufficient to refill the MAH.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 20 / 55
Magic Angle Turning contribution
CP, MAT@50Hz
In black, CP turning at the magic angle (50Hz)
static CP, τcp =10 ms
−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τcp =50 µs
!
!
#
!!!
Slow MAT CP is not sufficient to refill the MAH for tCP  1 ms
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 21 / 55
Magic Angle Turning contribution
CP, MAT@50Hz
In black, CP turning at the magic angle (50Hz)
static CP, τcp =10 ms
−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τcp =150 µs,
!
!
#
!!!
Slow MAT CP is not sufficient to refill the MAH for tCP  1 ms
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 21 / 55
Magic Angle Turning contribution
CP, MAT@50Hz
In black, CP turning at the magic angle (50Hz)
static CP, τcp =10 ms
−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τcp =350 µs
!
!
#
!!!
Slow MAT CP is not sufficient to refill the MAH for tCP  1 ms
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 21 / 55
Magic Angle Turning contribution
CP, MAT@50Hz
In black, CP turning at the magic angle (50Hz)
static CP, τcp =10 ms
−20180 160 140 120 100 80 60 40 20 0 ppm
Figure: τcp =1 ms
!
!
#
!!!
Slow MAT CP is not sufficient to refill the MAH for tCP  1 ms
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 21 / 55
∼400Hz - MAT RODEO-CP
Spinning faster: MAT @414 Hz
100 80 60 40 20 ppm
CP, τcp =150 µs, MAT @ 414 Hz
RODEO (MAS@400Hz) improve the line-shape fitting −→ better
resolution in structural parameters
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 22 / 55
∼400Hz - MAT RODEO-CP
Spinning faster: MAT @414 Hz
100 80 60 40 20 ppm
RODEO-CP, τcp =150 µs, τm = 0.5Tr , MAS @ 414 Hz
RODEO (MAS@400Hz) improve the line-shape fitting −→ better
resolution in structural parameters
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 22 / 55
∼400Hz - MAT RODEO-CP
Spinning faster: MAT @414 Hz
100 80 60 40 20 ppm100 80 60 40 20 ppm
Fit of RODEO-CP, τcp =150 µs, τm = 0.5Tr , MAS @ 414 Hz
RODEO (MAS@400Hz) improve the line-shape fitting −→ better
resolution in structural parameters
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 22 / 55
Conclusions
RODEO
RODEO recover the powder pattern line-shape by de-correlating the
evolution and detection frequencies by slow turning at the magic angle
Simple and robust
Suppress MAH and TOHs for contact times longer ≥ 150 µs
Even for very short contact times, RODEO spectra line-shape are very
close to the theoretical line-shape −→ tensor parameters extracted
with good accuracy
Overall a loss of 10% in intensity respect to CP due to π/2-pulse
imperfections
To increase S/N, adiabatic CP and higher MAS (or other angles) can
be used.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 23 / 55
Conclusions
RODEO
RODEO recover the powder pattern line-shape by de-correlating the
evolution and detection frequencies by slow turning at the magic angle
Simple and robust
Suppress MAH and TOHs for contact times longer ≥ 150 µs
Even for very short contact times, RODEO spectra line-shape are very
close to the theoretical line-shape −→ tensor parameters extracted
with good accuracy
Overall a loss of 10% in intensity respect to CP due to π/2-pulse
imperfections
To increase S/N, adiabatic CP and higher MAS (or other angles) can
be used.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 23 / 55
Conclusions
RODEO
RODEO recover the powder pattern line-shape by de-correlating the
evolution and detection frequencies by slow turning at the magic angle
Simple and robust
Suppress MAH and TOHs for contact times longer ≥ 150 µs
Even for very short contact times, RODEO spectra line-shape are very
close to the theoretical line-shape −→ tensor parameters extracted
with good accuracy
Overall a loss of 10% in intensity respect to CP due to π/2-pulse
imperfections
To increase S/N, adiabatic CP and higher MAS (or other angles) can
be used.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 23 / 55
Conclusions
RODEO
RODEO recover the powder pattern line-shape by de-correlating the
evolution and detection frequencies by slow turning at the magic angle
Simple and robust
Suppress MAH and TOHs for contact times longer ≥ 150 µs
Even for very short contact times, RODEO spectra line-shape are very
close to the theoretical line-shape −→ tensor parameters extracted
with good accuracy
Overall a loss of 10% in intensity respect to CP due to π/2-pulse
imperfections
To increase S/N, adiabatic CP and higher MAS (or other angles) can
be used.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 23 / 55
Conclusions
RODEO
RODEO recover the powder pattern line-shape by de-correlating the
evolution and detection frequencies by slow turning at the magic angle
Simple and robust
Suppress MAH and TOHs for contact times longer ≥ 150 µs
Even for very short contact times, RODEO spectra line-shape are very
close to the theoretical line-shape −→ tensor parameters extracted
with good accuracy
Overall a loss of 10% in intensity respect to CP due to π/2-pulse
imperfections
To increase S/N, adiabatic CP and higher MAS (or other angles) can
be used.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 23 / 55
Conclusions
RODEO
RODEO recover the powder pattern line-shape by de-correlating the
evolution and detection frequencies by slow turning at the magic angle
Simple and robust
Suppress MAH and TOHs for contact times longer ≥ 150 µs
Even for very short contact times, RODEO spectra line-shape are very
close to the theoretical line-shape −→ tensor parameters extracted
with good accuracy
Overall a loss of 10% in intensity respect to CP due to π/2-pulse
imperfections
To increase S/N, adiabatic CP and higher MAS (or other angles) can
be used.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 23 / 55
RODEO-CP applied to designed peptides in unoriented
model membranes
Designed Peptides
KL14
in plane
KKLLKKAKKLLKK-CONH2
KALP
transmembrane
GKKLALALALALALALALALKKA-CONH2
Model Membrane
POPC
1-palmitoyl-2-oleoyl-phosphatidylcholine
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 24 / 55
RODEO-CP applied to designed peptides in unoriented
model membranes
Designed Peptides
KL14
in plane
KKLLKKAKKLLKK-CONH2
KALP
transmembrane
GKKLALALALALALALALALKKA-CONH2
Model Membrane
POPC
1-palmitoyl-2-oleoyl-phosphatidylcholine
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 24 / 55
RODEO-CP applied to designed peptides in unoriented
model membranes
Designed Peptides
KL14
in plane
KKLLKKAKKLLKK-CONH2
KALP
transmembrane
GKKLALALALALALALALALKKA-CONH2
Model Membrane
POPC
1-palmitoyl-2-oleoyl-phosphatidylcholine
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 24 / 55
RODEO-CP applied to designed peptides in unoriented
model membranes
σ11, σ22, σ33
σ, σ⊥
Model
!

!

# $
%
%''
%((
)
350 300 250 200 150 100 50 0 ppm 350 300 250 200 150 100 50 0 ppm
KL14 KALP
σ33 (ppm) 228.2±0.5 221±4
σ22 (ppm) 78±4 77.5±0.3
σ11 (ppm) 54±1 55.0±0.2
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 25 / 55
RODEO-CP applied to designed peptides in unoriented
model membranes
σ11, σ22, σ33
σ, σ⊥
Model
!

!

# $
%
%''
%((
)
−50250 200 150 100 50 0 ppm−50250 200 150 100 50 0 ppm −50250 200 150 100 50 0 ppm−50250 200 150 100 50 0 ppm
RODEO-APHH-CP, 50 Hz MAT, τcp = 800 µs, P/L=2/100,
298 K
KL14 KALP
σ (ppm) 72±4 205±4
σ⊥ (ppm) 143.5±0.5 78.7±0.3
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 25 / 55
RODEO-CP applied to designed peptides in unoriented
model membranes
σ11, σ22, σ33
σ, σ⊥
Model
!

!

