Template Latex: Buku
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Template Latex: Buku

on

  • 956 views

Preview Template Latex Buku.

Preview Template Latex Buku.
File source Latexnya dapat di download di:
http://www.mediafire.com/?whzovex4kbopemq

Statistics

Views

Total Views
956
Views on SlideShare
767
Embed Views
189

Actions

Likes
0
Downloads
21
Comments
0

1 Embed 189

http://kumachii.wordpress.com 189

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Template Latex: Buku Document Transcript

  • 1. Template LTEX ABahasaIndonesia Hayi Nukman cb
  • 2. Kata PengantarIni adalah template yang saya buat dari dari kumpulan beber-apa template yang saya dapatkan di internet. Untuk beberapakonfigurasi seperti Style Section yang diberi kotak sumbernyasaya sudah lupa (soalnya sudah lama) sehingga mohon ma’afjika sumbernya tidak saya sertakan.Dokumen ini dikompilasi dengan XeLatex atau Texlive, denganmenggunakan Editor Gummi untuk mempermudah saya dalammenanggulangi error dalam penulisan syntax LTEX. Bagi yang Aberminat untuk mengembangkan lebih lanjut, atau membuattemplate versinya sendiri, silahkan saja didownload dan digu-nakan. Dokumen ini berlisesi CC-BY, dimana anda bebas untukmengcopy, mengembangkan dan mendistribusikannya baik se-cara komersial maupun tidak. i
  • 3. Daftar IsiI Mengenal LTEX A 11 Programming 2 1.1 Gambar dalam LTEX . . . . . . A . . . . . . . . . . . . . 2 1.2 Sourcecode . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Verbatim Environment . . . . . . . . . . . . . 3 1.2.2 Listing Environment . . . . . . . . . . . . . . . 3 1.2.3 Verbatim full Color . . . . . . . . . . . . . . . . 4 1.3 Algoritma dan Pseudocode . . . . . . . . . . . . . . . 4 1.3.1 If - Else . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 For loop . . . . . . . . . . . . . . . . . . . . . . 5 1.3.3 While Loop . . . . . . . . . . . . . . . . . . . . 5 1.3.4 Return Variable . . . . . . . . . . . . . . . . . 5 1.3.5 Blok Algoritma . . . . . . . . . . . . . . . . . . 5 1.3.6 INFO . . . . . . . . . . . . . . . . . . . . . . . 6II Scientific 82 Grafik 9 2.1 Grafik dengan TikZ . . . . . . . . . . . . . . . . . . . 9 2.1.1 Grafik Sederhana . . . . . . . . . . . . . . . . 9 ii
  • 4. Hayi Nukman A (2012), LTEXTemplate 2.1.2 Grafik 3 Dimensi . . . . . . . . . . . . . . . . . 10 2.1.3 Beberapa Contoh lainnya . . . . . . . . . . . . 11 2.1.4 Info detail . . . . . . . . . . . . . . . . . . . . 13 2.2 Grafik dengan Paket XY . . . . . . . . . . . . . . . . 13 2.2.1 Contoh 1 . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Contoh 2 . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Contoh 3 . . . . . . . . . . . . . . . . . . . . . 14 2.2.4 Info . . . . . . . . . . . . . . . . . . . . . . . . 143 Matematika 15 3.1 Matematika . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 Equation . . . . . . . . . . . . . . . . . . . . . 15 3.1.2 Akar . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.3 SUM . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.4 Integral . . . . . . . . . . . . . . . . . . . . . . 16 3.1.5 Fungsi . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Penggunaan lebih lanjut di Matematika . . . . . . . 17 3.2.1 Beberapa Contoh . . . . . . . . . . . . . . . . 174 Kimia 19 4.1 Grafik Kimia . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 ION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Lampiran 22A Contoh Lampiran 22 A.1 Konversi byte Array ke Bitmap . . . . . . . . . . . . 22 iii
