Your SlideShare is downloading. ×
Abg presentation
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Abg presentation

734
views

Published on

Published in: Health & Medicine, Education

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
734
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
28
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Vanessa Klee MSIV
  • 2. What is an ABG?
    • The Components
      • pH / PaCO 2 / PaO 2 / HCO 3 / O 2 sat / BE
    • Desired Ranges
      • pH - 7.35 - 7.45
      • PaCO 2 - 35-45 mmHg
      • PaO 2 - 80-100 mmHg
      • HCO 3 - 21-27
      • O 2 sat - 95-100%
      • Base Excess - +/-2 mEq/L
  • 3. Why Order an ABG?
    • Aids in establishing a diagnosis
    • Helps guide treatment plan
    • Aids in ventilator management
    • Improvement in acid/base management allows for optimal function of medications
    • Acid/base status may alter electrolyte levels critical to patient status/care
  • 4. Logistics
    • When to order an arterial line --
      • Need for continuous BP monitoring
      • Need for multiple ABGs
    • Where to place -- the options
      • Radial
      • Femoral
      • Brachial
      • Dorsalis Pedis
      • Axillary
  • 5. Acid Base Balance
    • The body produces acids daily
      • 15,000 mmol CO 2
      • 50-100 mEq Nonvolatile acids
    • The lungs and kidneys attempt to maintain balance
  • 6. Acid Base Balance
    • Assessment of status via bicarbonate-carbon dioxide buffer system
      • CO 2 + H 2 O <--> H 2 CO 3 <--> HCO 3 - + H +
      • ph = 6.10 + log ([HCO 3 ] / [0.03 x PCO 2 ])
  • 7. The Terms
    • ACIDS
      • Acidemia
      • Acidosis
        • Respiratory
        •  CO 2
        • Metabolic
        •  HCO 3
    • BASES
      • Alkalemia
      • Alkalosis
        • Respiratory
        •  CO 2
        • Metabolic
        •  HCO 3
  • 8. Respiratory Acidosis
    •  ph,  CO 2,  Ventilation
    • Causes
      • CNS depression
      • Pleural disease
      • COPD/ARDS
      • Musculoskeletal disorders
      • Compensation for metabolic alkalosis
  • 9. Respiratory Acidosis
    • Acute vs Chronic
      • Acute - little kidney involvement. Buffering via titration via Hb for example
        • pH  by 0.08 for 10mmHg  in CO 2
      • Chronic - Renal compensation via synthesis and retention of HCO 3 (  Cl to balance charges  hypochloremia)
        • pH  by 0.03 for 10mmHg  in CO 2
  • 10. Respiratory Alkalosis
    •  pH,  CO 2,  Ventilation
    •  CO 2   HCO 3 (  Cl to balance charges  hyperchloremia)
    • Causes
      • Intracerebral hemorrhage
      • Salicylate and Progesterone drug usage
      • Anxiety   lung compliance
      • Cirrhosis of the liver
      • Sepsis
  • 11. Respiratory Alkalosis
    • Acute vs. Chronic
      • Acute -  HCO 3 by 2 mEq/L for every 10mmHg  in PCO 2
      • Chronic - Ratio increases to 4 mEq/L of HCO 3 for every 10mmHg  in PCO 2
      • Decreased bicarb reabsorption and decreased ammonium excretion to normalize pH
  • 12. Metabolic Acidosis
    •  pH,  HCO 3
    • 12-24 hours for complete activation of respiratory compensation
    •  PCO 2 by 1.2mmHg for every 1 mEq/L  HCO 3
    • The degree of compensation is assessed via the Winter’s Formula
        •  PCO 2 = 1.5(HCO 3 ) +8  2
  • 13. The Causes
    • Metabolic Gap Acidosis
      • M - Methanol
      • U - Uremia
      • D - DKA
      • P - Paraldehyde
      • I - INH
      • L - Lactic Acidosis
      • E - Ehylene Glycol
      • S - Salicylate
    • Non Gap Metabolic Acidosis
      • Hyperalimentation
      • Acetazolamide
      • RTA (Calculate urine anion gap)
      • Diarrhea
      • Pancreatic Fistula
  • 14. Metabolic Alkalosis
    •  pH,  HCO 3
    •  PCO 2 by 0.7 for every 1mEq/L  in HCO 3
    • Causes
      • Vomiting
      • Diuretics
      • Chronic diarrhea
      • Hypokalemia
      • Renal Failure
  • 15. Mixed Acid-Base Disorders
    • Patients may have two or more acid-base disorders at one time
    • Delta Gap
      • Delta HCO 3 = HCO 3 + Change in anion gap
      • >24 = metabolic alkalosis
  • 16. The Steps
    • Start with the pH
    • Note the PCO 2
    • Calculate anion gap
    • Determine compensation
  • 17. Sample Problem #1
    • An ill-appearing alcoholic male presents with nausea and vomiting.
      • ABG - 7.4 / 41 / 85 / 22
      • Na- 137 / K- 3.8 / Cl- 90 / HCO 3 - 22
  • 18. Sample Problem #1
    • Anion Gap = 137 - (90 + 22) = 25
    •  anion gap metabolic acidosis
    • Winters Formula = 1.5(22) + 8  2
    • = 39  2
    •  compensated
    • Delta Gap = 25 - 10 = 15
    • 15 + 22 = 37
    •  metabolic alkalosis
  • 19. Sample Problem #2
    • 22 year old female presents for attempted overdose. She has taken an unknown amount of Midol containing aspirin, cinnamedrine, and caffeine. On exam she is experiencing respiratory distress.
  • 20. Sample Problem #2
    • ABG - 7.47 / 19 / 123 / 14
    • Na- 145 / K- 3.6 / Cl- 109 / HCO 3 - 17
    • ASA level - 38.2 mg/dL
  • 21. Sample Problem #2
    • Anion Gap = 145 - (109 + 17) = 19
    •  anion gap metabolic acidosis
    • Winters Formula = 1.5 (17) + 8  2
    • = 34  2
    •  uncompensated
    • Delta Gap = 19 - 10 = 9
    • 9 + 17 = 26
    •  no metabolic alkalosis
  • 22. Sample Problem #3
    • 47 year old male experienced crush injury at construction site.
    • ABG - 7.3 / 32 / 96 / 15
    • Na- 135 / K-5 / Cl- 98 / HCO 3 - 15 / BUN- 38 / Cr- 1.7
    • CK- 42, 346
  • 23. Sample Problem #3
    • Anion Gap = 135 - (98 + 15) = 22
    •  anion gap metabolic acidosis
    • Winters Formula = 1.5 (15) + 8  2
    • = 30  2
    •  compensated
    • Delta Gap = 22 - 10 = 12
    • 12 + 15 = 27
    •  mild metabolic alkalosis
  • 24. Sample Problem #4
    • 1 month old male presents with projectile emesis x 2 days.
    • ABG - 7.49 / 40 / 98 / 30
    • Na- 140 / K- 2.9 / Cl- 92 / HCO 3 - 32
  • 25. Sample Problem #4
    • Metabolic Alkalosis, hypochloremic
    • Winters Formula = 1.5 (30) + 8  2
    • = 53  2
    •  uncompensated