# $
%
%''
%((
)
σ = σ11cos2αsin2β + σ22sin2αsin2β + σ33cos2β
C.Sizun and B.Bechinger, J. Am. Chem. Soc. (2002)
0
Π
2
Π
3 Π
2
2 Π
Α
0
Π
2
Π
3 Π
2
2 ΠΒ
100
150
200
Σ
−→ α = pitch angle and β= helix tilt (approx: σ33  helix
axis, fast rotational diffusion around ˆn )
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 25 / 55
Helix tilt calculation
Graphical solution
KL14: intersection of the surface σ⊥ = f (α, β) with the experimental
plane σ⊥ = 143.5 ppm.
0 Π
4 Π
2
3 Π
2
2 Π
Α
0
Π
4
Π
2
3 Π
2
2 Π
Β
75
100
125
150
Σ ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 26 / 55
Helix tilt calculation
Graphical solution
KALP: intersection of the surface σ = f (α, β) with the experimental
plane σ = 205 ppm.
0Π
4Π
2
3 Π
2
2 Π
Α
0
Π
4 Π
2
3 Π
2
2 Π
Β
100
150
200
Σ
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 26 / 55
Results
KALP
topologically open curve
β = f (α).
α [0, 2π]
β [22.7 − 24.5]°
KL14
topologically closed curve
β = f (α).
α [−63.3, +63.3]°
β [70.5, 109.5]°
Π
2
ΠΠ 3 Π
2
2 Π
Α
 Π
2
Π
2
Β
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 27 / 55
Results
KALP
topologically open curve
β = f (α).
α [0, 2π]
β [22.7 − 24.5]°
KL14
topologically closed curve
β = f (α).
α [−63.3, +63.3]°
β [70.5, 109.5]°
Π
2
ΠΠ 3 Π
2
2 Π
Α
 Π
2
Π
2
Β
Π
2
ΠΠ 3 Π
2
2 Π
Α
 Π
2
Π
2
Β
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 27 / 55
RODEO-CP applied to PLAH4 in E.coli lipid extract
PLAH4 in E.coli total lipid extract
15N fully labelled (also lateral chains)
MLV of E.coli-extracted lipids (P/L=2%)
10 mM tris buffer (pH∼ 5)
RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0,
τm = (0.5Tr ± 18%), τcp = 800 µs, 310K.
No line-shape distortions.
250 200 150 100 50 0 ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 28 / 55
RODEO-CP applied to PLAH4 in E.coli lipid extract
PLAH4 in E.coli total lipid extract
15N fully labelled (also lateral chains)
MLV of E.coli-extracted lipids (P/L=2%)
10 mM tris buffer (pH∼ 5)
RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0,
τm = (0.5Tr ± 18%), τcp = 800 µs, 310K.
In red, line-shape fitting.
250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 28 / 55
RODEO-CP applied to PLAH4 in E.coli lipid extract
PLAH4 in E.coli total lipid extract
15N fully labelled (also lateral chains)
MLV of E.coli-extracted lipids (P/L=2%)
10 mM tris buffer (pH∼ 5)
RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0,
τm = (0.5Tr ± 18%), τcp = 800 µs, 310K.
In blue, tensor components:
σ = 78 ppm, σ⊥ = 142 ppm.
Corresponding estimated
values (in-plane): σ = 58−81
ppm, σ⊥ = 142 − 153 ppm.
250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 28 / 55
RODEO-CP applied to PLAH4 in E.coli lipid extract
PLAH4 in E.coli total lipid extract
15N fully labelled (also lateral chains)
MLV of E.coli-extracted lipids (P/L=2%)
10 mM tris buffer (pH∼ 5)
RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0,
τm = (0.5Tr ± 18%), τcp = 800 µs, 310K.
In violet, isotropic components
σ ≈
15N σbackbone
iso
250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 28 / 55
RODEO-CP applied to PLAH4 in E.coli lipid extract
PLAH4 in E.coli total lipid extract
15N fully labelled (also lateral chains)
MLV of E.coli-extracted lipids (P/L=2%)
10 mM tris buffer (pH∼ 5)
RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0,
τm = (0.5Tr ± 18%), τcp = 800 µs, 310K.
Assignment of the additional
peaks.
250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm
H lateral chains
K lateral chains
lipids (?)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 28 / 55
RODEO-CP applied to PLAH4 in-vivo E.coli
PLAH4 in-vivo E.coli
≤0.75mg 15N fully labeled
PLAH4
∼300 mg bacteria pellet
TRIS buffer (pH∼7)
no nutrients, no O2
RODEO-APHH-CP, 53 Hz MAT, τm = (0.5Tr ± 18%), τCP = 800 µs, 4
days acquisition, 298 K.
viability tests:
no difference w
or w/o peptide
20% bacteria
died
S/N can be
improved
250 200 150 100 50 0 ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 29 / 55
Outline
1 Introduction
Motivations
2 Solid State NMR (SS-NMR)
Solid-state NMR and Magic Angle Hole problem
Magic Angle Hole and Transient Oscillation Holes origins
3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes
Changing the shape of the contact pulse
4 Another strategy: ROtor Directed Exchange of Orientation (RODEO)
RODEO - Theory and method development
RODEO - Applications
5 Biophysical studies of the antimicrobial peptide LAH4
LAH4-membrane insertion in presence of citrate
6 Future perspective
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 30 / 55
LAH4
Known properties
KKALLALALHHL AHLALHLALALKKA-NH2
a
unstructured in solution
helical in membrane/micelles
a
Bechinger(1996), Aisenbrey et al. (1996),Vogt et al.(1999),
Kichler et al.(2003), Mason et al. (2006), Kichler et al.(2007),
Prongide-Fix et al. (2007), Marquette et al. (2008)
pH∼5
protonation of histidines
surface-associated
pH∼7
deprotonation of histidines
transmembrane
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 31 / 55
LAH4 in presence of citrate buffer
Oriented Solid-State NMR
15N single labeled LAH4 in oriented DMPC (P/L=1:50)
DMPC= 1,2-dimyristoyl-sn-glycero-3-phosphocholine
No buffer, pH ∼5a
200 100 0 ppm
Figure: σ ≈80 ppm =⇒In-plane
orientation.
a
With 10 mM citrate buffer, pH 5
200 100 0 ppm
Figure: σ ≈ 200 ppm =⇒
Transmembrane orientation.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 32 / 55
LAH4 in presence of citrate buffer-I
Oriented Circular Dichroism
absence of a negative band around 208 nm is an indication of a TM
helix
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 33 / 55
LAH4 in presence of citrate buffer-I
Oriented Circular Dichroism
absence of a negative band around 208 nm is an indication of a TM
helix
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 33 / 55
Small Angle X-ray Scattering (SAXS)
Membrane hydrophobic thickness
Effect of LAH4 on the
hydrophobic thickness of
POPC, POPG and
POPC/POPG vesicles in
citrate buffer pH=5
Bilayer thickness:
dB = 2(zH + 2σH)
Membrane hydrophobic
thickness:
dCC = dB − 10˚A
͗f͑q͒͘ϭF͑q͒ϭ2F ͑q͒ϩF ͑q͒, ͑7͒
intensity is therefore given by the diffraction of the phospho-
lipid multilayers within the quasi-long-range order lattice,
plus the additional diffuse scattering of single, uncorrelated
bilayers
I͑q͒ϰ
1
q2 „͉F͑q͉͒2
S͑q͒ϩNdiff͉F͑q͉͒2
…. ͑13͒
In further context of this paper we will refer to the above
described model as MCG, since it is a combination of MCT
and a Gaussian electron density representation of the head-
group ͓30͔.
A further benefit of this method is that one can derive
structural parameters from simple geometric relationships,
without the need of volumetric data as, e.g., in the approach
of McIntosh and Simon ͓32͔, or Nagle et al. ͓14͔. For deter-
FIG. 1. Electron density profile model ␳(z) as a function of
distance z from the center of the bilayer, given by a summation of
two Gaussians ͓see Eq. ͑5͔͒.
4002 PRE 62PABST, RAPPOLT, AMENITSCH, AND LAGGNER
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 34 / 55
Small Angle X-ray Scattering (SAXS)
Membrane hydrophobic thickness
Effect of LAH4 on the
hydrophobic thickness of
POPC, POPG and
POPC/POPG vesicles in
citrate buffer pH=5
Bilayer thickness:
dB = 2(zH + 2σH)
Membrane hydrophobic
thickness:
dCC = dB − 10˚A
͗f͑q͒͘ϭF͑q͒ϭ2F ͑q͒ϩF ͑q͒, ͑7͒
intensity is therefore given by the diffraction of the phospho-
lipid multilayers within the quasi-long-range order lattice,
plus the additional diffuse scattering of single, uncorrelated
bilayers
I͑q͒ϰ
1
q2 „͉F͑q͉͒2
S͑q͒ϩNdiff͉F͑q͉͒2
…. ͑13͒
In further context of this paper we will refer to the above
described model as MCG, since it is a combination of MCT
and a Gaussian electron density representation of the head-
group ͓30͔.
A further benefit of this method is that one can derive
structural parameters from simple geometric relationships,
without the need of volumetric data as, e.g., in the approach
of McIntosh and Simon ͓32͔, or Nagle et al. ͓14͔. For deter-
FIG. 1. Electron density profile model ␳(z) as a function of
distance z from the center of the bilayer, given by a summation of
two Gaussians ͓see Eq. ͑5͔͒.
4002 PRE 62PABST, RAPPOLT, AMENITSCH, AND LAGGNER
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 34 / 55
Conclusions
Conclusion
LAH4 in citrate inserts in a transmembrane manner in DMPC, even
at acidic pH, when histidines are charged.
LAH4 assume assumes an in-plane alignment in DMPC when no
buffer is added, in agreement with previous results in other lipids
(POPC).
The membrane thickening POPC at pH 5 in the presence of citrate
buffer, suggest that the peptide inserts in a transmembrane manner.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 35 / 55
Conclusions
Conclusion
LAH4 in citrate inserts in a transmembrane manner in DMPC, even
at acidic pH, when histidines are charged.
LAH4 assume assumes an in-plane alignment in DMPC when no
buffer is added, in agreement with previous results in other lipids
(POPC).
The membrane thickening POPC at pH 5 in the presence of citrate
buffer, suggest that the peptide inserts in a transmembrane manner.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 35 / 55
Conclusions
Conclusion
LAH4 in citrate inserts in a transmembrane manner in DMPC, even
at acidic pH, when histidines are charged.
LAH4 assume assumes an in-plane alignment in DMPC when no
buffer is added, in agreement with previous results in other lipids
(POPC).
The membrane thickening POPC at pH 5 in the presence of citrate
buffer, suggest that the peptide inserts in a transmembrane manner.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 35 / 55
Outline
1 Introduction
Motivations
2 Solid State NMR (SS-NMR)
Solid-state NMR and Magic Angle Hole problem
Magic Angle Hole and Transient Oscillation Holes origins
3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes
Changing the shape of the contact pulse
4 Another strategy: ROtor Directed Exchange of Orientation (RODEO)
RODEO - Theory and method development
RODEO - Applications
5 Biophysical studies of the antimicrobial peptide LAH4
LAH4-membrane insertion in presence of citrate
6 Future perspective
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 36 / 55
Future perspective
RODEO-Applications-LAH4
Improve in vivo E.coli RODEO experiment
Compare results obtained in E.coli lipid
LAH4 and citrate: open questions
peculiar behavior of the citrate anion or is it general?
what is the mechanism?
does it affect the antimicrobial activity?
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 37 / 55
Future perspective
RODEO-Applications-LAH4
Improve in vivo E.coli RODEO experiment
Compare results obtained in E.coli lipid
LAH4 and citrate: open questions
peculiar behavior of the citrate anion or is it general?
what is the mechanism?
does it affect the antimicrobial activity?
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 37 / 55
Future perspective
RODEO-Applications-LAH4
Improve in vivo E.coli RODEO experiment
Compare results obtained in E.coli lipid
LAH4 and citrate: open questions
peculiar behavior of the citrate anion or is it general?
what is the mechanism?
does it affect the antimicrobial activity?
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 37 / 55
Future perspective
RODEO-Applications-LAH4
Improve in vivo E.coli RODEO experiment
Compare results obtained in E.coli lipid
LAH4 and citrate: open questions
peculiar behavior of the citrate anion or is it general?
what is the mechanism?
does it affect the antimicrobial activity?
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 37 / 55
Future perspective
RODEO-Applications-LAH4
Improve in vivo E.coli RODEO experiment
Compare results obtained in E.coli lipid
LAH4 and citrate: open questions
peculiar behavior of the citrate anion or is it general?
what is the mechanism?
does it affect the antimicrobial activity?
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 37 / 55
Acknowledgments
Thanks to:
Prof. Dr.
B.Bechinger
Prof. Dr.
B.Wallace
Dr. C. Marques
Prof. Dr. Willumeit
Prof. Dr. N. C.
Nielsen
Dr. J.Raya
Dr. J.Hirschinger
Dr. E.Glattard
Dr. V.Vidovic
Dr. A.Miles
Prof. Dr. K.Lohner
Dr. G.Pabst
Laboratory of NMR
and Biophysics of
Membranes
Biocontrol Network
EU FP6 Funding
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 38 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
CP on ferrocene powder - SetB
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
s45a CP, tCP = 50 µs
rectangular CP performed at tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
a
“sφ”tangent-amplitude shapes built on the formula
ω1I (t) − ω1S (t) = dIS tan

φ(τ
2
− t)

(Hediger et al., 1994)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
s65 CP, tCP = 50 µs
rectangular CP performed at tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
CP on ferrocene powder - SetB
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
s75 CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
CP on ferrocene powder - SetB
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
s84.3 CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
CP on ferrocene powder - SetB
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
s88 CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
CP on ferrocene powder - SetB
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
s89.5 CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
CP on ferrocene powder - SetB
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
s89.9 CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
CP on ferrocene powder - SetB
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
rectangular CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
CP on ferrocene powder - SetB
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
CP on ferrocene powder - SetB
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
CP on ferrocene powder - SetB
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
CP on ferrocene powder - SetB
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
CP on ferrocene powder - SetB
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
CP on ferrocene powder - SetB
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
CP on ferrocene powder - SetB
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
CP on ferrocene powder - SetB
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
CP on ferrocene powder - SetB
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shaped-pulse CP experiments - 50 µs
CP on ferrocene powder - SetA
CP on ferrocene powder - SetB
ramp CP, tCP = 50 µs
rectangular CP, tCP = 10 ms.
100 50 ppm 0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 39 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 150 µs
1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 40 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 350 µs
1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 41 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 1 ms
1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 42 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetA). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Shape variations on static CP experiments - 3 ms
1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying
the shaped-pulse shown below on 13C (SetB). Confront with rectangular
CP performed at tCP = 10 ms.
100 50 ppm
0,0 1,0
Contact Time (arbitrary units)
0
20
40
60
80
100
13Ccontactfield(kHz)
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 43 / 55
Introduction to CP - how?
Homonuclear spin couple I-I
Conservative“Flip-Flop”
transitions
Heteronuclear spin couple I-S
Transitions NOT conservative
Double rotating frame with
ωRF
I = ωRF
S
Hartmann-Hahn condition:
γI ωI = γS ωS
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 44 / 55
Introduction to CP - how?
Homonuclear spin couple I-I
Conservative“Flip-Flop”
transitions
Heteronuclear spin couple I-S
Transitions NOT conservative
Double rotating frame with
ωRF
I = ωRF
S
Hartmann-Hahn condition:
γI ωI = γS ωS
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 44 / 55
Introduction to CP - how?
Homonuclear spin couple I-I
Conservative“Flip-Flop”
transitions
Heteronuclear spin couple I-S
Transitions NOT conservative
Double rotating frame with
ωRF
I = ωRF
S
Hartmann-Hahn condition:
γI ωI = γS ωS
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 44 / 55
Introduction to CP - how?
Homonuclear spin couple I-I
Conservative“Flip-Flop”
transitions
Heteronuclear spin couple I-S
Transitions NOT conservative
Double rotating frame with
ωRF
I = ωRF
S
Hartmann-Hahn condition:
γI ωI = γS ωS
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 44 / 55
RODEO-CP: τm optimization
Experimental
Figure: τm = Tr
2
Calculated
RODEO-CP: µs, MAT@55Hz;CP with tcp = 10 ms.
Random-sampling τm results in a RODEO-CP spectra closer to the
quasi-equilibrium line-shape.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 45 / 55
CP dynamics
Classical I-S model
Thermodynamic approach
I(t) follows a double exponential law
ferrocene does not follow this law (M¨uller et al., 1974)
MBKE I-I*-S model
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 46 / 55
CP dynamics
Classical I-S model
Thermodynamic approach
I(t) follows a double exponential law
ferrocene does not follow this law (M¨uller et al., 1974)
MBKE I-I*-S model
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 46 / 55
CP dynamics
Classical I-S model
Thermodynamic approach
I(t) follows a double exponential law
ferrocene does not follow this law (M¨uller et al., 1974)
MBKE I-I*-S model
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 46 / 55
CP dynamics
Classical I-S model
MBKE I-I*-S model
Network of coupled I nuclei
Transient harmonic oscillations
Figures from Kolodziejski et al., Chem.Rev., 2002
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 46 / 55
CP dynamics
Classical I-S model
MBKE I-I*-S model
Network of coupled I nuclei
Transient harmonic oscillations
Figures from Kolodziejski et al., Chem.Rev., 2002
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 46 / 55
MKBE model
MKBE Solution
Master equation:
˙σ(t) = −i [H(t), σ(t)] − Γ [σ(t), σ(∞)]
Γ = Rdf ([Ix [Ix , σ]] + [Iy [Iy , σ]]) + Rdp [Iz [Iz, σ]]
MKBE Solutionab:
 Sz(t) = 1 − 1
2 exp(−Rdf t) − 1
2 exp

