Your SlideShare is downloading. ×
0
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
IJCAI 2011 Presentation
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

IJCAI 2011 Presentation

427

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
427
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Collusion Resistant Reputation Mechanism for Multi Agent Systems<br />BabakKhosravifar, Jamal Bentahar, MaziarGomrokchiand MahsaAlishahi<br />Concordia University, Montreal, Canada<br />1<br />
  • 2. Outline<br />Preliminaries<br />The Model<br />Results<br />Conclusion<br />References<br />2<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 3. Outline<br />Preliminaries<br />The Model<br />Results<br />Conclusion<br />References<br />3<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 4. Preliminaries<br />Agent<br />Agent<br />see<br />action<br />state<br />next<br />Environment<br />4<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 5. Preliminaries<br />Agent<br />Multi agent system<br />5<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 6. Preliminaries<br />Agent<br />Multi agent system<br />Knowledge<br />Trust and Reputation<br />Web service agent<br />Consumer agent<br />Collusion<br />6<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 7. Task Announcement<br />Manager<br />Node Issues Task Announcement<br />7<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 8. Manager<br />Potential<br />Contractor<br />Manager<br />Manager<br />Idle Node Listening to Task Announcements<br />8<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 9. Bid<br />Manager<br />Potential<br />Contractor<br />Node Submitting a Bid<br />9<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 10. Bids<br />Potential<br />Contractor<br />Manager<br />Potential<br />Contractor<br />Manager listening to bids<br />10<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 11. Award<br />Manager<br />Contractor<br />Manager Making an Award<br />11<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 12. Contract<br />Manager<br />Contractor<br />Contract Established<br />12<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 13. Outline<br />Preliminaries<br />The Model<br />Results<br />Conclusion<br />References<br />13<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 14. The Model<br />Consumer/Provider strategy profile<br />Collusion Benefits <br />Consumer agent ( ε)<br />Web service agent ( )<br />Controller agent’s investigation parameters<br />Analyzing feedback window ( )<br />Detecting fake feedback ( )<br />Penalty ( )<br />14<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 15. The model<br />Four possible scenarios<br />Actual collusion is detected<br />Actual collusion is ignored<br />Truthful action is penalized<br />Truthful action is detected <br />15<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 16. Outline<br />Preliminaries<br />The Model<br />Results<br />Conclusion<br />References<br />16<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 17. Results<br />In repeated game with decision making process, if the falsely detected feedback is more that correctly detected ones, web service and consumer agents choose collusion as dominant strategy.<br />Penalizing the collusion is Pure Strategy Nash Equilibrium.<br />17<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 18. Results<br />Penalizing probability<br />Expected Payoffs<br />18<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 19. Results<br />Estimated penalizing probability<br />In mixed strategy repeated games, there is a threshold μ such that if qw > μ acting truthful would be the dominant strategy. <br />19<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 20. Results<br />If the estimated probability of penalizing exceeds the obtained threshold, acting truthful and not being penalized would be the Mixed Strategy Nash Equilibrium.<br />A collusion resistant reputation mechanism is achieved when the controller agent maximizes the following value.<br />20<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 21. Results<br />21<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 22. Outline<br />Preliminaries<br />The Model<br />Results<br />Conclusion<br />References<br />22<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 23. Conclusion<br />Reputation mechanism<br />Collusion analysis<br />Collusion resistant structure<br />Best response analysis<br />Three player game<br />Learning methods<br />MDP/PO-MDP<br />23<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />
  • 24. References<br />Archie Chapman, Alex Rogers, Nicholas Jennings, and David Leslie. A unifying framework for iterative approximate best response algorithms for distributed constraint optimization problems. Knowledge Engineering Review (in press), 2011.<br />RaduJurca and BoiFaltings. Collusion-resistant, incentive-compatible feedback payments. In Proc. of the ACM Conf. on E-Commerce, pages 200–209, 2007. <br />RaduJurca, BoiFaltings, andWalter Binder. Reliable QoS monitoring based on client feedback. In Proc. of the 16’th Int. World Wide Web Conf., pages 1003–1011, 2007.<br />Georgia Kastidou, Kate Larson, and Robin Cohen. Exchanging reputation information between communities: A payment-function approach. In Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 195–200, 2009.<br />BabakKhosravifar, Jamal Bentahar, Philippe Thiran, Ahmad Moazin, and AddrienGuiot. An approach to incentive-based reputation for communities of web services. In Proc. of IEEE 7’th Int. Con. on Web Services (ICWS), pages 303–310, 2009.<br />BabakKhosravifar, Jamal Bentahar, Ahmed Moazin, and Philippe Thiran. On the reputation of agent-based web services. In Proc. of the 24’th Conf. on Artificial Intelligence (AAAI), pages 1352–1357, 2010.<br />E. Michael Maximilien and Munindar P. Singh. Conceptual model of web service reputation. SIGMOD Record, ACM Special Interest Group on Management of Data, 31(4):36– 41, 2002.<br />George Vogiatzis, Ian MacGillivray, and Maria Chli. A probabilistic model for trust and reputation. In Proc. of 9’th Int. Conf. on Autonomous Agent and Multi Agent Systems (AAMAS), pages 225–232, 2010.<br />24<br />Collusion Resistant Reputation Mechanism for Multi Agent Systems B. Khosravifar, J. Bentahar, M. Gomrokchi, M. Alishahi<br />

×