  • 5. BAGIAN IMengenal L TEX A 1
  • 6. BAB 1 Programming1.1 Gambar dalam L TEX A Gambar 1.1: Contoh GambarLorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut pu-rus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Cur-abitur dictum gravida mauris. Nam arcu libero, nonummy eget,consectetuer id, vulputate a, magna. Donec vehicula augue euneque. Pellentesque habitant morbi tristique senectus et netus etmalesuada fames ac turpis egestas. Mauris ut leo. Cras viverrametus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultri-ces. Phasellus eu tellus sit amet tortor gravida placerat. Integersapien est, iaculis in, pretium quis, viverra ac, nunc. Praesenteget sem vel leo ultrices bibendum. Aenean faucibus. Morbi do-lor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabiturauctor semper nulla. Donec varius orci eget risus. Duis nibh mi,congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orcisit amet orci dignissim rutrum. 2
  • 7. Hayi Nukman A (2012), LTEXTemplate 1.2 Sourcecode 1.2.1 Verbatim Environment 13 <RadioGroup 14 android:id=”@+id/radioGroup1” 15 android:layout_width=”match_parent” 16 android:layout_height=”wrap_content” > 17 1.2.2 Listing Environment §1 package lab.andro.tes;23 public class Sample {4 private String sample;56 public Sample(String sample) {7 this.sample = sample;8 }9 public String getSample() {10 return sample;11 }12 } ¦ ¥ Sample 1.2.3 Verbatim full Color 1 <TextView 2 android:id=”@+id/textView1” 3 android:layout_width=”wrap_content” 4 android:layout_height=”wrap_content” 5 android:text=”Nilai” /> 6 <RadioGroup 7 android:id=”@+id/radioGroup1” 3
  • 8. Hayi Nukman A (2012), LTEXTemplate 8 android:layout_width=”match_parent” 9 android:layout_height=”wrap_content” > Untuk ketiga bagian di atas, slihakan baca source latex dari doku- men ini. 1.3 Algoritma dan Pseudocode 1.3.1 If - Else if i ≥ maxval then i←0 else if i + k ≤ maxval then i←i+k end if end if1 begin{algorithmic}2 If {$igeq maxval$}3 State $igets 0$4 Else5 If {$i+kleq maxval$}6 State $igets i+k$7 EndIf8 EndIf9 end{algorithmic} 1.3.2 For loop for i = 1 → 10 do i←i+1 end for1 begin{algorithmic}2 For{$i = 1 to 10$}3 State $i gets i + 1$4 EndFor5 end{algorithmic} 4
  • 9. Hayi Nukman A (2012), LTEXTemplate 1.3.3 While Loop while i ≤ 10 do i=i+1; end while1 begin{algorithmic}2 While{$i leq 10$}3 State i=i+1;4 EndWhile5 end{algorithmic} 1.3.4 Return Variable function Increment(a) a←a+1 return a end function1 begin{algorithmic}2 Function{Increment}{$a$}3 State $a gets a+1$4 State Return $a$5 EndFunction6 end{algorithmic} 1.3.5 Blok Algoritma Start Start Start One(x) Ending Start Unknown(0) Until (True) End Start End End1 algblock[Name]{Start}{End}2 algblockdefx[NAME]{START}{END}% 5
  • 10. Hayi Nukman A (2012), LTEXTemplate3 [2][Unknown]{Start #1(#2)}%4 {Ending}5 algblockdefx[NAME]{}{OTHEREND}%6 [1]{Until (#1)}7 begin{algorithmic}8 Start9 Start10 START[One]{x}11 END12 START{0}13 OTHEREND{texttt{True}}14 End15 Start16 End17 End18 end{algorithmic} 1.3.6 INFO Untuk Algoritma dan Pseudocode, dapat anda baca detailnya beserta contoh-contohnya di: http://en.wikibooks.org/wiki/LaTeX/Algorithms_and_Pseudocode 6
  • 11. Halaman Kosong
  • 12. BAGIAN IIScientific 8