−

Rdf +
Rdp
2

t

cos(bt)
damped oscillations: freq. depends on b and decay depends on Rdp ,
Rdf
the approach to the final equilibrium is regulated by Rdf
a
M¨uller, Kumar, and Baumann, and Ernst.
b
|ω1I | = |ω1S |, ω0i ≈ ωRFi ,H(t) = H, b = −γI γS 
2r3
IS
(3 cos2
θ − 1), T1ρ = 0,
|ω1I | + |ω1S |  b  Rdp, Rdf
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 47 / 55
MKBE model
MKBE Solution
Master equation:
˙σ(t) = −i [H(t), σ(t)] − Γ [σ(t), σ(∞)]
Γ = Rdf ([Ix [Ix , σ]] + [Iy [Iy , σ]]) + Rdp [Iz [Iz, σ]]
MKBE Solutionab:
 Sz(t) = 1 − 1
2 exp(−Rdf t) − 1
2 exp

−

Rdf +
Rdp
2

t

cos(bt)
damped oscillations: freq. depends on b and decay depends on Rdp ,
Rdf
the approach to the final equilibrium is regulated by Rdf
a
M¨uller, Kumar, and Baumann, and Ernst.
b
|ω1I | = |ω1S |, ω0i ≈ ωRFi ,H(t) = H, b = −γI γS 
2r3
IS
(3 cos2
θ − 1), T1ρ = 0,
|ω1I | + |ω1S |  b  Rdp, Rdf
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 47 / 55
MKBE model
MKBE Solution
Master equation:
˙σ(t) = −i [H(t), σ(t)] − Γ [σ(t), σ(∞)]
Γ = Rdf ([Ix [Ix , σ]] + [Iy [Iy , σ]]) + Rdp [Iz [Iz, σ]]
MKBE Solutionab:
 Sz(t) = 1 − 1
2 exp(−Rdf t) − 1
2 exp

−

Rdf +
Rdp
2

t

cos(bt)
damped oscillations: freq. depends on b and decay depends on Rdp ,
Rdf
the approach to the final equilibrium is regulated by Rdf
a
M¨uller, Kumar, and Baumann, and Ernst.
b
|ω1I | = |ω1S |, ω0i ≈ ωRFi ,H(t) = H, b = −γI γS 
2r3
IS
(3 cos2
θ − 1), T1ρ = 0,
|ω1I | + |ω1S |  b  Rdp, Rdf
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 47 / 55
MKBE model
MKBE Solution
Master equation:
˙σ(t) = −i [H(t), σ(t)] − Γ [σ(t), σ(∞)]
Γ = Rdf ([Ix [Ix , σ]] + [Iy [Iy , σ]]) + Rdp [Iz [Iz, σ]]
MKBE Solutionab:
 Sz(t) = 1 − 1
2 exp(−Rdf t) − 1
2 exp

−

Rdf +
Rdp
2

t

cos(bt)
damped oscillations: freq. depends on b and decay depends on Rdp ,
Rdf
the approach to the final equilibrium is regulated by Rdf
a
M¨uller, Kumar, and Baumann, and Ernst.
b
|ω1I | = |ω1S |, ω0i ≈ ωRFi ,H(t) = H, b = −γI γS 
2r3
IS
(3 cos2
θ − 1), T1ρ = 0,
|ω1I | + |ω1S |  b  Rdp, Rdf
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 47 / 55
Oriented SS-NMR
Mechanically Oriented Samples
B0
200 ppm ca
B0
80 ppm ca
The projection of the tensor on the axis
parallel to B0, σzz, gives a direct indication
of the σ33 orientation Θ:
σzz = σ11sin2
Θcos2
Φ + σ22sin2
Θsin2
Φ
+ σ33cos2
Θ
∼ 200 ppm ←→ TRANSMEMBRANE ∼ 80 ppm ←→ IN-PLANE
Drawbacks
Oriented samples challenging to obtain
Problematic environmental control
Low filling factor of the coil
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 48 / 55
Oriented SS-NMR
Mechanically Oriented Samples
B0
200 ppm ca
B0
80 ppm ca
The projection of the tensor on the axis
parallel to B0, σzz, gives a direct indication
of the σ33 orientation Θ:
σzz = σ11sin2
Θcos2
Φ + σ22sin2
Θsin2
Φ
+ σ33cos2
Θ
∼ 200 ppm ←→ TRANSMEMBRANE ∼ 80 ppm ←→ IN-PLANE
Drawbacks
Oriented samples challenging to obtain
Problematic environmental control
Low filling factor of the coil
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 48 / 55
Oriented SS-NMR
Mechanically Oriented Samples
B0
200 ppm ca
B0
80 ppm ca
The projection of the tensor on the axis
parallel to B0, σzz, gives a direct indication
of the σ33 orientation Θ:
σzz = σ11sin2
Θcos2
Φ + σ22sin2
Θsin2
Φ
+ σ33cos2
Θ
∼ 200 ppm ←→ TRANSMEMBRANE ∼ 80 ppm ←→ IN-PLANE
Drawbacks
Oriented samples challenging to obtain
Problematic environmental control
Low filling factor of the coil
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 48 / 55
Oriented SS-NMR
Mechanically Oriented Samples
B0
200 ppm ca
B0
80 ppm ca
The projection of the tensor on the axis
parallel to B0, σzz, gives a direct indication
of the σ33 orientation Θ:
σzz = σ11sin2
Θcos2
Φ + σ22sin2
Θsin2
Φ
+ σ33cos2
Θ
∼ 200 ppm ←→ TRANSMEMBRANE ∼ 80 ppm ←→ IN-PLANE
Drawbacks
Oriented samples challenging to obtain
Problematic environmental control
Low filling factor of the coil
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 48 / 55
Helix tilt calculation
Graphical solution
σ = σ11cos2αsin2β + σ22sin2αsin2β + σ33cos2β
σ⊥ = σ11(1−cos2αsin2β)+σ22(1−sin2αsin2β)+σ33sin2β
2
KL14: intersection of the surfaces σ,⊥ = f (α, β) with the experimental
values, i.e. the planes σ = 72.1 ppm and σ⊥ = 143.5 ppm.
0
Π
4
Π
2
Π
3 Π
2
2 Π Α
0Π
4Π
2
Π
3 Π
2
2 Π Β
100
150
200
Σ
0 Π
4 Π
2
3 Π
2
2 Π
Α
0
Π
4
Π
2
3 Π
2
2 Π
Β
75
100
125
150
Σ ppm
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 49 / 55
Helix tilt calculation
Graphical solution
σ = σ11cos2αsin2β + σ22sin2αsin2β + σ33cos2β
σ⊥ = σ11(1−cos2αsin2β)+σ22(1−sin2αsin2β)+σ33sin2β
2
KALP: intersection of the surfaces σ,⊥ = f (α, β) with the experimental
values, i.e. the planes σ=205 ppm and σ⊥ = 78.7 ppm.
0
Π
Π
2
3 Π
2
2 Π
Α
0
Π
Π
2
3 Π
2
2 Π
Β
100
150
Σ
0Π
4Π
2
3 Π
2
2 Π
Α
0
Π
4 Π
2
3 Π
2
2 Π
Β
100
150
200
Σ
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 49 / 55
SAXS data - POPC
POPC
Figure: Diffraction patterns of POPC vesicles with increasing amount of LAH4.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 50 / 55
POPC
Figure: Diffraction patterns of POPC vesicles with increasing amount of LAH4.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 51 / 55
POPG
Figure: Diffraction patterns of POPG vesicles with increasing amount of LAH4.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 52 / 55
POPC/POPG 3:1
Figure: Diffraction patterns of POPC vesicles with increasing amount of LAH4.
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 53 / 55
Electron Density Profiles
Electron Density Profiles - POPC
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 54 / 55
Electron Density Profiles
Electron Density Profiles - POPG
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 54 / 55
Electron Density Profiles
Electron Density Profiles - POPC/POPG
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 54 / 55
DLS and fluorescence quencing
Barbara Perrone (UdS) 13th
September 2011 Thesis defense 55 / 55

More Related Content

Similar to New methodologies of investigation of model peptides-lipids systems and application to the study of the antimicrobial and transfection peptide LAH4

Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronicsminkayj
 
Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic SpintronicsECEatUtah
 
NMR spectroscopy.ppt instrumentation, principle
NMR spectroscopy.ppt instrumentation, principleNMR spectroscopy.ppt instrumentation, principle
NMR spectroscopy.ppt instrumentation, principleDr. Vijaya Barge
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsRyutaro Okuma
 
Solid state nmr
Solid state nmrSolid state nmr
Solid state nmrSpringer
 
2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uam2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uamNanoFrontMag-cm
 
A Fluorescent Probe Designed For Conformational Studies
A Fluorescent Probe Designed For Conformational StudiesA Fluorescent Probe Designed For Conformational Studies
A Fluorescent Probe Designed For Conformational Studiessubbu2681
 
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY(NMR)
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY(NMR)NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY(NMR)
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY(NMR)Poonam Aher Patil
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellRajan K. Singh
 
Interpreting the behavior of a quarter-wave transmission line resonator in a ...
Interpreting the behavior of a quarter-wave transmission line resonator in a ...Interpreting the behavior of a quarter-wave transmission line resonator in a ...
Interpreting the behavior of a quarter-wave transmission line resonator in a ...Dr. Gurusharan Singh Gogna
 
Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...Université de Dschang
 
Development of optimally controlled drug release device using
Development of optimally controlled drug release device usingDevelopment of optimally controlled drug release device using
Development of optimally controlled drug release device usingRatul Das
 
Shihab APL 106 142408 Systematic study of the spin stiffness dependence on ph...
Shihab APL 106 142408 Systematic study of the spin stiffness dependence on ph...Shihab APL 106 142408 Systematic study of the spin stiffness dependence on ph...
Shihab APL 106 142408 Systematic study of the spin stiffness dependence on ph...Sylvain Shihab
 
The stuff that proteins are made of
The stuff that proteins are made ofThe stuff that proteins are made of
The stuff that proteins are made ofkhinsen
 
Nmr Spectroscopy In B Iology
Nmr Spectroscopy In B IologyNmr Spectroscopy In B Iology
Nmr Spectroscopy In B Iologyashu_yende
 

Similar to New methodologies of investigation of model peptides-lipids systems and application to the study of the antimicrobial and transfection peptide LAH4 (20)

Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronics
 
Organic Spintronics
Organic SpintronicsOrganic Spintronics
Organic Spintronics
 
NMR spectroscopy.ppt instrumentation, principle
NMR spectroscopy.ppt instrumentation, principleNMR spectroscopy.ppt instrumentation, principle
NMR spectroscopy.ppt instrumentation, principle
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnets
 
Solid state nmr
Solid state nmrSolid state nmr
Solid state nmr
 
2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uam2018.06.12 isabel guillamon uam
2018.06.12 isabel guillamon uam
 
A Fluorescent Probe Designed For Conformational Studies
A Fluorescent Probe Designed For Conformational StudiesA Fluorescent Probe Designed For Conformational Studies
A Fluorescent Probe Designed For Conformational Studies
 
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY(NMR)
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY(NMR)NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY(NMR)
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY(NMR)
 
fireball_pop
fireball_popfireball_pop
fireball_pop
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar Cell
 
Tanmoy CV
Tanmoy CVTanmoy CV
Tanmoy CV
 
Proton NMR
Proton NMRProton NMR
Proton NMR
 
defense_2
defense_2defense_2
defense_2
 
Interpreting the behavior of a quarter-wave transmission line resonator in a ...
Interpreting the behavior of a quarter-wave transmission line resonator in a ...Interpreting the behavior of a quarter-wave transmission line resonator in a ...
Interpreting the behavior of a quarter-wave transmission line resonator in a ...
 
Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...
 
Development of optimally controlled drug release device using
Development of optimally controlled drug release device usingDevelopment of optimally controlled drug release device using
Development of optimally controlled drug release device using
 
Shihab APL 106 142408 Systematic study of the spin stiffness dependence on ph...
Shihab APL 106 142408 Systematic study of the spin stiffness dependence on ph...Shihab APL 106 142408 Systematic study of the spin stiffness dependence on ph...
Shihab APL 106 142408 Systematic study of the spin stiffness dependence on ph...
 
ProteinSci2007
ProteinSci2007ProteinSci2007
ProteinSci2007
 
The stuff that proteins are made of
The stuff that proteins are made ofThe stuff that proteins are made of
The stuff that proteins are made of
 
Nmr Spectroscopy In B Iology
Nmr Spectroscopy In B IologyNmr Spectroscopy In B Iology
Nmr Spectroscopy In B Iology
 

Recently uploaded

ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvRicaMaeCastro1
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseCeline George
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptxmary850239
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDhatriParmar
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17Celine George
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptxAneriPatwari
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQuiz Club NITW
 

Recently uploaded (20)

ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 Database
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
 

New methodologies of investigation of model peptides-lipids systems and application to the study of the antimicrobial and transfection peptide LAH4