  • 13. BAB 2 Grafik 2.1 Grafik dengan TikZ 2.1.1 Grafik Sederhana 6 5 4 1 2 31 begin{tikzpicture}2 [scale=.8,auto=left,every node/.style={circle,fill=blue!20}]3 node (n6) at (1,10) {6};4 node (n4) at (4,8) {4};5 node (n5) at (8,9) {5};6 node .(n1) at (11,8) {1};7 node (n2) at (9,6) {2};8 node (n3) at (5,5) {3};910 foreach from/to in {n6/n4,n4/n5,n5/n1,n1/n2,n2/n5,n2/n3,n3/n4} 9
  • 14. Hayi Nukman A (2012), LTEXTemplate11 draw (from) -- (to);1213 end{tikzpicture} 2.1.2 Grafik 3 Dimensi . . . . . . . .1 usetikzlibrary{calc,3d}2 newcommand{setxyz}[1]{%3 pgfmathsetmacro{xone}{cos(180+#1)}%4 pgfmathsetmacro{yone}{sin(180+#1)}%5 pgfmathsetmacro{xtwo}{cos(360-#1)}%6 pgfmathsetmacro{ytwo}{sin(360-#1)}%7 }8 setxyz{17}9 begin{tikzpicture}%10 [x = {(xone cm,yone cm)},11 y = {(xtwo cm,ytwo cm)},12 z = {(0cm,1cm)}] 10
  • 15. Hayi Nukman A (2012), LTEXTemplate13 GraphInit[vstyle=Shade]14 SetVertexNoLabel15 begin{scope}[canvas is xy plane at z=-5]16 Vertex{x}17 end{scope}18 begin{scope}[canvas is xy plane at z=0]19 grEmptyCycle[prefix=a]{5}20 end{scope}21 EdgeFromOneToAll{x}{a}{}{5}22 Edges(a0,a1,a2,a3,a4,a0)23 begin{scope}[canvas is xy plane at z=5]24 Vertex{y}25 end{scope}26 EdgeFromOneToAll{y}{a}{}{5}27 end{tikzpicture} 2.1.3 Beberapa Contoh lainnya . . . . . . . . . .1 begin{tikzpicture}2 usepgflibrary{arrows}3 GraphInit[vstyle=Art]4 SetUpEdge[style={->,>=angle 45,bend right=10},color=blue]5 grCirculant[RA=3]{9}{1,-2,3,-4}6 end{tikzpicture} 11
  • 16. Hayi Nukman A (2012), LTEXTemplate .1 begin{tikzpicture}2 draw (-1,0) to[bend left] (1,0);3 draw (-1.2,.1) to[bend right] (1.2,.1);4 draw[rotate=0] (0,0) ellipse (100pt and 50pt);5 end{tikzpicture} 1 1 2 sin α . −1 −1 cos α 1 2 −1 2 −11 begin{tikzpicture}[scale=3]2 draw[step=.5cm, gray, very thin] (-1.2,-1.2)3 grid (1.2,1.2);4 filldraw[fill=green!20,draw=green!50!black]5 (0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;6 draw[->] (-1.25,0) -- (1.25,0) coordinate (x axis);7 draw[->] (0,-1.25) -- (0,1.25) coordinate (y axis);8 draw (0,0) circle (1cm);9 draw[very thick,red] (30:1cm) -- node[left,fill=white]10 {$sin alpha$} (30:1cm |- x axis);11 draw[very thick,blue] (30:1cm |- x axis) -- node 12
  • 17. Hayi Nukman A (2012), LTEXTemplate12 [below=2pt,fill=white] {$cos alpha$} (0,0);13 draw (0,0) -- (30:1cm);14 foreach x/xtext in {-1, -0.5/-frac{1}{2}, 1}15 draw (x cm,1pt) -- (x cm,-1pt) node16 [anchor=north,fill=white] {$xtext$};17 foreach y/ytext in {-1, -0.5/-frac{1}{2},18 0.5/frac{1}{2}, 1}19 draw (1pt,y cm) -- (-1pt,y cm) node20 [anchor=east,fill=white] {$ytext$};21 end{tikzpicture} 2.1.4 Info detail Info lebih lengkap untuk Grafik menggunakan TikZ ini silahkan akses: http://graphtheoryinlatex.blogspot.com 2.2 Grafik dengan Paket XY 2.2.1 Contoh 1 A /B O  Do C1 begin{displaymath}2 xymatrix{ A ar[r] & B ar[d] 3 D ar[u] & C ar[l] }4 end{displaymath} 2.2.2 Contoh 2 P A @ PP @@ PPP @@ PPP @@ PPP  @ PPP B C D 13
  • 18. Hayi Nukman A (2012), LTEXTemplate1 begin{displaymath}2 xymatrix{3 A ar[d] ar[dr] ar[drr] & & 4 B & C & D }5 end{displaymath}6 2.2.3 Contoh 3 A f /B g g′   D f′ /C1 begin{displaymath}2 xymatrix{3 A ar[r]|f ar[d]|g & B ar[d]|{g’} 4 D ar[r]|{f’} & C }5 end{displaymath} 2.2.4 Info Lebih detail bagaimana cara menggunakan serta contoh-contoh lainnya dapat dilihat di: http://en.wikibooks.org/wiki/LaTeX/Xy- pic 14