  • 1. New methodologies of Solid-State NMR and biophysical studies of antimicrobial and designed peptides in model and natural membranes Barbara Perrone Laboratoire de Biophysique et RMN des M´embranes Universit´e de Strasbourg, Strasbourg, France September 13th, 2011 Thesis defense
  • 2. Outline 1 Introduction Motivations 2 Solid State NMR (SS-NMR) Solid-state NMR and Magic Angle Hole problem Magic Angle Hole and Transient Oscillation Holes origins 3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes Changing the shape of the contact pulse 4 Another strategy: ROtor Directed Exchange of Orientation (RODEO) RODEO - Theory and method development RODEO - Applications 5 Biophysical studies of the antimicrobial peptide LAH4 LAH4-membrane insertion in presence of citrate 6 Future perspective Barbara Perrone (UdS) 13th September 2011 Thesis defense 2 / 55
  • 3. Outline 1 Introduction Motivations 2 Solid State NMR (SS-NMR) Solid-state NMR and Magic Angle Hole problem Magic Angle Hole and Transient Oscillation Holes origins 3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes Changing the shape of the contact pulse 4 Another strategy: ROtor Directed Exchange of Orientation (RODEO) RODEO - Theory and method development RODEO - Applications 5 Biophysical studies of the antimicrobial peptide LAH4 LAH4-membrane insertion in presence of citrate 6 Future perspective Barbara Perrone (UdS) 13th September 2011 Thesis defense 3 / 55
  • 4. Motivations Antimicrobial Resistance threat to public health Antimicrobial Peptides Solid-state NMR 2011 E.coli outbreak 46 deaths, 3000 persons infected, $2,840,000,000 Mechanisms SS-NMR methodology Barbara Perrone (UdS) 13th September 2011 Thesis defense 4 / 55
  • 5. Outline 1 Introduction Motivations 2 Solid State NMR (SS-NMR) Solid-state NMR and Magic Angle Hole problem Magic Angle Hole and Transient Oscillation Holes origins 3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes Changing the shape of the contact pulse 4 Another strategy: ROtor Directed Exchange of Orientation (RODEO) RODEO - Theory and method development RODEO - Applications 5 Biophysical studies of the antimicrobial peptide LAH4 LAH4-membrane insertion in presence of citrate 6 Future perspective Barbara Perrone (UdS) 13th September 2011 Thesis defense 5 / 55
  • 6. Solid-state NMR - Anisotropy CSA tensor σPAF =   σ11 0 0 0 σ22 0 0 0 σ33   15 N-labeled amide in a helical peptide σ33 ∼ 200 ppm σ22 ∼ 85 ppm σ11 ∼ 65 ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 6 / 55
  • 7. Solid-state NMR - Anisotropy CSA tensor σPAF =   σ11 0 0 0 σ22 0 0 0 σ33   15 N-labeled amide in a helical peptide σ33 ∼ 200 ppm σ22 ∼ 85 ppm σ11 ∼ 65 ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 6 / 55
  • 8. Solid-state NMR - Anisotropy CSA tensor σPAF =   σ11 0 0 0 σ22 0 0 0 σ33   15 N-labeled amide in a helical peptide σ33 ∼ 200 ppm σ22 ∼ 85 ppm σ11 ∼ 65 ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 6 / 55
  • 9. Solid-state NMR - Anisotropy CSA tensor 300 200 100 0 ppm !11 !22 !33 σPAF =   σ11 0 0 0 σ22 0 0 0 σ33   15 N-labeled amide in a helical peptide σ33 ∼ 200 ppm σ22 ∼ 85 ppm σ11 ∼ 65 ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 6 / 55
  • 10. Oriented SS-NMR Mechanically Oriented Samples B0 200 ppm ca B0 80 ppm ca Drawbacks Low coil filling-factor due to support Problematic environmental control Not suitable for complex membrane or in cell studies Barbara Perrone (UdS) 13th September 2011 Thesis defense 7 / 55
  • 11. Oriented SS-NMR Mechanically Oriented Samples B0 200 ppm ca B0 80 ppm ca Drawbacks Low coil filling-factor due to support Problematic environmental control Not suitable for complex membrane or in cell studies Barbara Perrone (UdS) 13th September 2011 Thesis defense 7 / 55
  • 12. Oriented SS-NMR Mechanically Oriented Samples B0 200 ppm ca B0 80 ppm ca Drawbacks Low coil filling-factor due to support Problematic environmental control Not suitable for complex membrane or in cell studies Barbara Perrone (UdS) 13th September 2011 Thesis defense 7 / 55
  • 13. Oriented SS-NMR Mechanically Oriented Samples B0 200 ppm ca B0 80 ppm ca Drawbacks Low coil filling-factor due to support Problematic environmental control Not suitable for complex membrane or in cell studies Barbara Perrone (UdS) 13th September 2011 Thesis defense 7 / 55
  • 14. Unoriented SS-NMR Fast uniaxial rotational diffusion around the bilayer normal Figure: Prongidi-Fix et al., J. Am. Chem. Soc., 2007 15N−KALP in unoriented POPC, 310 K 300 200 100 0 ppm MAH Distortion at the isotropic frequency =“Magic Angle Hole”(MAH) Major problems with line-shape fitting Barbara Perrone (UdS) 13th September 2011 Thesis defense 8 / 55
  • 15. Origins of MAH Cross-Polarization (CP) Magnetization transfer: 1H −→13 C,15 N Dipolar coupling constant: b = −γI γS 2r3 (3 cos2 θ − 1) b(θ∗) = 0 θ∗ = 54.7° Magic Angle Chemical Shift Anisotropya: ∆σ ∝ (3 cos2 θ − 1) σ(θ∗) = σiso a hypothesis: symmetric chemical shift tensor σ parallel to the dipolar vector Barbara Perrone (UdS) 13th September 2011 Thesis defense 9 / 55
  • 16. Static CP under fast uniaxial motion Static CP of ferrocene 150 100 50 ppm τcp = 50 µs Magic Angle Hole (MAH) at the isotropic frequency Transient Oscillation Holes (TOHs) At long contact times, a quasi-equilibrium state is reached, and the powder pattern line-shape is recovered; too long to be used in biological samples (short T1ρ) Barbara Perrone (UdS) 13th September 2011 Thesis defense 10 / 55
  • 17. Static CP under fast uniaxial motion Static CP of ferrocene 150 100 50 ppm τcp = 50 µs Magic Angle Hole (MAH) at the isotropic frequency Transient Oscillation Holes (TOHs) At long contact times, a quasi-equilibrium state is reached, and the powder pattern line-shape is recovered; too long to be used in biological samples (short T1ρ) Barbara Perrone (UdS) 13th September 2011 Thesis defense 10 / 55
  • 18. Static CP under fast uniaxial motion Static CP of ferrocene 150 100 50 ppm τcp = 150 µs Magic Angle Hole (MAH) at the isotropic frequency Transient Oscillation Holes (TOHs) At long contact times, a quasi-equilibrium state is reached, and the powder pattern line-shape is recovered; too long to be used in biological samples (short T1ρ) Barbara Perrone (UdS) 13th September 2011 Thesis defense 10 / 55
  • 19. Static CP under fast uniaxial motion Static CP of ferrocene 150 100 50 ppm τcp = 350 µs Magic Angle Hole (MAH) at the isotropic frequency Transient Oscillation Holes (TOHs) At long contact times, a quasi-equilibrium state is reached, and the powder pattern line-shape is recovered; too long to be used in biological samples (short T1ρ) Barbara Perrone (UdS) 13th September 2011 Thesis defense 10 / 55
  • 20. Static CP under fast uniaxial motion Static CP of ferrocene 150 100 50 ppm τcp = 1 ms Magic Angle Hole (MAH) at the isotropic frequency Transient Oscillation Holes (TOHs) At long contact times, a quasi-equilibrium state is reached, and the powder pattern line-shape is recovered; too long to be used in biological samples (short T1ρ) Barbara Perrone (UdS) 13th September 2011 Thesis defense 10 / 55
  • 21. Static CP under fast uniaxial motion Static CP of ferrocene 150 100 50 ppm τcp = 3 ms Magic Angle Hole (MAH) at the isotropic frequency Transient Oscillation Holes (TOHs) At long contact times, a quasi-equilibrium state is reached, and the powder pattern line-shape is recovered; too long to be used in biological samples (short T1ρ) Barbara Perrone (UdS) 13th September 2011 Thesis defense 10 / 55
  • 22. Static CP under fast uniaxial motion Static CP of ferrocene 150 100 50 ppm τcp = 10 ms Magic Angle Hole (MAH) at the isotropic frequency Transient Oscillation Holes (TOHs) At long contact times, a quasi-equilibrium state is reached, and the powder pattern line-shape is recovered; too long to be used in biological samples (short T1ρ) Barbara Perrone (UdS) 13th September 2011 Thesis defense 10 / 55
  • 23. Origin of the Transient Oscillation Holes (TOHs) Classical ”I-S”model MBKE I-I*-S model ferrocene M¨uller et al., Phys. Rev. Lett., 1974 Figures adapted from Kolodziejski et al., Chem.Rev., 2002 Barbara Perrone (UdS) 13th September 2011 Thesis defense 11 / 55
  • 24. Outline 1 Introduction Motivations 2 Solid State NMR (SS-NMR) Solid-state NMR and Magic Angle Hole problem Magic Angle Hole and Transient Oscillation Holes origins 3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes Changing the shape of the contact pulse 4 Another strategy: ROtor Directed Exchange of Orientation (RODEO) RODEO - Theory and method development RODEO - Applications 5 Biophysical studies of the antimicrobial peptide LAH4 LAH4-membrane insertion in presence of citrate 6 Future perspective Barbara Perrone (UdS) 13th September 2011 Thesis defense 12 / 55
  • 25. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 26. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 27. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) ramp Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 28. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) s45 Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 29. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) s65 Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 30. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) s75 Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 31. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) s84.3 Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 32. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) s88 Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 33. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) s89.5 Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 34. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) s89.9 Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 35. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) rectangular Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 36. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) rectangular 100 50 ppm Figure: s75 CP, tCP = 50 µs 100 50 ppm Figure: rectangular CP, tCP = 50 µs Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 37. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) rectangular 100 50 ppm Figure: s88 CP, tCP = 150 µs 100 50 ppm Figure: rectangular CP, tCP = 150 µs Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 38. Changing the shape of the contact pulse Shaped-pulse CP Conclusions tCP =50 µs: MAH tCP =150-350 µs: MAH TOHs + 30%S/N tCP =1-3 ms: MAH 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) rectangular 100 50 ppm Figure: s75 CP, tCP = 3 ms 100 50 ppm Figure: rectangular CP, tCP = 3 ms Barbara Perrone (UdS) 13th September 2011 Thesis defense 13 / 55
  • 39. Outline 1 Introduction Motivations 2 Solid State NMR (SS-NMR) Solid-state NMR and Magic Angle Hole problem Magic Angle Hole and Transient Oscillation Holes origins 3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes Changing the shape of the contact pulse 4 Another strategy: ROtor Directed Exchange of Orientation (RODEO) RODEO - Theory and method development RODEO - Applications 5 Biophysical studies of the antimicrobial peptide LAH4 LAH4-membrane insertion in presence of citrate 6 Future perspective Barbara Perrone (UdS) 13th September 2011 Thesis defense 14 / 55
  • 40. ROtor Directed Exchange of Orientation (RODEO) RODEO-CP pulse sequence Cross-Polarization RODEO Hahn’s echo Acquisition ! ! # !!# # Barbara Perrone (UdS) 13th September 2011 Thesis defense 15 / 55
  • 41. ROtor Directed Exchange of Orientation (RODEO) RODEO-CP pulse sequence Cross-Polarization RODEO Hahn’s echo Acquisition ! ! # !!# # Barbara Perrone (UdS) 13th September 2011 Thesis defense 15 / 55
  • 42. ROtor Directed Exchange of Orientation (RODEO) RODEO-CP pulse sequence Cross-Polarization RODEO Hahn’s echo Acquisition ! ! # !!# # Barbara Perrone (UdS) 13th September 2011 Thesis defense 15 / 55
  • 43. ROtor Directed Exchange of Orientation (RODEO) RODEO-CP pulse sequence Cross-Polarization RODEO Hahn’s echo Acquisition ! ! # !!# # Barbara Perrone (UdS) 13th September 2011 Thesis defense 15 / 55
  • 44. ROtor Directed Exchange of Orientation (RODEO) RODEO-CP pulse sequence Cross-Polarization RODEO Hahn’s echo Acquisition ! ! # !!# # Barbara Perrone (UdS) 13th September 2011 Thesis defense 15 / 55
  • 45. MAT(Magic Angle Turning) provide the orientation-exchange Orientation of the MA cone before and after the mixing time Figure: before tmix Barbara Perrone (UdS) 13th September 2011 Thesis defense 16 / 55
  • 46. MAT(Magic Angle Turning) provide the orientation-exchange Orientation of the MA cone before and after the mixing time Figure: after tmix Barbara Perrone (UdS) 13th September 2011 Thesis defense 16 / 55
  • 47. MAT(Magic Angle Turning) provide the orientation-exchange Orientation of the MA cone before and after the mixing time Figure: intersection (no exchange) Barbara Perrone (UdS) 13th September 2011 Thesis defense 16 / 55
  • 48. RODEO-Theory RODEO Signal: G(t) = Sz(tCP) · · exp iδω0 2ωr sin2 β 2 [sin 2(γ + ωr (t + τm)) − sin 2(γ + ωr τm)] − √ 2 sin 2β [sin(γ + ωr (t + τm)) − sin(γ + ωr τm)] MBKE Solutionab: Sz(t) = 1 − 1 2 exp(−Rdf t) − 1 2 exp − Rdf + Rdp 2 t cos(bt) ϕ = ωr τm between the evolution (CP) and detection (CS) frequencies a M¨uller, Kumar, and Baumann, and Ernst (M¨uller et al., Phys. Rev. Lett., 1974) b δ=CSA, ω0 =Larmor freq., r=angle between rIS and B0, ωr /2π =spinning freq., β=angle between r and the spinning axis, γ=azimuth of r about the spinning axis, Barbara Perrone (UdS) 13th September 2011 Thesis defense 17 / 55