  • 19. BAB 3 Matematika 3.1 Matematika 3.1.1 Equation 1 x = a0 + (3.1) 1 a1 + 1 a2 + a3 + a41 begin{equation}2 x = a_0 + cfrac{1}{a_13 + cfrac{1}{a_24 + cfrac{1}{a_3 + a_4}}}5 end{equation} 3.1.2 Akar √ a b1 [2 sqrt{frac{a}{b}}3 ] 15
  • 20. Hayi Nukman A (2012), LTEXTemplate Atau √ n 1 + x + x2 + x3 + . . .1 [2 sqrt[n]{1+x+x^2+x^3+ldots}3 ] 3.1.3 SUM ∑ 10 t2 i i=11 [2 sum_{i=1}^{10} t_i ^23 ] 3.1.4 Integral ∫ ∞ e−x dx 01 [2 int_0^infty e^{-x},mathrm{d}x3 ] 3.1.5 Fungsi { n/2 if n is even f (n) = −(n + 1)/2 if n is odd1 [2 f(n) = left{3 begin{array}{l l}4 n/2 & quad text{if $n$ is even}5 -(n+1)/2 & quad text{if $n$ is odd}6 end{array} right.7 ] 16
  • 21. Hayi Nukman A (2012), LTEXTemplate Serta masih banyak lagi yang lainnya. Detail lengkap silahkan buka http://en.wikibooks.org/wiki/LaTeX/Mathematics. 3.2 Penggunaan lebih lanjut di Matematika 3.2.1 Beberapa Contoh Diambil dari: http://en.wikibooks.org/wiki/LaTeX/Advanced_Mathematics ex − 1 [ 0 ] 0 ex 1 lim = lim = x→0 2x H x→0 2 21 [2 lim_{xto 0}{frac{e^x-1}{2x}}3 overset{left[frac{0}{0}right]}{underset{mathrm{H}}{=}}4 lim_{xto 0}{frac{e^x}{2}}={frac{1}{2}}5 ] complex number z= x + iy real imaginary1 [2 z = overbrace{3 underbrace{x}_text{real} +4 underbrace{iy}_text{imaginary}5 }^text{complex number}6 ] complex number z= x + iy real imaginary1 [2 z = overbracket[3pt]{ 17
  • 22. Hayi Nukman A (2012), LTEXTemplate3 underbracket{x}_{text{real}} +4 underbracket[0.5pt][7pt]{iy}_{text{imaginary}}5 }^{text{complex number}}6 ] this way A ← − − B −− − − C − −− − − −→ or that way1 [2 A xleftarrow{text{this way}} B3 xrightarrow[text{or that way}]{} C4 ] Serta masih banyak lagi yang lainnya. 18
  • 23. BAB 4 Kimia 4.1 Grafik Kimia E F D A. C B1 chemfig{A*6(-B-C-D-E-F-)} .1 chemfig{*6(=-=-=-)} 4.2 ION O− . O 19
  • 24. Hayi Nukman A (2012), LTEXTemplate1 chemfig{-(-[1]O^{-})=[7]O} O ⊕ . N O⊖1 chemfig{-chemabove{N}{scriptstyleoplus}2 (=[1]O)-[7]O^{ominus}} 20
  • 25. Lampiran 21
  • 26. Lampiran A Contoh Lampiran A.1 Konversi byte Array ke Bitmap Source:[2] §1 byte[] albumArt = mediaRetriever.getEmbeddedPicture();2 if (albumArt != null) {3 Bitmap artwork = BitmapFactory.decodeByteArray( albumArt, 0,4 albumArt.length);5 imageView.setImageBitmap(artwork);6 } ¦ ¥ Konversi byte Array ke Bitmap Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut pu- rus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Cur- abitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultri- ces. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi do- lor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci 22
  • 27. Hayi Nukman A (2012), LTEXTemplatesit amet orci dignissim rutrum.Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi.Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobor-tis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsanbibendum, erat ligula aliquet magna, vitae ornare odio metus ami. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa.Cras nec ante. Pellentesque a nulla. Cum sociis natoque pe-natibus et magnis dis parturient montes, nascetur ridiculus mus.Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pel-lentesque cursus luctus mauris. 23
  • 28. Bibliography[1] Wikibook LTEX A http://en.wikibooks.org/wiki/LaTeX[2] byte[] to Image Android http://stackoverflow.com/questions/2714700/byte-to- image-android[3] Graph Theory in LaTeX http://graphtheoryinlatex.blogspot.com/ 24