  • 49. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 50. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = 0.1 Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 51. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = 0.2 Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 52. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = 0.3 Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 53. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = 0.4 Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 54. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = 0.5 Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 55. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = 0.6 Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 56. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = 0.7 Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 57. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = 0.8 Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 58. RODEO-CP: effect of τm RODEO-CP, MAT @ 55 Hz, τcp = 150 µs As long as τm = nTr nN, RODEO refill the MAH and TOH In black, experimental spectra. In red, theoretical powder-pattern. −20180 160 140 120 100 80 60 40 20 0 ppm−20180 160 140 120 100 80 60 40 20 0 ppm Figure: τm = 0.9 Tr Barbara Perrone (UdS) 13th September 2011 Thesis defense 18 / 55
  • 59. RODEO-CP: effect of tCP RODEO-CP, τmix = Tr /2, MAT @ 50 Hz In black the experimental spectra, in red the theoretical fit. 150 100 50 0 ppm150 100 50 0 ppm Figure: τcp = 50µs RODEO-CP removes distortions −→ line-shape fitting −→ δii Barbara Perrone (UdS) 13th September 2011 Thesis defense 19 / 55
  • 60. RODEO-CP: effect of tCP RODEO-CP, τmix = Tr /2, MAT @ 50 Hz In black the experimental spectra, in red the theoretical fit. 150 100 50 0 ppm150 100 50 0 ppm Figure: τcp = 150µs RODEO-CP removes distortions −→ line-shape fitting −→ δii Barbara Perrone (UdS) 13th September 2011 Thesis defense 19 / 55
  • 61. RODEO-CP: effect of tCP RODEO-CP, τmix = Tr /2, MAT @ 50 Hz In black the experimental spectra, in red the theoretical fit. 150 100 50 0 ppm150 100 50 0 ppm Figure: τcp = 350µs RODEO-CP removes distortions −→ line-shape fitting −→ δii Barbara Perrone (UdS) 13th September 2011 Thesis defense 19 / 55
  • 62. RODEO-CP: effect of tCP RODEO-CP, τmix = Tr /2, MAT @ 50 Hz In black the experimental spectra, in red the theoretical fit. 150 100 50 0 ppm150 100 50 0 ppm Figure: τcp = 1 ms RODEO-CP removes distortions −→ line-shape fitting −→ δii Barbara Perrone (UdS) 13th September 2011 Thesis defense 19 / 55
  • 63. Spin diffusion contribution Static RODEO-CP, τcp = 50 µs. 150 100 50 0 ppm Figure: τm = 1s ! ! # !! Spin diffusion in ferrocene is not sufficient to refill the MAH. Barbara Perrone (UdS) 13th September 2011 Thesis defense 20 / 55
  • 64. Spin diffusion contribution Static RODEO-CP, τcp = 50 µs. 150 100 50 0 ppm Figure: τm=5 s ! ! # !! Spin diffusion in ferrocene is not sufficient to refill the MAH. Barbara Perrone (UdS) 13th September 2011 Thesis defense 20 / 55
  • 65. Spin diffusion contribution Static RODEO-CP, τcp = 50 µs. 150 100 50 0 ppm Figure: τm=10 s ! ! # !! Spin diffusion in ferrocene is not sufficient to refill the MAH. Barbara Perrone (UdS) 13th September 2011 Thesis defense 20 / 55
  • 66. Magic Angle Turning contribution CP, MAT@50Hz In black, CP turning at the magic angle (50Hz) static CP, τcp =10 ms −20180 160 140 120 100 80 60 40 20 0 ppm Figure: τcp =50 µs ! ! # !!! Slow MAT CP is not sufficient to refill the MAH for tCP 1 ms Barbara Perrone (UdS) 13th September 2011 Thesis defense 21 / 55
  • 67. Magic Angle Turning contribution CP, MAT@50Hz In black, CP turning at the magic angle (50Hz) static CP, τcp =10 ms −20180 160 140 120 100 80 60 40 20 0 ppm Figure: τcp =150 µs, ! ! # !!! Slow MAT CP is not sufficient to refill the MAH for tCP 1 ms Barbara Perrone (UdS) 13th September 2011 Thesis defense 21 / 55
  • 68. Magic Angle Turning contribution CP, MAT@50Hz In black, CP turning at the magic angle (50Hz) static CP, τcp =10 ms −20180 160 140 120 100 80 60 40 20 0 ppm Figure: τcp =350 µs ! ! # !!! Slow MAT CP is not sufficient to refill the MAH for tCP 1 ms Barbara Perrone (UdS) 13th September 2011 Thesis defense 21 / 55
  • 69. Magic Angle Turning contribution CP, MAT@50Hz In black, CP turning at the magic angle (50Hz) static CP, τcp =10 ms −20180 160 140 120 100 80 60 40 20 0 ppm Figure: τcp =1 ms ! ! # !!! Slow MAT CP is not sufficient to refill the MAH for tCP 1 ms Barbara Perrone (UdS) 13th September 2011 Thesis defense 21 / 55
  • 70. ∼400Hz - MAT RODEO-CP Spinning faster: MAT @414 Hz 100 80 60 40 20 ppm CP, τcp =150 µs, MAT @ 414 Hz RODEO (MAS@400Hz) improve the line-shape fitting −→ better resolution in structural parameters Barbara Perrone (UdS) 13th September 2011 Thesis defense 22 / 55
  • 71. ∼400Hz - MAT RODEO-CP Spinning faster: MAT @414 Hz 100 80 60 40 20 ppm RODEO-CP, τcp =150 µs, τm = 0.5Tr , MAS @ 414 Hz RODEO (MAS@400Hz) improve the line-shape fitting −→ better resolution in structural parameters Barbara Perrone (UdS) 13th September 2011 Thesis defense 22 / 55
  • 72. ∼400Hz - MAT RODEO-CP Spinning faster: MAT @414 Hz 100 80 60 40 20 ppm100 80 60 40 20 ppm Fit of RODEO-CP, τcp =150 µs, τm = 0.5Tr , MAS @ 414 Hz RODEO (MAS@400Hz) improve the line-shape fitting −→ better resolution in structural parameters Barbara Perrone (UdS) 13th September 2011 Thesis defense 22 / 55
  • 73. Conclusions RODEO RODEO recover the powder pattern line-shape by de-correlating the evolution and detection frequencies by slow turning at the magic angle Simple and robust Suppress MAH and TOHs for contact times longer ≥ 150 µs Even for very short contact times, RODEO spectra line-shape are very close to the theoretical line-shape −→ tensor parameters extracted with good accuracy Overall a loss of 10% in intensity respect to CP due to π/2-pulse imperfections To increase S/N, adiabatic CP and higher MAS (or other angles) can be used. Barbara Perrone (UdS) 13th September 2011 Thesis defense 23 / 55
  • 74. Conclusions RODEO RODEO recover the powder pattern line-shape by de-correlating the evolution and detection frequencies by slow turning at the magic angle Simple and robust Suppress MAH and TOHs for contact times longer ≥ 150 µs Even for very short contact times, RODEO spectra line-shape are very close to the theoretical line-shape −→ tensor parameters extracted with good accuracy Overall a loss of 10% in intensity respect to CP due to π/2-pulse imperfections To increase S/N, adiabatic CP and higher MAS (or other angles) can be used. Barbara Perrone (UdS) 13th September 2011 Thesis defense 23 / 55
  • 75. Conclusions RODEO RODEO recover the powder pattern line-shape by de-correlating the evolution and detection frequencies by slow turning at the magic angle Simple and robust Suppress MAH and TOHs for contact times longer ≥ 150 µs Even for very short contact times, RODEO spectra line-shape are very close to the theoretical line-shape −→ tensor parameters extracted with good accuracy Overall a loss of 10% in intensity respect to CP due to π/2-pulse imperfections To increase S/N, adiabatic CP and higher MAS (or other angles) can be used. Barbara Perrone (UdS) 13th September 2011 Thesis defense 23 / 55
  • 76. Conclusions RODEO RODEO recover the powder pattern line-shape by de-correlating the evolution and detection frequencies by slow turning at the magic angle Simple and robust Suppress MAH and TOHs for contact times longer ≥ 150 µs Even for very short contact times, RODEO spectra line-shape are very close to the theoretical line-shape −→ tensor parameters extracted with good accuracy Overall a loss of 10% in intensity respect to CP due to π/2-pulse imperfections To increase S/N, adiabatic CP and higher MAS (or other angles) can be used. Barbara Perrone (UdS) 13th September 2011 Thesis defense 23 / 55
  • 77. Conclusions RODEO RODEO recover the powder pattern line-shape by de-correlating the evolution and detection frequencies by slow turning at the magic angle Simple and robust Suppress MAH and TOHs for contact times longer ≥ 150 µs Even for very short contact times, RODEO spectra line-shape are very close to the theoretical line-shape −→ tensor parameters extracted with good accuracy Overall a loss of 10% in intensity respect to CP due to π/2-pulse imperfections To increase S/N, adiabatic CP and higher MAS (or other angles) can be used. Barbara Perrone (UdS) 13th September 2011 Thesis defense 23 / 55
  • 78. Conclusions RODEO RODEO recover the powder pattern line-shape by de-correlating the evolution and detection frequencies by slow turning at the magic angle Simple and robust Suppress MAH and TOHs for contact times longer ≥ 150 µs Even for very short contact times, RODEO spectra line-shape are very close to the theoretical line-shape −→ tensor parameters extracted with good accuracy Overall a loss of 10% in intensity respect to CP due to π/2-pulse imperfections To increase S/N, adiabatic CP and higher MAS (or other angles) can be used. Barbara Perrone (UdS) 13th September 2011 Thesis defense 23 / 55
  • 79. RODEO-CP applied to designed peptides in unoriented model membranes Designed Peptides KL14 in plane KKLLKKAKKLLKK-CONH2 KALP transmembrane GKKLALALALALALALALALKKA-CONH2 Model Membrane POPC 1-palmitoyl-2-oleoyl-phosphatidylcholine Barbara Perrone (UdS) 13th September 2011 Thesis defense 24 / 55
  • 80. RODEO-CP applied to designed peptides in unoriented model membranes Designed Peptides KL14 in plane KKLLKKAKKLLKK-CONH2 KALP transmembrane GKKLALALALALALALALALKKA-CONH2 Model Membrane POPC 1-palmitoyl-2-oleoyl-phosphatidylcholine Barbara Perrone (UdS) 13th September 2011 Thesis defense 24 / 55
  • 81. RODEO-CP applied to designed peptides in unoriented model membranes Designed Peptides KL14 in plane KKLLKKAKKLLKK-CONH2 KALP transmembrane GKKLALALALALALALALALKKA-CONH2 Model Membrane POPC 1-palmitoyl-2-oleoyl-phosphatidylcholine Barbara Perrone (UdS) 13th September 2011 Thesis defense 24 / 55
  • 82. RODEO-CP applied to designed peptides in unoriented model membranes σ11, σ22, σ33 σ, σ⊥ Model ! ! # $ % %'' %(( ) 350 300 250 200 150 100 50 0 ppm 350 300 250 200 150 100 50 0 ppm KL14 KALP σ33 (ppm) 228.2±0.5 221±4 σ22 (ppm) 78±4 77.5±0.3 σ11 (ppm) 54±1 55.0±0.2 Barbara Perrone (UdS) 13th September 2011 Thesis defense 25 / 55
  • 83. RODEO-CP applied to designed peptides in unoriented model membranes σ11, σ22, σ33 σ, σ⊥ Model ! ! # $ % %'' %(( ) −50250 200 150 100 50 0 ppm−50250 200 150 100 50 0 ppm −50250 200 150 100 50 0 ppm−50250 200 150 100 50 0 ppm RODEO-APHH-CP, 50 Hz MAT, τcp = 800 µs, P/L=2/100, 298 K KL14 KALP σ (ppm) 72±4 205±4 σ⊥ (ppm) 143.5±0.5 78.7±0.3 Barbara Perrone (UdS) 13th September 2011 Thesis defense 25 / 55
  • 84. RODEO-CP applied to designed peptides in unoriented model membranes σ11, σ22, σ33 σ, σ⊥ Model ! ! # $ % %'' %(( ) σ = σ11cos2αsin2β + σ22sin2αsin2β + σ33cos2β C.Sizun and B.Bechinger, J. Am. Chem. Soc. (2002) 0 Π 2 Π 3 Π 2 2 Π Α 0 Π 2 Π 3 Π 2 2 ΠΒ 100 150 200 Σ −→ α = pitch angle and β= helix tilt (approx: σ33 helix axis, fast rotational diffusion around ˆn ) Barbara Perrone (UdS) 13th September 2011 Thesis defense 25 / 55
  • 85. Helix tilt calculation Graphical solution KL14: intersection of the surface σ⊥ = f (α, β) with the experimental plane σ⊥ = 143.5 ppm. 0 Π 4 Π 2 3 Π 2 2 Π Α 0 Π 4 Π 2 3 Π 2 2 Π Β 75 100 125 150 Σ ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 26 / 55
  • 86. Helix tilt calculation Graphical solution KALP: intersection of the surface σ = f (α, β) with the experimental plane σ = 205 ppm. 0Π 4Π 2 3 Π 2 2 Π Α 0 Π 4 Π 2 3 Π 2 2 Π Β 100 150 200 Σ Barbara Perrone (UdS) 13th September 2011 Thesis defense 26 / 55
  • 87. Results KALP topologically open curve β = f (α). α [0, 2π] β [22.7 − 24.5]° KL14 topologically closed curve β = f (α). α [−63.3, +63.3]° β [70.5, 109.5]° Π 2 ΠΠ 3 Π 2 2 Π Α Π 2 Π 2 Β Barbara Perrone (UdS) 13th September 2011 Thesis defense 27 / 55
  • 88. Results KALP topologically open curve β = f (α). α [0, 2π] β [22.7 − 24.5]° KL14 topologically closed curve β = f (α). α [−63.3, +63.3]° β [70.5, 109.5]° Π 2 ΠΠ 3 Π 2 2 Π Α Π 2 Π 2 Β Π 2 ΠΠ 3 Π 2 2 Π Α Π 2 Π 2 Β Barbara Perrone (UdS) 13th September 2011 Thesis defense 27 / 55
  • 89. RODEO-CP applied to PLAH4 in E.coli lipid extract PLAH4 in E.coli total lipid extract 15N fully labelled (also lateral chains) MLV of E.coli-extracted lipids (P/L=2%) 10 mM tris buffer (pH∼ 5) RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0, τm = (0.5Tr ± 18%), τcp = 800 µs, 310K. No line-shape distortions. 250 200 150 100 50 0 ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 28 / 55
  • 90. RODEO-CP applied to PLAH4 in E.coli lipid extract PLAH4 in E.coli total lipid extract 15N fully labelled (also lateral chains) MLV of E.coli-extracted lipids (P/L=2%) 10 mM tris buffer (pH∼ 5) RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0, τm = (0.5Tr ± 18%), τcp = 800 µs, 310K. In red, line-shape fitting. 250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 28 / 55
  • 91. RODEO-CP applied to PLAH4 in E.coli lipid extract PLAH4 in E.coli total lipid extract 15N fully labelled (also lateral chains) MLV of E.coli-extracted lipids (P/L=2%) 10 mM tris buffer (pH∼ 5) RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0, τm = (0.5Tr ± 18%), τcp = 800 µs, 310K. In blue, tensor components: σ = 78 ppm, σ⊥ = 142 ppm. Corresponding estimated values (in-plane): σ = 58−81 ppm, σ⊥ = 142 − 153 ppm. 250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 28 / 55
  • 92. RODEO-CP applied to PLAH4 in E.coli lipid extract PLAH4 in E.coli total lipid extract 15N fully labelled (also lateral chains) MLV of E.coli-extracted lipids (P/L=2%) 10 mM tris buffer (pH∼ 5) RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0, τm = (0.5Tr ± 18%), τcp = 800 µs, 310K. In violet, isotropic components σ ≈ 15N σbackbone iso 250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 28 / 55
  • 93. RODEO-CP applied to PLAH4 in E.coli lipid extract PLAH4 in E.coli total lipid extract 15N fully labelled (also lateral chains) MLV of E.coli-extracted lipids (P/L=2%) 10 mM tris buffer (pH∼ 5) RODEO-APHH-CP, turning at 69 Hz, rotor axis at 80° respective to B0, τm = (0.5Tr ± 18%), τcp = 800 µs, 310K. Assignment of the additional peaks. 250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm250 200 150 100 50 0 ppm H lateral chains K lateral chains lipids (?) Barbara Perrone (UdS) 13th September 2011 Thesis defense 28 / 55
  • 94. RODEO-CP applied to PLAH4 in-vivo E.coli PLAH4 in-vivo E.coli ≤0.75mg 15N fully labeled PLAH4 ∼300 mg bacteria pellet TRIS buffer (pH∼7) no nutrients, no O2 RODEO-APHH-CP, 53 Hz MAT, τm = (0.5Tr ± 18%), τCP = 800 µs, 4 days acquisition, 298 K. viability tests: no difference w or w/o peptide 20% bacteria died S/N can be improved 250 200 150 100 50 0 ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 29 / 55
  • 95. Outline 1 Introduction Motivations 2 Solid State NMR (SS-NMR) Solid-state NMR and Magic Angle Hole problem Magic Angle Hole and Transient Oscillation Holes origins 3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes Changing the shape of the contact pulse 4 Another strategy: ROtor Directed Exchange of Orientation (RODEO) RODEO - Theory and method development RODEO - Applications 5 Biophysical studies of the antimicrobial peptide LAH4 LAH4-membrane insertion in presence of citrate 6 Future perspective Barbara Perrone (UdS) 13th September 2011 Thesis defense 30 / 55
  • 96. LAH4 Known properties KKALLALALHHL AHLALHLALALKKA-NH2 a unstructured in solution helical in membrane/micelles a Bechinger(1996), Aisenbrey et al. (1996),Vogt et al.(1999), Kichler et al.(2003), Mason et al. (2006), Kichler et al.(2007), Prongide-Fix et al. (2007), Marquette et al. (2008) pH∼5 protonation of histidines surface-associated pH∼7 deprotonation of histidines transmembrane Barbara Perrone (UdS) 13th September 2011 Thesis defense 31 / 55
  • 97. LAH4 in presence of citrate buffer Oriented Solid-State NMR 15N single labeled LAH4 in oriented DMPC (P/L=1:50) DMPC= 1,2-dimyristoyl-sn-glycero-3-phosphocholine No buffer, pH ∼5a 200 100 0 ppm Figure: σ ≈80 ppm =⇒In-plane orientation. a With 10 mM citrate buffer, pH 5 200 100 0 ppm Figure: σ ≈ 200 ppm =⇒ Transmembrane orientation. Barbara Perrone (UdS) 13th September 2011 Thesis defense 32 / 55
  • 98. LAH4 in presence of citrate buffer-I Oriented Circular Dichroism absence of a negative band around 208 nm is an indication of a TM helix Barbara Perrone (UdS) 13th September 2011 Thesis defense 33 / 55
  • 99. LAH4 in presence of citrate buffer-I Oriented Circular Dichroism absence of a negative band around 208 nm is an indication of a TM helix Barbara Perrone (UdS) 13th September 2011 Thesis defense 33 / 55
  • 100. Small Angle X-ray Scattering (SAXS) Membrane hydrophobic thickness Effect of LAH4 on the hydrophobic thickness of POPC, POPG and POPC/POPG vesicles in citrate buffer pH=5 Bilayer thickness: dB = 2(zH + 2σH) Membrane hydrophobic thickness: dCC = dB − 10˚A ͗f͑q͒͘ϭF͑q͒ϭ2F ͑q͒ϩF ͑q͒, ͑7͒ intensity is therefore given by the diffraction of the phospho- lipid multilayers within the quasi-long-range order lattice, plus the additional diffuse scattering of single, uncorrelated bilayers I͑q͒ϰ 1 q2 „͉F͑q͉͒2 S͑q͒ϩNdiff͉F͑q͉͒2 …. ͑13͒ In further context of this paper we will refer to the above described model as MCG, since it is a combination of MCT and a Gaussian electron density representation of the head- group ͓30͔. A further benefit of this method is that one can derive structural parameters from simple geometric relationships, without the need of volumetric data as, e.g., in the approach of McIntosh and Simon ͓32͔, or Nagle et al. ͓14͔. For deter- FIG. 1. Electron density profile model ␳(z) as a function of distance z from the center of the bilayer, given by a summation of two Gaussians ͓see Eq. ͑5͔͒. 4002 PRE 62PABST, RAPPOLT, AMENITSCH, AND LAGGNER Barbara Perrone (UdS) 13th September 2011 Thesis defense 34 / 55
  • 101. Small Angle X-ray Scattering (SAXS) Membrane hydrophobic thickness Effect of LAH4 on the hydrophobic thickness of POPC, POPG and POPC/POPG vesicles in citrate buffer pH=5 Bilayer thickness: dB = 2(zH + 2σH) Membrane hydrophobic thickness: dCC = dB − 10˚A ͗f͑q͒͘ϭF͑q͒ϭ2F ͑q͒ϩF ͑q͒, ͑7͒ intensity is therefore given by the diffraction of the phospho- lipid multilayers within the quasi-long-range order lattice, plus the additional diffuse scattering of single, uncorrelated bilayers I͑q͒ϰ 1 q2 „͉F͑q͉͒2 S͑q͒ϩNdiff͉F͑q͉͒2 …. ͑13͒ In further context of this paper we will refer to the above described model as MCG, since it is a combination of MCT and a Gaussian electron density representation of the head- group ͓30͔. A further benefit of this method is that one can derive structural parameters from simple geometric relationships, without the need of volumetric data as, e.g., in the approach of McIntosh and Simon ͓32͔, or Nagle et al. ͓14͔. For deter- FIG. 1. Electron density profile model ␳(z) as a function of distance z from the center of the bilayer, given by a summation of two Gaussians ͓see Eq. ͑5͔͒. 4002 PRE 62PABST, RAPPOLT, AMENITSCH, AND LAGGNER Barbara Perrone (UdS) 13th September 2011 Thesis defense 34 / 55
  • 102. Conclusions Conclusion LAH4 in citrate inserts in a transmembrane manner in DMPC, even at acidic pH, when histidines are charged. LAH4 assume assumes an in-plane alignment in DMPC when no buffer is added, in agreement with previous results in other lipids (POPC). The membrane thickening POPC at pH 5 in the presence of citrate buffer, suggest that the peptide inserts in a transmembrane manner. Barbara Perrone (UdS) 13th September 2011 Thesis defense 35 / 55
  • 103. Conclusions Conclusion LAH4 in citrate inserts in a transmembrane manner in DMPC, even at acidic pH, when histidines are charged. LAH4 assume assumes an in-plane alignment in DMPC when no buffer is added, in agreement with previous results in other lipids (POPC). The membrane thickening POPC at pH 5 in the presence of citrate buffer, suggest that the peptide inserts in a transmembrane manner. Barbara Perrone (UdS) 13th September 2011 Thesis defense 35 / 55
  • 104. Conclusions Conclusion LAH4 in citrate inserts in a transmembrane manner in DMPC, even at acidic pH, when histidines are charged. LAH4 assume assumes an in-plane alignment in DMPC when no buffer is added, in agreement with previous results in other lipids (POPC). The membrane thickening POPC at pH 5 in the presence of citrate buffer, suggest that the peptide inserts in a transmembrane manner. Barbara Perrone (UdS) 13th September 2011 Thesis defense 35 / 55
  • 105. Outline 1 Introduction Motivations 2 Solid State NMR (SS-NMR) Solid-state NMR and Magic Angle Hole problem Magic Angle Hole and Transient Oscillation Holes origins 3 A strategy to refill the Magic Angle Hole and Transient Oscillation Holes Changing the shape of the contact pulse 4 Another strategy: ROtor Directed Exchange of Orientation (RODEO) RODEO - Theory and method development RODEO - Applications 5 Biophysical studies of the antimicrobial peptide LAH4 LAH4-membrane insertion in presence of citrate 6 Future perspective Barbara Perrone (UdS) 13th September 2011 Thesis defense 36 / 55
  • 106. Future perspective RODEO-Applications-LAH4 Improve in vivo E.coli RODEO experiment Compare results obtained in E.coli lipid LAH4 and citrate: open questions peculiar behavior of the citrate anion or is it general? what is the mechanism? does it affect the antimicrobial activity? Barbara Perrone (UdS) 13th September 2011 Thesis defense 37 / 55
  • 107. Future perspective RODEO-Applications-LAH4 Improve in vivo E.coli RODEO experiment Compare results obtained in E.coli lipid LAH4 and citrate: open questions peculiar behavior of the citrate anion or is it general? what is the mechanism? does it affect the antimicrobial activity? Barbara Perrone (UdS) 13th September 2011 Thesis defense 37 / 55
  • 108. Future perspective RODEO-Applications-LAH4 Improve in vivo E.coli RODEO experiment Compare results obtained in E.coli lipid LAH4 and citrate: open questions peculiar behavior of the citrate anion or is it general? what is the mechanism? does it affect the antimicrobial activity? Barbara Perrone (UdS) 13th September 2011 Thesis defense 37 / 55
  • 109. Future perspective RODEO-Applications-LAH4 Improve in vivo E.coli RODEO experiment Compare results obtained in E.coli lipid LAH4 and citrate: open questions peculiar behavior of the citrate anion or is it general? what is the mechanism? does it affect the antimicrobial activity? Barbara Perrone (UdS) 13th September 2011 Thesis defense 37 / 55
  • 110. Future perspective RODEO-Applications-LAH4 Improve in vivo E.coli RODEO experiment Compare results obtained in E.coli lipid LAH4 and citrate: open questions peculiar behavior of the citrate anion or is it general? what is the mechanism? does it affect the antimicrobial activity? Barbara Perrone (UdS) 13th September 2011 Thesis defense 37 / 55
  • 111. Acknowledgments Thanks to: Prof. Dr. B.Bechinger Prof. Dr. B.Wallace Dr. C. Marques Prof. Dr. Willumeit Prof. Dr. N. C. Nielsen Dr. J.Raya Dr. J.Hirschinger Dr. E.Glattard Dr. V.Vidovic Dr. A.Miles Prof. Dr. K.Lohner Dr. G.Pabst Laboratory of NMR and Biophysics of Membranes Biocontrol Network EU FP6 Funding Barbara Perrone (UdS) 13th September 2011 Thesis defense 38 / 55
  • 112. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) CP on ferrocene powder - SetB Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 113. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA s45a CP, tCP = 50 µs rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) a “sφ”tangent-amplitude shapes built on the formula ω1I (t) − ω1S (t) = dIS tan φ(τ 2 − t) (Hediger et al., 1994) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 114. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA s65 CP, tCP = 50 µs rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) CP on ferrocene powder - SetB Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 115. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA s75 CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) CP on ferrocene powder - SetB Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 116. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA s84.3 CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) CP on ferrocene powder - SetB Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 117. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA s88 CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) CP on ferrocene powder - SetB Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 118. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA s89.5 CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) CP on ferrocene powder - SetB Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 119. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA s89.9 CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) CP on ferrocene powder - SetB Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 120. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA rectangular CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) CP on ferrocene powder - SetB Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 121. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA CP on ferrocene powder - SetB ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 122. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA CP on ferrocene powder - SetB ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 123. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA CP on ferrocene powder - SetB ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 124. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA CP on ferrocene powder - SetB ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 125. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA CP on ferrocene powder - SetB ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 126. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA CP on ferrocene powder - SetB ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 127. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA CP on ferrocene powder - SetB ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 128. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA CP on ferrocene powder - SetB ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 129. Shaped-pulse CP experiments - 50 µs CP on ferrocene powder - SetA CP on ferrocene powder - SetB ramp CP, tCP = 50 µs rectangular CP, tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 39 / 55
  • 130. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 131. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 132. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 133. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 134. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 135. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 136. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 137. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 138. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 139. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 140. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 141. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 142. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 143. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 144. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 145. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 146. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 147. Shape variations on static CP experiments - 150 µs 1H −13 C CP on ferrocene powder performed with tCP = 150 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 40 / 55
  • 148. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 149. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 150. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 151. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 152. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 153. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 154. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 155. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 156. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 157. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 158. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 159. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 160. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 161. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 162. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 163. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 164. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 165. Shape variations on static CP experiments - 350 µs 1H −13 C CP on ferrocene powder performed with tCP = 350 µs applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 41 / 55
  • 166. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 167. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 168. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 169. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 170. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 171. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 172. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 173. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 174. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 175. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 176. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 177. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 178. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 179. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 180. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 181. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 182. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 183. Shape variations on static CP experiments - 1 ms 1H −13 C CP on ferrocene powder performed with tCP = 1 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 42 / 55
  • 184. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 185. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 186. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 187. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 188. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 189. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 190. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 191. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 192. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetA). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 193. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 194. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 195. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 196. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 197. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 198. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 199. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 200. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 201. Shape variations on static CP experiments - 3 ms 1H −13 C CP on ferrocene powder performed with tCP = 3 ms applying the shaped-pulse shown below on 13C (SetB). Confront with rectangular CP performed at tCP = 10 ms. 100 50 ppm 0,0 1,0 Contact Time (arbitrary units) 0 20 40 60 80 100 13Ccontactfield(kHz) Barbara Perrone (UdS) 13th September 2011 Thesis defense 43 / 55
  • 202. Introduction to CP - how? Homonuclear spin couple I-I Conservative“Flip-Flop” transitions Heteronuclear spin couple I-S Transitions NOT conservative Double rotating frame with ωRF I = ωRF S Hartmann-Hahn condition: γI ωI = γS ωS Barbara Perrone (UdS) 13th September 2011 Thesis defense 44 / 55
  • 203. Introduction to CP - how? Homonuclear spin couple I-I Conservative“Flip-Flop” transitions Heteronuclear spin couple I-S Transitions NOT conservative Double rotating frame with ωRF I = ωRF S Hartmann-Hahn condition: γI ωI = γS ωS Barbara Perrone (UdS) 13th September 2011 Thesis defense 44 / 55
  • 204. Introduction to CP - how? Homonuclear spin couple I-I Conservative“Flip-Flop” transitions Heteronuclear spin couple I-S Transitions NOT conservative Double rotating frame with ωRF I = ωRF S Hartmann-Hahn condition: γI ωI = γS ωS Barbara Perrone (UdS) 13th September 2011 Thesis defense 44 / 55
  • 205. Introduction to CP - how? Homonuclear spin couple I-I Conservative“Flip-Flop” transitions Heteronuclear spin couple I-S Transitions NOT conservative Double rotating frame with ωRF I = ωRF S Hartmann-Hahn condition: γI ωI = γS ωS Barbara Perrone (UdS) 13th September 2011 Thesis defense 44 / 55
  • 206. RODEO-CP: τm optimization Experimental Figure: τm = Tr 2 Calculated RODEO-CP: µs, MAT@55Hz;CP with tcp = 10 ms. Random-sampling τm results in a RODEO-CP spectra closer to the quasi-equilibrium line-shape. Barbara Perrone (UdS) 13th September 2011 Thesis defense 45 / 55
  • 207. CP dynamics Classical I-S model Thermodynamic approach I(t) follows a double exponential law ferrocene does not follow this law (M¨uller et al., 1974) MBKE I-I*-S model Barbara Perrone (UdS) 13th September 2011 Thesis defense 46 / 55
  • 208. CP dynamics Classical I-S model Thermodynamic approach I(t) follows a double exponential law ferrocene does not follow this law (M¨uller et al., 1974) MBKE I-I*-S model Barbara Perrone (UdS) 13th September 2011 Thesis defense 46 / 55
  • 209. CP dynamics Classical I-S model Thermodynamic approach I(t) follows a double exponential law ferrocene does not follow this law (M¨uller et al., 1974) MBKE I-I*-S model Barbara Perrone (UdS) 13th September 2011 Thesis defense 46 / 55
  • 210. CP dynamics Classical I-S model MBKE I-I*-S model Network of coupled I nuclei Transient harmonic oscillations Figures from Kolodziejski et al., Chem.Rev., 2002 Barbara Perrone (UdS) 13th September 2011 Thesis defense 46 / 55
  • 211. CP dynamics Classical I-S model MBKE I-I*-S model Network of coupled I nuclei Transient harmonic oscillations Figures from Kolodziejski et al., Chem.Rev., 2002 Barbara Perrone (UdS) 13th September 2011 Thesis defense 46 / 55
  • 212. MKBE model MKBE Solution Master equation: ˙σ(t) = −i [H(t), σ(t)] − Γ [σ(t), σ(∞)] Γ = Rdf ([Ix [Ix , σ]] + [Iy [Iy , σ]]) + Rdp [Iz [Iz, σ]] MKBE Solutionab: Sz(t) = 1 − 1 2 exp(−Rdf t) − 1 2 exp − Rdf + Rdp 2 t cos(bt) damped oscillations: freq. depends on b and decay depends on Rdp , Rdf the approach to the final equilibrium is regulated by Rdf a M¨uller, Kumar, and Baumann, and Ernst. b |ω1I | = |ω1S |, ω0i ≈ ωRFi ,H(t) = H, b = −γI γS 2r3 IS (3 cos2 θ − 1), T1ρ = 0, |ω1I | + |ω1S | b Rdp, Rdf Barbara Perrone (UdS) 13th September 2011 Thesis defense 47 / 55
  • 213. MKBE model MKBE Solution Master equation: ˙σ(t) = −i [H(t), σ(t)] − Γ [σ(t), σ(∞)] Γ = Rdf ([Ix [Ix , σ]] + [Iy [Iy , σ]]) + Rdp [Iz [Iz, σ]] MKBE Solutionab: Sz(t) = 1 − 1 2 exp(−Rdf t) − 1 2 exp − Rdf + Rdp 2 t cos(bt) damped oscillations: freq. depends on b and decay depends on Rdp , Rdf the approach to the final equilibrium is regulated by Rdf a M¨uller, Kumar, and Baumann, and Ernst. b |ω1I | = |ω1S |, ω0i ≈ ωRFi ,H(t) = H, b = −γI γS 2r3 IS (3 cos2 θ − 1), T1ρ = 0, |ω1I | + |ω1S | b Rdp, Rdf Barbara Perrone (UdS) 13th September 2011 Thesis defense 47 / 55
  • 214. MKBE model MKBE Solution Master equation: ˙σ(t) = −i [H(t), σ(t)] − Γ [σ(t), σ(∞)] Γ = Rdf ([Ix [Ix , σ]] + [Iy [Iy , σ]]) + Rdp [Iz [Iz, σ]] MKBE Solutionab: Sz(t) = 1 − 1 2 exp(−Rdf t) − 1 2 exp − Rdf + Rdp 2 t cos(bt) damped oscillations: freq. depends on b and decay depends on Rdp , Rdf the approach to the final equilibrium is regulated by Rdf a M¨uller, Kumar, and Baumann, and Ernst. b |ω1I | = |ω1S |, ω0i ≈ ωRFi ,H(t) = H, b = −γI γS 2r3 IS (3 cos2 θ − 1), T1ρ = 0, |ω1I | + |ω1S | b Rdp, Rdf Barbara Perrone (UdS) 13th September 2011 Thesis defense 47 / 55
  • 215. MKBE model MKBE Solution Master equation: ˙σ(t) = −i [H(t), σ(t)] − Γ [σ(t), σ(∞)] Γ = Rdf ([Ix [Ix , σ]] + [Iy [Iy , σ]]) + Rdp [Iz [Iz, σ]] MKBE Solutionab: Sz(t) = 1 − 1 2 exp(−Rdf t) − 1 2 exp − Rdf + Rdp 2 t cos(bt) damped oscillations: freq. depends on b and decay depends on Rdp , Rdf the approach to the final equilibrium is regulated by Rdf a M¨uller, Kumar, and Baumann, and Ernst. b |ω1I | = |ω1S |, ω0i ≈ ωRFi ,H(t) = H, b = −γI γS 2r3 IS (3 cos2 θ − 1), T1ρ = 0, |ω1I | + |ω1S | b Rdp, Rdf Barbara Perrone (UdS) 13th September 2011 Thesis defense 47 / 55
  • 216. Oriented SS-NMR Mechanically Oriented Samples B0 200 ppm ca B0 80 ppm ca The projection of the tensor on the axis parallel to B0, σzz, gives a direct indication of the σ33 orientation Θ: σzz = σ11sin2 Θcos2 Φ + σ22sin2 Θsin2 Φ + σ33cos2 Θ ∼ 200 ppm ←→ TRANSMEMBRANE ∼ 80 ppm ←→ IN-PLANE Drawbacks Oriented samples challenging to obtain Problematic environmental control Low filling factor of the coil Barbara Perrone (UdS) 13th September 2011 Thesis defense 48 / 55
  • 217. Oriented SS-NMR Mechanically Oriented Samples B0 200 ppm ca B0 80 ppm ca The projection of the tensor on the axis parallel to B0, σzz, gives a direct indication of the σ33 orientation Θ: σzz = σ11sin2 Θcos2 Φ + σ22sin2 Θsin2 Φ + σ33cos2 Θ ∼ 200 ppm ←→ TRANSMEMBRANE ∼ 80 ppm ←→ IN-PLANE Drawbacks Oriented samples challenging to obtain Problematic environmental control Low filling factor of the coil Barbara Perrone (UdS) 13th September 2011 Thesis defense 48 / 55
  • 218. Oriented SS-NMR Mechanically Oriented Samples B0 200 ppm ca B0 80 ppm ca The projection of the tensor on the axis parallel to B0, σzz, gives a direct indication of the σ33 orientation Θ: σzz = σ11sin2 Θcos2 Φ + σ22sin2 Θsin2 Φ + σ33cos2 Θ ∼ 200 ppm ←→ TRANSMEMBRANE ∼ 80 ppm ←→ IN-PLANE Drawbacks Oriented samples challenging to obtain Problematic environmental control Low filling factor of the coil Barbara Perrone (UdS) 13th September 2011 Thesis defense 48 / 55
  • 219. Oriented SS-NMR Mechanically Oriented Samples B0 200 ppm ca B0 80 ppm ca The projection of the tensor on the axis parallel to B0, σzz, gives a direct indication of the σ33 orientation Θ: σzz = σ11sin2 Θcos2 Φ + σ22sin2 Θsin2 Φ + σ33cos2 Θ ∼ 200 ppm ←→ TRANSMEMBRANE ∼ 80 ppm ←→ IN-PLANE Drawbacks Oriented samples challenging to obtain Problematic environmental control Low filling factor of the coil Barbara Perrone (UdS) 13th September 2011 Thesis defense 48 / 55
  • 220. Helix tilt calculation Graphical solution σ = σ11cos2αsin2β + σ22sin2αsin2β + σ33cos2β σ⊥ = σ11(1−cos2αsin2β)+σ22(1−sin2αsin2β)+σ33sin2β 2 KL14: intersection of the surfaces σ,⊥ = f (α, β) with the experimental values, i.e. the planes σ = 72.1 ppm and σ⊥ = 143.5 ppm. 0 Π 4 Π 2 Π 3 Π 2 2 Π Α 0Π 4Π 2 Π 3 Π 2 2 Π Β 100 150 200 Σ 0 Π 4 Π 2 3 Π 2 2 Π Α 0 Π 4 Π 2 3 Π 2 2 Π Β 75 100 125 150 Σ ppm Barbara Perrone (UdS) 13th September 2011 Thesis defense 49 / 55
  • 221. Helix tilt calculation Graphical solution σ = σ11cos2αsin2β + σ22sin2αsin2β + σ33cos2β σ⊥ = σ11(1−cos2αsin2β)+σ22(1−sin2αsin2β)+σ33sin2β 2 KALP: intersection of the surfaces σ,⊥ = f (α, β) with the experimental values, i.e. the planes σ=205 ppm and σ⊥ = 78.7 ppm. 0 Π Π 2 3 Π 2 2 Π Α 0 Π Π 2 3 Π 2 2 Π Β 100 150 Σ 0Π 4Π 2 3 Π 2 2 Π Α 0 Π 4 Π 2 3 Π 2 2 Π Β 100 150 200 Σ Barbara Perrone (UdS) 13th September 2011 Thesis defense 49 / 55
  • 222. SAXS data - POPC POPC Figure: Diffraction patterns of POPC vesicles with increasing amount of LAH4. Barbara Perrone (UdS) 13th September 2011 Thesis defense 50 / 55
  • 223. POPC Figure: Diffraction patterns of POPC vesicles with increasing amount of LAH4. Barbara Perrone (UdS) 13th September 2011 Thesis defense 51 / 55
  • 224. POPG Figure: Diffraction patterns of POPG vesicles with increasing amount of LAH4. Barbara Perrone (UdS) 13th September 2011 Thesis defense 52 / 55
  • 225. POPC/POPG 3:1 Figure: Diffraction patterns of POPC vesicles with increasing amount of LAH4. Barbara Perrone (UdS) 13th September 2011 Thesis defense 53 / 55
  • 226. Electron Density Profiles Electron Density Profiles - POPC Barbara Perrone (UdS) 13th September 2011 Thesis defense 54 / 55
  • 227. Electron Density Profiles Electron Density Profiles - POPG Barbara Perrone (UdS) 13th September 2011 Thesis defense 54 / 55
  • 228. Electron Density Profiles Electron Density Profiles - POPC/POPG Barbara Perrone (UdS) 13th September 2011 Thesis defense 54 / 55
  • 229. DLS and fluorescence quencing Barbara Perrone (UdS) 13th September 2011 Thesis defense 55 / 55